La fonction logarithme népérien, f(x) = ln(x).

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "La fonction logarithme népérien, f(x) = ln(x)."

Transcription

1 La fonction logarithme népérien, f() = ln() L étude des fonctions est une notion fondamentale du programme de Terminale STG A l heure actuelle, les fonctions rencontrées sont celles connues depuis la seconde : fonction carré, racine, quotient de deu fonctions, somme de fonctions puissances Nous allons dans ce chapitre définir une nouvelle fonction, la fonction logarithme Nous admettrons son eistence et vérifierons certaines de ces (nombreuses) propriétés Comme pour les fonctions de référence, nous apprendrons à dériver les fonctions logarithme et, plus généralement, à mener une étude complète de telle fonction Initialement créée pour faire des changement d unité (lorsque les valeurs considérées sont très grandes, le logarithme permet de réduire ces valeurs), nous verrons aussi comment la fonction ln permet de transformer des multiplications en addition ou des puissances en produit - - D PINEL, Site Mathemitec :

2 Note Tous les corrigés des eercices de ce chapitre se trouvent à la fin de ce document I Une définition de la fonction logarithme Posons nous avant tout quelques petites questions Normalement, on sait dériver quasiment toutes les fonctions, essayons de réflechir au processus inverse (cela s appelle trouver des primitives ou intégrer) Quelle fonction a pour dérivée? D après le tableau de dérivation, on sait que ( )' = Autrement dit, la foncition f ( ) l équation f '( ) = = est une solution de Remarquons que comme la dérivée d une constante est 0, toutes les fonctions du type f ( ) = + b sont des solutions de f '( ) = Quelle fonction a pour dérivée? D après le tableau de dérivation, on sait que ( ) f ( ) = est une solution de l équation f '( ) = De même que précédemment, toutes les fonctions du type Quelle fonction a pour dérivée? D après le tableau de dérivation, on sait que ( ) f ( ) = est une solution de l équation f '( ) ' = donc ' = Autrement dit, la fonction f ( ) = + b sont des solutions de f '( ) = ' = donc ' = = Autrement dit, la fonction On remarque encore que toutes les fonctions du type f ( ) = + b sont des solutions de f '( ) = On remarque donc qu à l aide du tableau de dérivée, on peut répondre à ce type de question, même pour les fonctions du type, Par contre, on bloque étrangement sur la recherche d une fonction f telle que f '( ) = C est normal, aussi on admet le théorème suivant Théorème On admet qu il eiste une unique fonction, appellée logarithme népérien et notée ln telle que : > ln est définie et dérivable sur ]0; + [ > ( ln( ) )' = > ln() = D PINEL, Site Mathemitec :

3 Vous démontrerez la propriété suivante en eercice : Propriété I- (voir corrigé fin de chapitre) La fonction ln est strictement croissante sur ]0; + [ Pour tout réels a et b positifs, ln( a) < ln( b) a < b Conséquences La fonction ln étant dérivable et strictement croissante, on a ln( a) = ln( b) a = b En particulier ln( a) = 0 a = Remarquons que la première conséquence est fausse, de manière générale, pour les fonctions non monotones Par eemple, si f ( ) =, f ( a) = f ( b) a = b Pour s en convaincre, prendre a = - et b = Vous démontrerez la propriété suivante en eercice : Propriété I- (voir corrigé fin de chapitre) On a ln( ) < 0 ]0;[ et ln( ) > 0 > Voici la courbe représentative de la fonction logarithme népérien (à connaître!) y J Vous pouvez utiliser la touche ln de votre calculatrice (et pas log, c est pas tout à fait pareil), pour obtenir la représentationgraphique de ln o I Eercice I- Soit f ( ) = 0,5 ln( ) définie sur I = ]0; + [ ( )( ) + Montrer que f '( ) = En déduire les variations de f sur I On admet la propriété fondamentale suivante : Propriété II Propriétés de la fonction ln Pour tous réels a et b strictement positifs, ln ( a b) ln ( a) ln ( b) Le ln transforme le produit en somme Par eemple, ln ( 0) = ln ( 4) + ln ( 5) = ln ( 0) + ln ( ) = D PINEL, Site Mathemitec :

4 A l aide de cette propriété, cous pouvez vous entrainer à démontrer chaune des propriétés suivantes : Propriété II- (voir corrigé fin de chapitre) > Pour tout a > 0, ln = ln ( a) a a = b > Pour tous réels a et b strictement positifs, ln ln ( a) ln ( b) Ln et puissances Comme ln ( a b) ln ( a) ln ( b) = +, on obtient assez facilement : > ( a ) = ln ( a a) = ln ( a) + l ( a) = > ln ( ) ln ( ) ln ( ) ln ( ) ln n l n ( a) a = a a = a + a = ln( a) + ln( a) = ln( a) En poursuivant ce processus, on obtient plus généralement : Propriété n > Pour tout réel a > 0, pour tout entier relatif n, on a ln ( a ) n ln ( a) n a n = a En particulier, ln ln ( ) > Comme on a a a Eemples ln 49 ln 7 ln 7 = =, on admet que ln ( a ) ln ( a) ( ) = ( ) = ( ), ln ( 000) ln ( 0 ) ln ( 0) = = =, si > 0, ln ( ) ln ( 4) ln ( 4) + = Indications pour les eercices II- et II- Bien etudier le domaine de définition des équations avant de commencer Utiliser ensuite la propriété I- ou ln( a) = ln( b) a = b en remarquant que ln() = 0 Eercices II- Résoudre dans R l équation ln ( 4) = 0 Résoudre dans R l inéquation ln ( ) > 0 Résoudre dans R l inéquation ln ( + ) 0 Eercices II- Résoudre dans R l équation ln ( ) ln(4) ln ( 4) Résoudre dans R l équation ln ( ) = ln ( 6) Résoudre dans R l inéquation ln ( 6 ) ln ( ) = D PINEL, Site Mathemitec :

5 III Règles importantes de dérivation Le point de départ de la majorité des études de fonction (type Bac) est la règle de dérivation suivante (admise) : Théorème > Pour tous réels a et b, la fonction ln ( a + b) est dérivable là où a + b > 0, et on a : a ( ln ( a + b) )' = a + b > Plus généralement : soit u une fonction dérivable sur un intervalle I, strictement positive sur u ' I Alors la fonction composée ln ( u ) est dérivable sur I et on a ( ln( u) )' = u Eemples Si f ( ) = ln ( ), f est dérivable pour > et on a f '( ) = + 5 Si f ( ) = 5ln ( ), f est dérivable pour < et on a f '( ) = 5 = Muni de ce théorème, nous pouvons aborder sereinement la plupart des eercices (même type Bac) Il nous manque cependant deu points utiles, dont un capital : rappeler l équation d une tangente, ça peut toujours servir apprendre à résoudre les équations (simple) du type ln() = k : nous aurons alors besoin d introduire encore une nouvelle fonction, la fonction eponentielle Nous allons présenter rapidement dans ce chapitre la méthode de résolution de telles équations, un chapitre entier traitera plus tard de la fonction eponentielle Tangente Rappel Si f est une fonction dérivable sur un intervalle I, avec a appartenant à I alors la courbe C représentative de f admet une tangente au point d abscisse a d équation y = f a + f a a Eemple y ( ) '( )( ) o J I En particulier, la courbe représentant la fonction logarithme admet un tangente T au point d abscisse d équation f () = 0 y = f () + f '() ( ) où f '() = = Ainsi T : y = D PINEL, Site Mathemitec :

6 Equation d inconnue du type ln() = k, où k réel Remarquons tout d abord que la simple équation ln() =, avec les outils actuels, nous est encore inaccessible Graphiquement, nous sommes cepandant capable de déterminer une valeur approchée de la solution On lit que ln() = pour 6 y g() J o I A 6 Pour déterminer la valeur eacte de cette équation, nous allons être obligé d introduire une nouvelle fonction, la fonction eponentielle Théorème L équation ln() = admet une unique solution, notée e On a e 6 De manière plus générale, pour tout réel k, l équation ln() = k admet pour unique solution le nombre noté ep(k), appelé eponentielle de k Remarquons alors que ep() = e Pour l instant, vous utiliserez la touche ep de votre calculatrice pour déteminer des valeurs approchées de ep(k) Eemple L équation ln() = a pour unique solution = ep() L équation ln() = - a pour unique solution = ep(-) Ou encore, ln( ) < < ep( ) IV Eercice classique corrigé (hors eponentielle pour l instant) Dans une entreprise, le pri d une tonne de matière première à l année 998 +, eprimé en f ( ) = + 0 5ln + milliers d euros, est donné par la fonction f définie sur [0 ;] par ( ) On admet que la fonction f est dérivable sur cet intervalle et on note f sa dérivée Donner un tableau de valeurs de la fonction f pour les valeurs entières de comprises entre 0 et Les valeurs de la fonction seront arrondies à0 Montrer que f '( ) = puis étudier le sens de variation de f sur l intervalle [0 ;] + Les valeurs des etremums seront arrondies à0-6 - D PINEL, Site Mathemitec :

7 Tracer la courbe représentant f dans un repère orthogonal, où cm représente deu années en abscisse et cm représentent un millier d euros en ordonnée 4 Selon ce modèle, quel serait le pri d une tonne de matière première au er janvier 005? 5 A l aide du graphique, déterminer en quelle année la tonne de matière première retrouvera son pri initial de 998 Pour plus d eercices corrigés, voir la partie ds du site ou la partie sujet de Bac Démonstration propriété I- Corrigé des eercices ou démonstrations I Une définition de la fonction logarithme ln( ) ' = > 0, donc d après le chapitre dérivation, la fonction ln est stritement croissante sur son domaine > Aussi, par définition d une fonction croissante, deu réels a e b seront rangés dans le même ordre que leurs images ln(a) et ln(b) Autrement dit, ln( a) < ln( b) a < b > la fonction ln a pour dérivée : comme elle est définie pour > 0, on a ( ) Démonstration propriété I- En effet, la fonction ln est croissante et s annule en On en déduit le tableau de signes suivant : Doù la propriété énoncée + + ln 0 ր ր ln () Corrigé eercice I- On a, par définition de ln : f '( ) = 0,5 = = Comme ( + )( ) ( + )( ) =, on obtient bien f '( ) = Comme sur I, > 0 on a aussi +>0 f () est donc du signe de - et on a : f () f () ց ր D PINEL, Site Mathemitec :

8 II Propriétés de la fonction ln Démonstration propriété II- ln a b = ln a + ln b pour tout b > 0 > On sait que ( ) ( ) ( ) Prenons en particulier b = : ln a = ln ( a) + ln a a a donc ( ) ( ) ln ln a ln a a a ln a = ln a + ln b b Comme ln() = 0, il vient 0 = ln ( a) + ln ln = ln ( a) = + a = > Comme ln ( a b) = ln ( a) + ln ( b), on a ( ) cad ln ln ( a ) ln ( b ) b Corrigé eercices II- La fonction ln est définie sur ]0; [ + donc l équation ( ) ln 4 = 0 n a de sens que pour > 5 De plus, ln() = 0 donc ln ( 4) = 0 ln ( 4) = ln ( ) 4 = = qui est bien dans le 5 domaine de définition : S = { } De même, ln(-) n a de sens que pour - > 0 cad < Alors ln ( ) > 0 ln ( ) > ln() > > qui est bien dans le domaine de définition : S = ] ; [ De même, ln(+) n a de sens que pour + > 0 cad > ln + 0 ln + ln + : tous ces réels ne sont pas dans le Alors ( ) ( ) ( ) domaine On a S = ] ; ] Corrigé eercices II- La fonction ln est définie sur ]0; + [ donc cette équation n a de sens que pour > 0 et -4>0 soit au final, pour >4 Alors ln ( ) ln(4) = ln ( 4) ln = ln ( 4) = = 4, qui est hors du domaine : S = 4 4 Cette équation n a de solutions que pour > 0 : alors ln = ln 6 ln = ln 6 = 6 = 4 ou = 4 : seul 4 est dans le domaine donc S = {4} ( ) ( ) ( ) ( ) Cette inéquation n a de sens que pour 6- > 0 cad > : dans ce cas, ln ( 6 ) ln ( ) ln ( 6 ) ln ( ) 6 8 >, qui est bien dans le domaine 6 Ainsi, S = { } D PINEL, Site Mathemitec :

9 IV Eercice classique corrigé (hors eponentielle pour l instant) Corrigé eercice Partie IV Dans une entreprise, le pri d une tonne de matière première à l année 998 +, eprimé en milliers d euros, est donné par la fonction f définie sur [0 ;] par f ( ) = + 0 5ln + ( ) Voici un tableau de valeurs de la fonction f pour les valeurs entières de comprises entre 0 et, où les valeurs de la fonction sont arrondies à f() u ' 5 On sait que ( ln ( u) )' = donc ( ln ( + ))' = et f '( ) = = u Sur l intervalle [0 ;], est positif donc + est positif et f () est du signe de - On a alors : Voir la courbe feuille suivante 0 f () f () ց ր Selon ce modèle, le pri d une tonne de matière première au er janvier 005 est estimé par f(7) (car = 005) On estime donc ce pri à 6,0 milliers d euros soit 600 y Précisons en 998, le pri de la tonne était d environ f(0) = 65 milliers d euros A l aide des traits de construction sur le graphique, c est au cours de l année 006 ( = 8) que le pri d une tonne de matière première retrouvera son pri initial de D PINEL, Site Mathemitec :

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I Introduction du logarithme népérien Définitions Définition Pour tout réel a strictement positif, l équation e y = a, d inconnue y, admet une unique solution. Cette solution

Plus en détail

Terminale ES. La fonction logarithme népérien

Terminale ES. La fonction logarithme népérien Terminale ES La fonction logarithme népérien 1 I Liens avec la fonction exponentielle Définition On sait que la fonction exponentielle est strictement croissante sur et à valeurs dans ]0;+ [. Ainsi, pour

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

Fonction logarithme népérien.

Fonction logarithme népérien. 1. Généralités... p2 2. Propriété fondamentale de ln... p5 3. Étude et représentation graphique de la fonction logarithme népérien... p10 Copyright meilleurenmaths.com. Tous droits réservés 1. Généralités

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

La fonction puissance

La fonction puissance La fonction puissance Table des matières Fonction puissance. Définition.................................. Propriétés.................................. Eercices.................................. Etude de

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Leçon N 8 : La fonction ln (Logarithme népérien)

Leçon N 8 : La fonction ln (Logarithme népérien) Leçon N 8 : La fonction ln (Logarithme népérien) Dans les dernières leçons, nous allons voir des fonctions nouvelles qui seront utilisées dans les problèmes de BAC. La première est le logarithme népérien

Plus en détail

Synthèse de cours PanaMaths Fonctions dérivables convexes

Synthèse de cours PanaMaths Fonctions dérivables convexes Synthèse de cours PanaMaths Définitions et eemples fondamentau Définitions à un point Soit C sa courbe représentative dans un repère tel que l ae des ordonnées est orienté du bas vers le haut La fonction

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim

La fonction f n est définie sur [1;3] f n est pas continue sur R. = lim(x a) lim Lcée Camille SEE I CONTINUITÉ D UNE FONCTION DÉFINITION Soit f une fonction définie sur un intervalle I de R et a un réel appartenant à I.. Dire que f est continue en a signifie que lim a f()= f(a). Dire

Plus en détail

FONCTION LOGARITHME. ln = a.

FONCTION LOGARITHME. ln = a. FONCTION LOGARITHME I. DEFINITION DU LOGARITHME a) Définition Problème : Soit a un réel strictement positif. Démontrer que l équation e x = a admet une solution unique α dans IR. (théorème des valeurs

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN T ale S FONCTION LOGARITHME NÉPÉRIEN Analyse - Chapitre 8 Tale des matières I La fonction logarithme népérien 2 I Théorème et définition 2 I 2 Conséquences immédiates 2 I 3 La relation fonctionnelle 3

Plus en détail

La fonction logarithme

La fonction logarithme La fonction logarithme Table des matières La fonction logarithme népérien. Fonction réciproque d une fonction monotone............. Définition................................. 3.3 Représentation de la

Plus en détail

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations...

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations... calcul intégral Table des matières intégrale d une fonction. activité.................................................... à retenir.................................................. 7. eercices...................................................

Plus en détail

1, x R (Très utilisés dans les exercices).

1, x R (Très utilisés dans les exercices). Leçon 04 : La fonction eponentielle (f() = e ) L eponentielle naturelle (à base e). f() = e est définie pour tout réel. C est une fonction positive, R, e > 0. e 0 = 1 et e 1 = e.718. Si < 0 alors 0< e

Plus en détail

Fonction exponentielle 1

Fonction exponentielle 1 Fonction eponentielle 1 Unicité de la solution de l équation différentielle Conséquences 1. Si f est une solution de l équation différentielle y = y, y(0) = 1, alors, pour tout réel, f( )f() = 1 et f()

Plus en détail

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie Corrigés des eercices de trigonométrie I. Résoudre algébriquement des équations, des inéquations Pour les eercices suivants, on utilisera le cercle trigonométrique Eercice 1 Résoudre dans l intervalle

Plus en détail

Chapitre XI : Fonction Logarithme Népérien

Chapitre XI : Fonction Logarithme Népérien Chapitre XI : Fonction Logarithme Népérien I : Définition I- : Fonction réciproque Définition : On appelle fonction logarithme népérien la fonction qui à tout réel strictement positif x associe l unique

Plus en détail

FONCTION EXPONENTIELLE de BASE e : f(x) = e x

FONCTION EXPONENTIELLE de BASE e : f(x) = e x FONCTION EXPONENTIELLE de BASE e : f() = e I) DEFINITION. a) Définition 1 et notations : ( de la fonction eponentielle ) Quel que soit le nombre réel, l équation ln y = où y est inconnu admet une solution

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

fonction exponentielle de base q

fonction exponentielle de base q fonction eponentielle de base q Table des matières 1 fonction eponentielle de base q : q avec q > 0 2 1.1 activités.................................................. 2 1.2 à retenir..................................................

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

4 Déterminer les limites suivantes. 1) lim x e1 2x. e x x+ 1 e 2x + 1 3) lim x 5 Montrer que l équation e 3x 6 = 0 admet une.

4 Déterminer les limites suivantes. 1) lim x e1 2x. e x x+ 1 e 2x + 1 3) lim x 5 Montrer que l équation e 3x 6 = 0 admet une. ANALYSE Logarithme népérien 5 Connaissances nécessaires à ce chapitre Connaître l allure de la courbe de la fonction exponentielle Connaître les propriétés algébriques de la fonction exponentielle Résoudre

Plus en détail

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires Université Paris Est Créteil DAEU TD : Fonctions Continues et le Théorème des Valeurs Intermédiaires Dans cette fiche on définie une propriété très importante qui est vérifiée par un très grand nombre

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien I) Fonction logarithme népérien : a) le logarithme népérien : k est un nombre réel strictement positif donné. Nous avons établi dans un chapitre précédent que la fonction

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

I Exercices I I I I I I I I I I I I I-4

I Exercices I I I I I I I I I I I I I-4 Chapitre 6 Logarithme TABLE DES MATIÈRES page -1 Chapitre 6 Logarithme Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

Etude de la fonction logarithme

Etude de la fonction logarithme Etude de la fonction logarithme Après un bref rappel des résultats vus dans le module de définition des fonctions logarithmes, nous menons l étude approfondie de la fonction logarithme népérien. 1/ Rappels

Plus en détail

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle

Plus en détail

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x.

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x. T ES Mathématiques DS 5 le 18/01/01 Exercice 1 (5,5 POINTS ) On considère une fonction f définie et dérivable sur l intervalle [- ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f, tracée

Plus en détail

Fonction Cube. 1 fonction cube activité corrigé activité à retenir exercices corrigé exercices...

Fonction Cube. 1 fonction cube activité corrigé activité à retenir exercices corrigé exercices... Fonction Cube Table des matières 1 fonction cube 2 1.1 activité............................................... 2 1.2 corrigé activité.......................................... 4 1.3 à retenir..............................................

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln Eercice ) f ( ) = ln ; f () = ln + ) ln ln ln f ( ) = ; f () = = ² ² ) f ( ) = ( ln ) 4 ; f () = 4 ( ln ) 4) f ( ) = ; f () = = ln ln ² ln ² ) ( ln + ) ( ln ) ln f ( ) = ; f () = = ln + (ln + )² ( ln +

Plus en détail

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015 NOM : Terminale ES Devoir n 9 Mardi 9 mai 5 Eercice. QCM sur 4 points Cet eercice est un questionnaire à choi multiples. Chaque question ci-après comporte quatre propositions de réponse. Pour chacune de

Plus en détail

Chapitre 3 : Fonctions de références

Chapitre 3 : Fonctions de références Chapitre 3 : Fonctions de références En mathématiques, il eiste de nombreuses fonctions. Cependant, on va s intéresser à l étude d un groupe de fonction de la classe de première S appelée les fonctions

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses.

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses. Classe : TES1 Le 19/12/200 MATHEMATIQUES Devoir N Calculatrice autorisée Durée : h Eercice 1:,5 points) Le plan est rapporté à un repère orthonormal. Sur le graphique ci-contre, la courbe C) représente

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Fonctions usuelles Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Eercice **I * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Chapitre 8 Dérivée et variations d une fonction. Table des matières. Chapitre 8 Dérivée et variations d une fonction TABLE DES MATIÈRES page -1

Chapitre 8 Dérivée et variations d une fonction. Table des matières. Chapitre 8 Dérivée et variations d une fonction TABLE DES MATIÈRES page -1 Chapitre 8 Dérivée et variations d une fonction TABLE DES MATIÈRES page -1 Chapitre 8 Dérivée et variations d une fonction Table des matières I Eercices I-1 1................................................

Plus en détail

ln(u) et exp(u) Chapitre ln(u) 8.2 exp(u) Sommaire

ln(u) et exp(u) Chapitre ln(u) 8.2 exp(u) Sommaire Chapitre 8 ln(u) et ep(u) Sommaire 8. ln(u)............................................................ 8. ep(u)........................................................... 8. Eercices.........................................................

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

FONCTIONS EXPONENTIELLES

FONCTIONS EXPONENTIELLES FONCTIONS EXPONENTIELLES I. Fonction eponentielle de base q 1) Définition On considère la suite géométrique de raison q définie par u n = q n. Elle est définie pour tout entier naturel n. En prolongeant

Plus en détail

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013 Fonctions convexes Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Convexité Point d inflexion 2 1.1 Notion de convexité, de concavité.................................... 2 1.2 Point

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

Chapitre 9. La fonction exponentielle

Chapitre 9. La fonction exponentielle Chapitre 9. La fonction exponentielle Le chapitre sur la fonction exponentielle est quasiment indissociable du chapitre suivant sur la fonction logarithme népérien. I. Définition de la fonction exponentielle

Plus en détail

Classe : TES1 Le 17/12/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 17/12/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES Le 7/2/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés Durée : 3h Eercice : (5,5 points) (correction) Dans cet eercice, les probabilités demandées seront données sous forme

Plus en détail

Première STG Chapitre 15 : nombre dérivé et tangente. Page n

Première STG Chapitre 15 : nombre dérivé et tangente. Page n Première STG Chapitre 15 : nombre dérivé et tangente. Page n 1 Un fabricant de matériels informatiques produit, par jour, q appareils d'un modèle A. Le gestionnaire de cette entreprise a établi que le

Plus en détail

Fonction logarithme - Correction

Fonction logarithme - Correction Eercice 1 Fonction logarithme - Correction Déterminer l ensemble de définition des fonctions suivantes : 1. f() = ln + ln(2 ) On sait, d après le cours que la fonction ln est définie sur R +. Autrement

Plus en détail

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques Classe de terminale ES Mathématiques Sujet abordé : exponentielle (lecture graphique) Exercice (BAC ES national ). Un nouveau modèle de mini-ordinateur portable est mis sur le marché. Soit x la quantité

Plus en détail

FONCTIONS LOGARITHMES ET EXPONENTIELLES

FONCTIONS LOGARITHMES ET EXPONENTIELLES Maths FONCTIONS LOGARITHMES ET EXPONENTIELLES I. LA FONCTION LOGARITHME DECIMAL (log) a) Découverte de la fonction Nous allons utiliser la touche log de la calculatrice. Par exemple : log 3 = (Arrondir

Plus en détail

Fonction exponentielle Cours maths Terminale S

Fonction exponentielle Cours maths Terminale S Fonction exponentielle Cours maths Terminale S Dans ce module est introduite la fonction exponentielle, en tant que seule fonction ayant pour dérivée elle-même et prenant la valeur 1 en 0. 1/ Définition

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

Effectifs. (Aires proportionnelles aux effectifs) Duree en min.

Effectifs. (Aires proportionnelles aux effectifs) Duree en min. Durée en minutes x i [0; 20[ [20; 0[ [0; 40[ [40; 60[ [60; 90[ Nombre n i 4 10 14 6 6 TAB. 1 Traitement des dossiers. Effectifs. (Aires proportionnelles aux effectifs). 0 10 20 0 40 50 60 70 80 90 Duree

Plus en détail

Fonction exponentielle

Fonction exponentielle Propriétés algébriques Exercice 1 Ecrire sous la forme d une puissance de les expressions suivantes : a) e7 e 2 b) (e-1 ) 4 c) (exp(e e 2 )) -3 d) e 2 exp(-3) e) e -3 exp(2) f) exp(1) exp(-2) Exercice

Plus en détail

Chapitre 2. Dérivation (rappels) Convexité. 2.1 Dérivation (rappels) Sommaire Fonctions affines. Tracés

Chapitre 2. Dérivation (rappels) Convexité. 2.1 Dérivation (rappels) Sommaire Fonctions affines. Tracés hapitre Dérivation (rappels) onveité Sommaire. Dérivation (rappels)..................................... 9.. Fonctions affines..................................... 9.. Nombre dérivé......................................

Plus en détail

Chapitre 2 Développements limités. Etude locale d une fonction.

Chapitre 2 Développements limités. Etude locale d une fonction. hapitre 2 Développements limités. Etude locale d une fonction. I Introduction : le cas de la fonction eponentielle A Approimation affine de ep au voisinage de 0 n notera f la fonction eponentielle f :

Plus en détail

courbe n 1 courbe n 2 courbe n 3

courbe n 1 courbe n 2 courbe n 3 TES A-B Devoir n 7 mardi 0 mars 05 Eercice. sur.5 points Dans un terrain de camping il y a 3% de français et 68% d étrangers. 70% des français et 30% des étrangers savent jouer à la pétanque. On rencontre,

Plus en détail

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance Dérivation. Fonctions cosinus et sinus ANALYSE Connaissances nécessaires à ce chapitre Calculer la dérivée d une fonction f Déterminer certaines caractéristiques de f à partir de f Utiliser le cercle trigonométrique,

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

1. À partir des informations portées sur le graphique, reproduire sur votre copie et compléter le tableau suivant : x f (x) f (x) - 2 e²

1. À partir des informations portées sur le graphique, reproduire sur votre copie et compléter le tableau suivant : x f (x) f (x) - 2 e² BACCALAUREAT BLANC n Epreuve: MATHEMATIQUES Série : ES Durée : 3 heures Coefficient : 5 L énoncé est constitué de 6 pages (I/6 à 6/6). Les eercices peuvent être traités dans n'importe quel ordre. La qualité

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Exercices : Fonction logarithme népérien

Exercices : Fonction logarithme népérien Eercices : Fonction logarithme népérien Eercice 19 page 116 : 1. b.. c. 3. b. Eercice 1 page 116 : a) e = ln(e ) = ln() = ln() car ln(e ) =. Donc S = {ln()} e + = 3 e = 1 ln(e ) = ln(1) = 0 car ln(1) =

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)).

f : I R 2x + x2 x 1 x 2 w : R R x x h un réel non nul tel que a + h I. On considère les points A(a; f(a)) et M(a + h; f(a + h)). 1S1: doc 5 Dérivation 2015-2016 I Pour bien commencer I.1 Limite en 0 d une fonction Soit I un intervalle contenant 0, I = I\ {0} et f : I R D é f i n i t i o n : On dit que f admet une limite finie L

Plus en détail

Fonction dérivée. Table des matières

Fonction dérivée. Table des matières Fonction dérivée Table des matières fonction dérivée. activité................................................... corrigé activité............................................... à retenir.................................................

Plus en détail

LPP ALBERT DE MUN B TRUCHETET 1/8

LPP ALBERT DE MUN B TRUCHETET 1/8 1/8 Limites de fonctions ln Dans les eercices suivants calculer les limites proposées Eercice 1 lim (ln 1) + Eercice lim (ln + ) + Eercice 3 lim ( ln ) + Eercice 4 4ln+ 3 lim ( ) + ln Eercice 5 lim (ln

Plus en détail

EXERCICES RESOLUS DERIVATION

EXERCICES RESOLUS DERIVATION EXERCICES RESOLUS DERIVATION On donne dans cette fiche plusieurs eercices résolus, passant en revue les différentes notions abordées en cours. Les solutions sont volontairement séparées des énoncés. Je

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

La fonction exponentielle, notée exp, est définie sur l ensemble des réels. Pour tout réel x, on associe le réel y strictement positif tel que :

La fonction exponentielle, notée exp, est définie sur l ensemble des réels. Pour tout réel x, on associe le réel y strictement positif tel que : avril LA FONCTION EXPONENTIELLE T le ES I DÉFINITION ET PREMIÈRES PROPRIÉTÉS De la continuité de la fonction ln et par application du théorème de la valeur intermédiaire, on en déduit que pour tout réel

Plus en détail

NOMBRE DÉRIVÉ ET TANGENTE

NOMBRE DÉRIVÉ ET TANGENTE CLSSE DE STG NOMBRE DÉRIVÉ ET TNGENTE NOMBRE DÉRIVÉ ET TNGENTE. Nombre dérivé.. Définition. Soit une fonction représentée par la courbe C On considère la tangente T, au point d abscisse Le coefficient

Plus en détail

4 e série Exercices sur les études de fonctions

4 e série Exercices sur les études de fonctions e série Eercices sur les études de fonctions Pour les courbes, on vérifiera sur calculatrice graphique On rappelle également que les tableau de variations (tableau récapitulatifs) doivent comporter les

Plus en détail

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x Exponentielle Exercice n 1 Simplifier les expressions suivantes : A = e ln 8 B = e 3 ln 5 C = ln ( e 3) + e 1 2 ln 4 D = e 2+ln 3 E = (e x ) 2 (e x ) 3 F = (e x e x ) 2 e x ( e 3x + e x) Exercice n 2 Résoudre

Plus en détail

Exercice 1 Problème 10 points

Exercice 1 Problème 10 points On révise... Eercice 1 Problème 10 points Partie A Soit g la fonction définie sur l intervalle ]0 ; [ par : g ()= 2 2 2ln() 1. Déterminer la fonction dérivée g de la fonction g et montrer que cette dérivée

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

Mathématiques en Terminale ES. David ROBERT

Mathématiques en Terminale ES. David ROBERT Mathématiques en Terminale ES David ROBERT 007 008 Sommaire Progression Généralités sur les fonctions : Rappels et compléments 3. Généralités......................................................... 3..

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Rem : La fonction inverse étant continue sur ]0;+oo[, elle admet des primitive sur cet intervalle.

Rem : La fonction inverse étant continue sur ]0;+oo[, elle admet des primitive sur cet intervalle. Logarithme népérien. I. Définition, caractéristique et conséquences. Rem : La fonction inverse étant continue sur ]0;+oo[, elle admet des primitive sur cet intervalle. Déf : On appelle fonction logarithme,

Plus en détail

EXERCICES SUR LES EXPONENTIELLES

EXERCICES SUR LES EXPONENTIELLES EXERCICES SUR LES EXPONENTIELLES EXERCICE 1 : Domaine de définition Déterminer le domaine de définition des fonctions eponentielles suivantes : a) f() = e - b) f() = e - c) f() = e (1/) c) f() = ep( 1

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Continuité : une approche graphique 2 2 Théorème des valeurs intermédiaires 3 2.1 Cas des fonctions continues.......................................

Plus en détail

Exercices corrigés Théorème de Rolle, accroissements finis

Exercices corrigés Théorème de Rolle, accroissements finis Eercices corrigés Théorème de Rolle, accroissements finis Enoncés Eercice Démonstration du théorème des accroissements finis Soit f : [a, b] R, continue sur [a, b], dérivable sur ]a, b[ En appliquant le

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction eponentielle Problème à résoudre { On cherche les fonctions f dérivables sur R telles que f(0) = f = f Nous avons déjà essayé de construire une représentation graphique approchée d'une telle

Plus en détail

Terminale ES Contrôle de mathématiques (2 heures) Mardi 21 septembre 2004

Terminale ES Contrôle de mathématiques (2 heures) Mardi 21 septembre 2004 Terminale ES Contrôle de mathématiques ( heures) Mardi septembre 004 La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies.

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

(pour tout x > 0) et ln(1) = 0.

(pour tout x > 0) et ln(1) = 0. Eo7 Fonctions usuelles Vidéo partie. Logarithme et eponentielle Vidéo partie. Fonctions circulaires inverses Vidéo partie 3. Fonctions hperboliques et hperboliques inverses Eercices Fonctions circulaires

Plus en détail

TES A-B Devoir n 6 sujet 1 mardi 10 février 2015

TES A-B Devoir n 6 sujet 1 mardi 10 février 2015 TS A-B Devoir n 6 sujet 1 mardi 10 février 2015 NOM : Prénom :. ercice 1 : (3 points) Un opérateur de téléphonie mobile organise une campagne de démarchage par téléphone pour proposer la souscription d

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail