Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Dimension: px
Commencer à balayer dès la page:

Download "Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire"

Transcription

1 Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ² + ) a) Trouver les limites de f en + et en -. b) Etudier les variations de f et dresser son tableau de variations. 2) a) Trouver une équation de la tangente T à C au point d abscisse 0. b) Etudier la position de T par rapport à C. 3) Tracer T et la courbe C. B. Etude d une suite On définit la suite (u n ) par u 0 tel que - < u 0 < 0 et pour tout entier naturel n, u n+ =f(u n ). ) a) Démontrer que tout entier positif n, - < u n < 0. b) Démontrer que la suite (u n ) est décroissante. 2) a) Prouver que pour tout entier positif n : 0 < u n+ + b) En déduire que 0 < u n + k n (u 0 + ) avec k = u n + u 0 ² + u 0 ² +. c) Prouver que la suite (u n ) est convergente et trouver sa limite. C. Un calcul d aire On note F la fonction définie sur par : et pour tout réel > 0 : l() = 0 +t² dt et J() = 0 t +t² dt ) a) Calculer F () pour tout réel. b) En déduire I(). c) Calculer J(). F() = ln( + + ²), 2) On note A(λ) l aire, en unités d aire, du domaine D λ défini par la courbe C, l ae des abscisses et les droites d équations respectives = 0 et = λ avec λ > 0. a) Calculer A(λ). b) En déduire lim A(λ)

2 Terminale S Problème de synthèse n A Etude de la fonction f CORRECTION ) a) lim f() = lim = -2 lim f() = lim = 0 b) f() = u() v() - avec u() = + et v() = ² + u () v() u() v () f () = v²() u () = et v () = f () = ² + ² + (+) ² + ² + ( + ) = ² + (² + ) ² + = f () est du signe de Tableau de variations de f : (² + ) ² + f' f() f() = = 2 2) a) Une équation de la tangente T au point d abscisse 0 est : y = f (0)( 0) + f(0) f (0) = et f(0) = 0 Une équation de T est donc y =. b) f() = + ² + - = ( + )( ² + - ) Donc ² + - > 0 ² + > > ² + < ² < 0 ² + Impossible car un carré est toujours positif. - < 0 pour tout réel. ² + 2

3 Terminale S Problème de synthèse n f() est donc du signe de ( + ) Si < - alors f() > 0 : la courbe C est au dessus de T. Si = - alors f() = : la courbe C et T se coupent au point (- ;-) Si - < < 0 alors f() < 0 : la courbe C est en dessous de T. Si = 0 alors f() = : la courbe C et T se coupent au point (0 ;0) Si > 0 alors f() < 0 : la courbe C est en dessous de T. 3) 3

4 Terminale S Problème de synthèse n B Etude d une suite ) a) Soit P n la propriété «- < u n < 0 pour tout entier positif n». P 0 est vraie car - < u 0 < 0 Supposons P n vraie. C'est-à-dire - < u n < 0. La fonction f étant croissante sur [- ;0], on a : f(-) < f(u n ) < f(0) Soit - < u n+ < 0 Donc P n+ est vraie. D après le principe de récurrence, P n est vraie pour tout n. b) Soit P n la propriété «u n+ < u n pour tout entier positif n». u u 0 = f(u 0 ) u 0 < 0 car la courbe C est en dessous de la droite d équation y = pour - < < 0 et - < u 0 < 0 et - < u < 0. Donc u < u 0 Donc P 0 est vraie. Supposons P n vraie. C'est-à-dire u n+ < u n u n et u n+ appartiennent à l intervalle ]- ;0[ d après la question précédente. Alors f(u n+ ) < f(u n ) car f est croissante sur [- ;0]. Donc P n+ est vraie. D après le principe de récurrence, P n est vraie pour tout n. Donc la suite (u n ) est décroissante. 2) a) u n+ + = u n + u n ² + Or - < u n u 0 < 0 car la suite (u n ) est décroissante. u n ² u 0 ² car la fonction carré est décroissante sur [- ;0]. u n ² + u 0 ² + u n ² + u 0 ² + car la fonction racine carré est croissante u n ² + car la fonction inverse est décroissante sur ]0;+ [. u 0 ² + Donc u n+ + - < u n+ < 0 Donc u n+ + > 0 Donc : 0 < u n+ + u n + u 0 ² + u n + u 0 ² + 4

5 Terminale S Problème de synthèse n b) Soit P n la propriété «0 < u n + k n (u 0 + ) avec k =. pour tout entier positif» u 0 ² + P 0 est vraie 0 < u 0 + u 0 + Supposons P n vraie. Alors 0 < u n+ + P n. u n + u 0 ² + (u 0 + ) kn en utilisant la question précédente et la propriété u 0 ² + On a donc : 0 < u n+ + k n+ (u 0 + ) Donc P n+ est vraie. D après le principe de récurrence, P n est vraie pour tout n. c) La suite (u n ) est décroissante et minorée par - : elle est donc convergente. - < u 0 < 0 < u 0 ² + < 2 < u 0 ² + < 2 2 < u 0 ² + < Donc k < lim k n (u 0 + ) = 0 car k < n + Donc 0 lim u n+ + 0 n + Donc lim u n+ = - n + C Un calcul d aire ) a) F() = ln(u()) avec u() = + + ² F () = u () u() u () = + F () = Soit : F () = + ² + + ² + + ² = + ² + ² + + ² + + ² = + ² + + ²( + + ² = + ² ) b) Donc I() = F() F(0) = ln( + + ²) t c) Une primitive de k : t est K : t + t² + t² Donc J() = K() K(0) = + ² - + ² + + ²( + + ²) 2) a) A(λ) = 0λ f() d = J(λ) + I(λ) - λ 5

6 Terminale S Problème de synthèse n A(λ) = ln(λ + + λ²) + + λ² - - λ ( + λ² - λ)( + λ² + λ) b) A(λ) = ln(λ + + λ²) + ( + λ² + λ) A(λ) = ln(λ + + λ²) + A(λ) = ln(λ + + λ²) + + λ² - λ² + λ² + λ + λ² + λ D où : lim A(λ) = + car lim ln(λ + + λ²) = + et lim + λ² + λ = 0 6

Terminale S Problème de synthèse n 10 Famille de fonctions - Méthode des rectangles - Suites - Suite d'intégrales

Terminale S Problème de synthèse n 10 Famille de fonctions - Méthode des rectangles - Suites - Suite d'intégrales Terminale S Problème de synthèse n n est un entier naturel, n. On note f n la fonction définie sur I = ] ;+ [ par f n (x) = (ln x)n et C x² n.sa courbe représentative dans un repère orthonormal (O; i ;

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

e x lim f k (x) = (x + 1)e kx.

e x lim f k (x) = (x + 1)e kx. EXERCICE 4 (7 points ) (Commun à tous les candidats) Partie A. Restitution organisée de connaissances On suppose connu le résultat suivant : Démontrer que lim x + xe x =. e x lim x + x = +. Partie B. Restitution

Plus en détail

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses.

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses. Classe : TES1 Le 19/12/200 MATHEMATIQUES Devoir N Calculatrice autorisée Durée : h Eercice 1:,5 points) Le plan est rapporté à un repère orthonormal. Sur le graphique ci-contre, la courbe C) représente

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

Exercices supplémentaires : ln

Exercices supplémentaires : ln Exercices supplémentaires : ln Partie A : Propriétés algébriques Exprimer en fonction de ln2 : Exercice 2 Simplifier les expressions suivantes ln 1 2 ; ln8 ; ln64 ; ln2 ; ln64 ; ln 32 ; ln 2 ; ln 32 ln

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Baccalauréat S Polynésie, correction

Baccalauréat S Polynésie, correction Baccalauréat S Polynésie, correction 0 juin 00 Exercice 5 points Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct (O; u ; v). Partie A - Restitution organisée de

Plus en détail

LPP ALBERT DE MUN B TRUCHETET 1/8

LPP ALBERT DE MUN B TRUCHETET 1/8 1/8 Limites de fonctions ln Dans les eercices suivants calculer les limites proposées Eercice 1 lim (ln 1) + Eercice lim (ln + ) + Eercice 3 lim ( ln ) + Eercice 4 4ln+ 3 lim ( ) + ln Eercice 5 lim (ln

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques Classe de terminale ES Mathématiques Sujet abordé : exponentielle (lecture graphique) Exercice (BAC ES national ). Un nouveau modèle de mini-ordinateur portable est mis sur le marché. Soit x la quantité

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n =

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n = La maison Ecole d ' Devoir de type bac n o 4 Classe de terminale ES Variations, limites, continuité, asymptotes, fonction logarithme, suites... Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence

Plus en détail

Effectifs. (Aires proportionnelles aux effectifs) Duree en min.

Effectifs. (Aires proportionnelles aux effectifs) Duree en min. Durée en minutes x i [0; 20[ [20; 0[ [0; 40[ [40; 60[ [60; 90[ Nombre n i 4 10 14 6 6 TAB. 1 Traitement des dossiers. Effectifs. (Aires proportionnelles aux effectifs). 0 10 20 0 40 50 60 70 80 90 Duree

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako Eercice 1 : Intégrer les équations différentielles suivantes y 1) y 5y = 0 ; y = ; 3y + 5y = 0 ; 9y =(y

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Synthèse de cours PanaMaths Fonctions dérivables convexes

Synthèse de cours PanaMaths Fonctions dérivables convexes Synthèse de cours PanaMaths Définitions et eemples fondamentau Définitions à un point Soit C sa courbe représentative dans un repère tel que l ae des ordonnées est orienté du bas vers le haut La fonction

Plus en détail

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations...

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations... calcul intégral Table des matières intégrale d une fonction. activité.................................................... à retenir.................................................. 7. eercices...................................................

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

Correction du bac blanc mars 2012 Terminales S- Exercice I (6 points) Commun à tous les candidats

Correction du bac blanc mars 2012 Terminales S- Exercice I (6 points) Commun à tous les candidats Correction du bac blanc mars 202 Terminales S- Exercice I (6 points) Commun à tous les candidats Partie A La fonction f est définie sur l intervalle [0 ; + [ par f x = 20x 0 e 2 x On note C la courbe représentative

Plus en détail

Easy-Maths. Théorème des accroissements finis et suites numériques

Easy-Maths. Théorème des accroissements finis et suites numériques Easy-Maths Njionou Patrick, S pnjionou@yahoofr Lycée de Japoma BP : 7297, Douala, Cameroun Théorème des accroissements finis et suites numériques EXERCICE 1 Soit h la fonction définie sur R par : h(x)

Plus en détail

EXERCICES SUR LES EXPONENTIELLES

EXERCICES SUR LES EXPONENTIELLES EXERCICES SUR LES EXPONENTIELLES EXERCICE 1 : Domaine de définition Déterminer le domaine de définition des fonctions eponentielles suivantes : a) f() = e - b) f() = e - c) f() = e (1/) c) f() = ep( 1

Plus en détail

Fiche d exercices 6 : Fonction logarithme

Fiche d exercices 6 : Fonction logarithme Fiche d exercices 6 : Fonction logarithme Exercice 1 Propriétés des fonctions logarithmes 1. Donner la définition, l ensemble de définition et la dérivée de ln ( x) 2. a. Quelle est la qualification de

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

2de Variations de fonctions Cours

2de Variations de fonctions Cours 2de Variations de fonctions Cours I. Fonction croissante, fonction décroissante Transmath : Activité 1 page 23 1. Définitions ( la courbe «monte» de gauche à droite, plus La courbe «descend» de gauche

Plus en détail

Fiche d exercices 2 : Limites de fonctions

Fiche d exercices 2 : Limites de fonctions Fiche d eercices : Limites de fonctions Notion de ite et asymptotes Eercice Dans chacun des cas suivants, on donne la représentation graphique d une fonction f ainsi que les éventuelles asymptotes. En

Plus en détail

Exercices. Intégration et primitives

Exercices. Intégration et primitives Eercices Intégration et primitives Eercice Notion d intégrale ) Pour chaque fonction affine par morceau f, représentée ci-dessous, calculer, en utilisant les aires, l intégrale I( f ) sur l intervalle

Plus en détail

Exercice 1 Problème 10 points

Exercice 1 Problème 10 points On révise... Eercice 1 Problème 10 points Partie A Soit g la fonction définie sur l intervalle ]0 ; [ par : g ()= 2 2 2ln() 1. Déterminer la fonction dérivée g de la fonction g et montrer que cette dérivée

Plus en détail

DS 9 Correction EXERCICE Etude d'une fonction auxiliaire.

DS 9 Correction EXERCICE Etude d'une fonction auxiliaire. DS 9 Correction EXERCICE On considère la fonction déterminée sur 0, par : ln On se propose dans cet exercice d'étudier la fonction et de la représenter relativement à un repère orthonormal,,, l'unité choisie

Plus en détail

Classe : TES1 Le 17/12/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés. Durée : 3h

Classe : TES1 Le 17/12/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés. Durée : 3h Classe : TES Le 7/2/2002 MATHEMATIQUES Devoir N 4 Calculatrice et formulaire autorisés Durée : 3h Eercice : (5,5 points) (correction) Dans cet eercice, les probabilités demandées seront données sous forme

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

Fonctions logarithmes

Fonctions logarithmes La fonction logarithme népérien. Définition et propriétés Fonctions logarithmes La fonction eponentielle est continue et strictement croissante sur R. Le corollaire du théorème des valeurs intermédiaires

Plus en détail

Chapitre 5 : Fonctions de référence et fonctions associées

Chapitre 5 : Fonctions de référence et fonctions associées Chapitre 5 : Fonctions de référence et fonctions associées I) Sens de variation d une fonction Définition : Soit une fonction définie sur un intervalle I. Dire que : est croissante sur I signifie que pour

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice 1 (sur 8 points)

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice 1 (sur 8 points) 5 ème /6 ème année décembre 2014 durée : 4 60 DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1 Eercice 1 (sur 8 points) PARTIE A Soit la onction g déinie sur 1. Calculer g. ; 0 par : 2 2 ln 1 g. 2.

Plus en détail

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S - Enseignement obligatoire Frédéric Demoulin Dernière révision : septembre 2005 fredericdemoulin@voilafr Tableau récapitulatif des exercices indique que cette

Plus en détail

NOM : DERIVATION 1ère S

NOM : DERIVATION 1ère S Exercice Dériver les fonctions suivantes : f(x) = x g(x) = 3x x 3 + 5x h(x) = ( x ) x k(x) = x + 5 x + D. LE FUR /?? Exercice Dériver les fonctions suivantes : f(x) = x 3x + g(x) = (x + 3)(3x 7) h(x) =

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

Baccalauréat S Asie 16 juin 2015

Baccalauréat S Asie 16 juin 2015 Exercice 1 Baccalauréat S Asie 16 juin 15 A. P. M. E. P. Les trois parties de cet exercice sont indépendantes. Les probabilités seront arrondies au millième. Partie A Un concurrent participe à un concours

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

Exercices supplémentaires Second degré

Exercices supplémentaires Second degré Exercices supplémentaires Second degré Partie A : Forme canonique, équations, inéquations, factorisation Mettre sous forme canonique les trinômes suivants 8 ; 3 1 ; 5 ; 3 4 Exercice On considère : 5 6

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Bac Blanc Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths. 18 avril 2011

Bac Blanc Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths. 18 avril 2011 Lycée Marlioz - Aix les Bains Bac Blanc 0 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 8 avril 0 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence.

LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. LEÇON N 46 : Suites de nombres réels définies par une relation de récurrence. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet :

Plus en détail

Baccalauréat ES Centres étrangers 15 juin 2009

Baccalauréat ES Centres étrangers 15 juin 2009 Durée : 3 heures Baccalauréat ES Centres étrangers 15 juin 009 EXERCICE 1 Commun à tous les candidats 4 points Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions proposées,

Plus en détail

x x π. En déduire que le point J a pour affixe i.

x x π. En déduire que le point J a pour affixe i. Asie juin EXERCICE 5 points Commun à tous les candidats Le plan est rapporté à un repère orthonormal ( O ; i, j ).. Étude d une fonction f On considère la fonction f définie sur l intervalle ] ; + [ par

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

Correction du baccalauréat S Polynésie 10 juin 2010

Correction du baccalauréat S Polynésie 10 juin 2010 Correction du baccalauréat S Polynésie 0 juin 00 Exercice Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct O, u, ) v. 5 points Prérequis Partie A - Restitution

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Représenter graphiquement une suite

Représenter graphiquement une suite 8 décembre 2007 Sommaire 1 = f (n) 2 +1 = f ( ) Objectif. On veut représenter la ( ) définie pour tout entier naturel n par : = n2 n+1 +1. Définition de la Cette est définie par formule explicite : les

Plus en détail

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x.

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x. T ES Mathématiques DS 5 le 18/01/01 Exercice 1 (5,5 POINTS ) On considère une fonction f définie et dérivable sur l intervalle [- ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f, tracée

Plus en détail

55 questions incontournables

55 questions incontournables 55 questions incontournables 1 On considère la suite (u n ) définie par u 0 = 1 et pour tout entier naturel n par : u n+1 = u n + 1. Montrer que la suite est à termes positifs et qu elle est croissante.

Plus en détail

NOMBRE DÉRIVÉ ET TANGENTE

NOMBRE DÉRIVÉ ET TANGENTE CLSSE DE STG NOMBRE DÉRIVÉ ET TNGENTE NOMBRE DÉRIVÉ ET TNGENTE. Nombre dérivé.. Définition. Soit une fonction représentée par la courbe C On considère la tangente T, au point d abscisse Le coefficient

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire Recueil d annales en Mathématiques Terminale S - Enseignement obligatoire Frédéric Demoulin Dernière révision : 8 août 5 frederic.demoulin@voila.fr Tableau récapitulatif des exercices indique que cette

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

2. Remplissage du tableau Quelle démarche adopter pour trouver les résultats attendus? Le détail des calculs n est pas demandé.

2. Remplissage du tableau Quelle démarche adopter pour trouver les résultats attendus? Le détail des calculs n est pas demandé. Eercice (6,5 points) Mathématiques Bac Pro juin 28 proposition correction. Nombre d électeurs Soit N le nombre d électeurs de la communauté de communes. 85 85% des électeurs (inscrits), soit 394, se sont

Plus en détail

La fonction puissance

La fonction puissance La fonction puissance Table des matières Fonction puissance. Définition.................................. Propriétés.................................. Eercices.................................. Etude de

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

LEÇON N 56 : 56.1 Monotonie de la suite

LEÇON N 56 : 56.1 Monotonie de la suite LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

Sujet du baccalauréat S Asie 18 juin 2008

Sujet du baccalauréat S Asie 18 juin 2008 Sujet du baccalauréat S Asie 8 juin 2008 www.mathoman.com Exercice Commun à tous les candidats 4 points A - Vrai ou faux? Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50]

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50] Fonctions du second degré - Exemple d étude d un problème. Activité. La recette R(x) d un spectacle dépend du prix x de la place suivant la relation R(x) = 450x 9x². Pour chaque spectacle, les frais fixes

Plus en détail

Baccalauréat STI Génie électronique Antilles septembre 2005

Baccalauréat STI Génie électronique Antilles septembre 2005 Durée : 4 heures Baccalauréat SI Génie électronique Antilles septembre 5 EXERCICE 5 points Un professeur d Éducation Physique et Sportive s adresse à un groupe de vingt élèves au sujet de leurs loisirs

Plus en détail

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x

2. f(x) = 4 x e x 3. f(x) = e x 2 4. f(x) = 1 e 2x. Exercice n 6 Dériver la fonction f dans les cas suivants : 1. f définie sur R par f(x) = xe x Exponentielle Exercice n 1 Simplifier les expressions suivantes : A = e ln 8 B = e 3 ln 5 C = ln ( e 3) + e 1 2 ln 4 D = e 2+ln 3 E = (e x ) 2 (e x ) 3 F = (e x e x ) 2 e x ( e 3x + e x) Exercice n 2 Résoudre

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Prérequis Fonctions usuelles dérivation fonctions exponentielle et logarithme népérien tangentes à la courbe 1. Notions de convexité et de concavité 2. Dérivées premières, dérivées secondes 3. Point d

Plus en détail

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés Classe : TES1 Le 06/05/2003 MATHEMATIQUES Devoir N 7 Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Une statistique publiée en l an 1998 donne le nombre d abonnés à Internet dans

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Baccalauréat S (obligatoire) Polynésie septembre 2009

Baccalauréat S (obligatoire) Polynésie septembre 2009 Baccalauréat S (obligatoire) Polynésie septembre 2009 EXERCICE 1 Commun à tous les candidats 4 points On considère le cube OABCDEFG d arête de longueur 1 représenté ci-dessous. Il n est pas demandé de

Plus en détail

Corrigé du baccalauréat S Asie 18 juin 2008

Corrigé du baccalauréat S Asie 18 juin 2008 Corrigé du baccalauréat S Asie 8 juin 28 www.mathoman.com Exercice Commun à tous les candidats A - Vrai ou faux? Dans l espace soient P, P 2 et P 3 trois plans distincts et D une droite. ) Si P P 2 et

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Correction du devoir de Mathématiques commun aux terminales S (n 1/2H)

Correction du devoir de Mathématiques commun aux terminales S (n 1/2H) Année scolaire 202-20 0 octobre 202 Terminales S 704/705/706) Correction du devoir de Mathématiques commun aux terminales S n /2H) Question de cours : points) Rappeler la définition de deux événements

Plus en détail

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015

NOM : Terminale ES Devoir n 9 Mardi 19 mai 2015 NOM : Terminale ES Devoir n 9 Mardi 9 mai 5 Eercice. QCM sur 4 points Cet eercice est un questionnaire à choi multiples. Chaque question ci-après comporte quatre propositions de réponse. Pour chacune de

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures

Baccalauréat blanc Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures Baccalauréat blanc 2014-2015 Lycée Janson de Sailly Epreuve de Mathématiques Série S durée : 4 heures L usage de la calculatrice est autorisé Le numéro de la classe devra figurer dans la partie anonymée.

Plus en détail

Baccalauréat série ES France septembre 2004

Baccalauréat série ES France septembre 2004 Baccalauréat série ES France septembre 2004 EXERCICE 1 Commun à tous les candidats Soit f la fonction définie pour tout x élément derpar f (x)=0e x. Soit g la fonction définie pour tout x élément derpar

Plus en détail

euve de Mathématiques

euve de Mathématiques Terminales S2 4h00 le 20 décembre 2013 Devoir Surveillé Epre euve de Mathématiques Les exercices peuvent être traités dans l ordre de votre choix à condition de l indiquer clairement sur la copie. Le barème

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

Epreuve de mathématiques Durée : 3h

Epreuve de mathématiques Durée : 3h Bac blanc n 2 Terminale ES Epreuve de mathématiques Durée : 3h Candidat ayant choisi la spécialité mathématique Les calculatrices sont autorisées mais l échange de calculatrice entre candidats est interdit.

Plus en détail

Mars 2006 Baccalauréat blanc TGM

Mars 2006 Baccalauréat blanc TGM Exercice (5 points). Le plan est muni d un repère orthonormal (; u, v ).. Résoudre dans C l équation d inconnue z : z 2 2z + 5 = 0 2. Soit P le polynôme défini par P (z) = z 3 4z 2 + 9z 0. (a) Démontrer

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail