Fiche méthodologique Fonctions usuelles

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fiche méthodologique Fonctions usuelles"

Transcription

1 Fiche méthodologique Fonctions usuelles BCPST Lycée Hoche $\ CC BY: = Pelletier Sylvain On liste ici les fonctions à connaître et leur propriétés. Fonction puissance n-ième et racine n-ième { R R Fonction puissance entière Les fonctions x x n, pour n N : réalisent une bijection de R + dans R + si n pair, réalisent une bijection de R dans R si n impair, En + : divergent vers + d autant plus vite que n est grand, ce qui signifie que si n m et x est grand, x n est très grand devant x m (on note parfois cela : x n x m ). En : «s écrasent» sur l axe horizontal d autant plus que n est grand, ce qui signifie que si n m et x, x n est négligeable devant x m (on note parfois cela : x n x m ). la dérivée en est nulle (tangente horizontale), un point d inflexion en, si n est impair. Figure Les fonctions x x et x x 5 Fonction puissance négative Les fonctions sont strictement décroissante sur R +. { R R x x n, pour n N.

2 En + : on a lim + x n =, tendent vers d autant plus vite que n est grand, ce qui signifie que si n m et x grand, x n est négligeable devant x m (on note parfois cela : x n x m ). En + : on a lim + x n = + d autant plus vite que n est grand, ce qui signifie que si n m et x, x m est négligeable devant x n (on note parfois cela : x m x n dépend de la parité de n), ). (en le signe Figure Les fonctions x x et x x Fonction racines cas pair Si n est pair, la fonction x x n est continue et croissante de R + dans R +. On peut donc définir une fonction réciproque : n : { R + R + x n x. Cette fonction est croissante et continue. Elle est définie par : x R +, y R +, x n = y x = n y. cas impair Si n est impair, la fonction x x n est continue et croissante de R dans R. On peut donc définir une fonction réciproque, cette fois-ci définie sur R : { R R n : x n x. Cette fonction est croissante et continue. Elle est définie par : x R +, y R +, x n = y x = n y. Note: Attention avec la fonction puissance : la notation x a est réservée au cas où x > et désigne dans ce cas exp(a ln(x)).

3 En effet, si x R et si n est entier, on peut toujours définir x n par x } x {{ x x }. Ainsi, la fonction n fois x x n est bien définie pour x R et n N en n utilisant que le produit. On a alors les relations x n+m = x n x m et (x n ) m = x nm. En passant par l inverse, on peut définir si (x ) et n N, x n = x. Ainsi, la fonction x x k est bien n définie pour x R et k Z en n utilisant que le produit et le passage à l inverse. Les relations x n+m = x n x m et (x n ) m = x nm restent alors vraies. La situation se complique si on veut définir x p q pour p Z, q N et x < : déjà n est pas défini ] puisqu il n existe pas de solution à l équation x =. De plus, si on considère [( ), on a d un côté : [( ) ] = ( ) et de l autre [( ) ] = ( ) =. On se restreint donc à x >, et on définit x p q pour p Z, q N : comme (x p ) q, c est-à-dire comme la solution de l équation en y q = x p d inconnue ( y (cette ) équation a toujours une solution unique). Notons que l on a la relation : (x p ) p ) q = x p q = x q. En effet, (x q est la solution de l équation y q = x [ ] ( ) q [ ] p ( ) pq ( ) p q (d inconnue y), et on a donc : x q = x q = x q = x p. Ainsi, x p q est parfaitement défini si x >, p Z et q N, par la composée de fonction puissance et de réciproque de fonction puissance. Par contre, si on considère x ou x, on ne peut plus écrire cela en utilisant des fonctions puissances et leur réciproque. On est donc amené à définir x comme e ln(x). On retiendra : ne pas écrire x a sans être assuré que x >, dans ce cas la notation x a désigne e a ln(x). Note: Pour une suite de la forme (u n ) vn il faut aussi systématiquement revenir à la forme exponentielle pour calculer la limite. Les propriétés de ces fonctions sont : en : elles vérifient n =, avec de plus tangente verticale en, plus n est grand, plus les fonctions sont verticales, en + : elles vérifient lim n + x = +, d autant plus vite que n est petit. Ce qui signifie que n si n m, x est négligeable devant m n x (on note parfois cela : x m x). en, on a n = et elles sont d autant plus plates que n est grand. Figure Les fonctions x x et x x

4 Fonctions trigonométriques Définition. On dit qu une fonction f : D R est T périodique si [ ] x R, x D x + T D et f(x + T ) = f(x). Autrement dit son ensemble de définition est invariant par translation de vecteur T et sa courbe représentative aussi. Dans ce cas on a par récurrence immédiate n Z, f(x + nt ) = f(x). Fonction sinus La fonction sinus est définie sur R, périodique et impaire, sa dérivée vaut : sin (x) = cos(x). La tangente en a pour coefficient directeur. Ce qui signifie que : sin(x) lim =. x x La fonction est en-dessous de sa tangente pour x > donc x >, sin(x) < x. Tangente horizontale aux points tels que [ ]. Fonction cosinus La fonction cosinus est définie sur R, périodique et paire, sa dérivée vaut : cos (x) = sin(x). La tangente en est horizontale. On a : cos(x) lim x x = Figure Fonctions cosinus et sinus

5 Fonction tangente par La fonction tangente est définie sur { } R \ + k k Z = ] + k, [ + k, k Z x, tel que cos(x), tan x = sin x cos x. Elle est continue et dérivable sur son ensemble de définition avec : En, la tangente est y = x : tan (x) = + tan (x) = tan x lim = x x cos (x). et la fonction est au dessus de sa tangente : x >, tan(x) > x. Enfin, la fonction est impaire. 5 5 Figure 5 Fonction tangente Valeurs à connaître x sin x cos x tan x + Fonctions trigonométriques réciproques Fonction arcsinus Notons s la restriction de la fonction sin à l intervalle [, ]. Sur cet intervalle, la fonction s est croisante strictement et continue à valeur dans [, ]. Donc on peut définir sa fonction 5

6 réciproque : arcsin : c est une fonction continue et strictement croissante. Elle est définie par : x { [ [, ], ] x arcsin(x) [, ], y [, ], sin(x) = y x = arcsin(y) On a donc : et x [, ], arcsin(sin(x)) = x y [, ], sin(arcsin(y) = y. Attention : la première relation a un sens si x / [, ], mais elle n est pas vraie alors : par exemple, arcsin(sin())) = arcsin() =. Proposition. La fonction arcsin est impaire. Démonstration. Soit y [, ], et soit x = arcsin(y) [, ]. On a : sin( x) = sin(x) = y. Comme x [, ], on peut composer par arcsinus pour obtenir : x = arcsin( y). Note: La même démonstration montre que si f est impaire, f est impaire. Tableau de valeurs : y arcsin(y) Application Soit x R, exprimer arcsin(sin(x)) en fonction de x. Proposition. La fonction arcsinus est dérivable sur ], [ et En particulier, on a x ], [, arcsin (x) = x ], [, arcsin(x) = Démonstration. Voir la dérivation des bijections réciproques. x x. du u. Fonction arccosinus On note c la restriction de la fonction cosinus à [, ]. Sur cet intervalle, la fonction c est décroissante de [, ], dans [, ]. On peut donc définir la bijection réciproque : arccos : { [, ] [, ] x arccos(x) c est une fonction continue et strictement décroissante.

7 Figure Fonction sin et arcsin Elle est définie par : x [, ], y [, ], cos(x) = y x = arccos(y) On a donc : et x [, ], arccos(cos(x)) = x y [, ], cos(arccos(y) = y. Cette fois encore, la première relation est fausse dès que l on sort de l intervalle [, ]. Tableau de valeurs : y arccos(y) 5 Application Soit x R, donner l expression de arccos(cos(x)) Application Montrer que x [, ], arccos(x) + arcsin(x) =. Proposition. La fonction arccosinus est dérivable sur ], [ et x ], [, arccos (x) =. x 7

8 En particulier, on a x ], [, Note: La fonction arccos n est ni paire ni impaire. arccos(x) = x du u. Figure 7 Fonction cos et arccos Fonction arctangente Soit t la restriction de la fonction tangente à ], [, sur cet intervalle t est strictement croissante et continue, à valeur dans R. On peut donc définir sa bijection réciproque : { ] R arctan :, [ x arctan(x) c est une fonction continue et strictement croissante. Elle est définie par : ] x, [, y R, tan(x) = y x = arctan(y) On a donc : et x ], [, arctan(tan(x)) = x y R, tan(arctan(y) = y. Proposition. La fonction arctan est impaire. 8

9 Tableau de valeurs : y arctan(y) + Proposition 5. La fonction arctangente est dérivale sur R, avec : x R, arctan (x) = x +. Application Prouver que x >, arctan(x) + arctan ( ) = x. Que se passe t il pour x <? Figure 8 Fonction tangente et arctangente Logarithme et exponentiel Logarithme Définition. Le logarithme népérien est l unique primitive de la fonction x x ], + [, qui s annule en. C est donc l application ln : ], + [ R définie par sur l intervalle x >, ln(x) := x dt t. 9

10 Le logarithme népérien est donc une application continue, strictement croissante et indéfiniment dérivable sur l intervalle ], + [. En particulier, on a x >, ln (x) := x. Proposition. Le logarithme d un produit est la somme des logarithme. x >, y >, ln(xy) = ln(x) + ln(y). () Démonstration. Soit x >, la fonction y > ln(xy) ln(y) admet pour dérivée x xy y cette fonction est constante et égale à f() = ln(x). =. Donc Note: Cette propriété est fondamentale : dans une expression avec un ln, il faut toujours se demander si on peut l utiliser. Attention à bien vérifier que x et y sont strictement positifs. Remarque: Il faut que Comme ln() =, le logarithme de l inverse est l opposé du logarithme. ( x >, ln = ln(x). x) Plus généralement, le logarithme d un quotient est la différence des logarithmes. ( ) x x >, y >, ln = ln(x) ln(y). y et la logarithme d une puissance est x >, n Z, ln(x n ) = n ln(x). Le logarithme népérien n est pas la seule application vérifiant la propriété. En effet, elle est vérifiée par les logarithmes définis pour d autres bases de la façon suivante : Définition. Le logarithme en base a > est l application log a :], + [ R définie par x >, log a (x) := ln(x) ln(a). Le logarithme en base sera simplement noté log ou Log au lieu de log. Proposition 7. lim x + ln(x) = et lim x + ln(x) = +. La fonction ln est donc bijective de R + dans R et de même pour a >, le logarithme log a :], + [ R est une application bijective et strictement croissante. La fonction ln est en-dessous de sa tangente en : Proposition 8. On a : x >, x x Démonstration. En effet les fonctions sont dérivables, avec < ln( + x) < x. φ : x ln( + x) x, et ψ(x) : x ln( + x) x + x φ (x) = + x = x + x <, et ψ (x) = + x + x = x + x >. On a donc φ strictement décroissante φ() =, tandis que ψ est strictement croissante avec ψ() =, donc x >, φ(x) >, et ψ(x) <.

11 5 5 Figure 9 Fonction x ln(x) Exponentielle réelle Définition. L exponentielle exp : R ], + [ est la bijection réciproque du logarithme népérien ln :], + [ R. Pour simplifier, on introduit le nombre e défini par e := exp(), e est donc l unique solution de ln(x) =. On a la valeur numérique e =.78888, puis on introduit la notation : x R, e x := exp(x). Cette notation est justifié car on a x R, ln(e x ) = x. L exponentielle est strictement croissante. De plus, lim x e x = et lim x + e x = +. Proposition 9. L exponentielle d une somme est le produit des exponentielles. (x, y) R, e x+y = e x e y. () En, conséquence : x R, e x = e x. Et plus généralement, l exponentielle d une différence est le quotient des exponentielles. (x, y) R, e x y = ex e y. Démonstration. e x+y est l unique solution de ln(e x+y ) = x + y, or on voit que e x e y est une solution de cette équation.

12 Proposition. L exponentielle réelle est une application continue et indéfiniment dérivable sur R. De plus, on a x R, exp (x) = exp(x). Si f : I C est dérivable en a I, alors la fonction g : x e f(x) est dérivable en a et on a d dx (ef(x) )(a) = g (a) = f (a)e f(a). La fonction exponentielle est au-dessus de sa tangente : Proposition. On a : x, + x < e x. Démonstration. On pose φ(x) = e x x, alors φ (x) = e x > pour x > et φ (x) < pour x <, donc x φ(x) > φ() =. Croissance comparée logarithme/exponentielle/puissances Proposition. Pour α >, on a lim x + ln(x) =, lim xα x xα ln(x) =, + e x lim x + x α = + lim x xα e x = Figure Fonction exponentielle Exponentiel complexe Définition 5. Si z C, avec z = a + ib, on appelle exponentielle du nombre complexe z, le nombre complexe e a e ib noté e z. Cette définition permet donc de prolonger l exponentielle au nombres complexes, en gardant la propriété e z+z = e z e z. Attention, si a C, e a = e a+i, on ne peut donc pas définir le logarithme d un nombre complexe non nul en posant ln(ρe iθ ) = ln(ρ) + iθ, parce que θ est défini à près.

Fonction puissance entière. Fonction puissance négative. Fonction racines. Fonction logarithme ln. Quelques rappels. ECS Fonctions usuelles 1/5

Fonction puissance entière. Fonction puissance négative. Fonction racines. Fonction logarithme ln. Quelques rappels. ECS Fonctions usuelles 1/5 ECS-0 Fonctions usuelles /5 Fonction puissance entière (x x n ), pour n N : bijection de R + dans R + si n pair, bijection de R dans R si n impair, croît vers l'inni d'autant plus vite que n est grand

Plus en détail

4 Fonctions usuelles. 4.1 Fonction polynomiale. 4.2 Fonctions logarithme et exponentielle

4 Fonctions usuelles. 4.1 Fonction polynomiale. 4.2 Fonctions logarithme et exponentielle 4 Fonctions usuelles 4. Fonction polynomiale Définition Soient n N, a 0,a,...,a n R et a n R.Alorslafonction P R R x n k=0 est appelée fonction polynôme de degré n. a k x k =..., Définition Soit P R R

Plus en détail

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54 Fonctions réelles : rappels de lycée et compléments () Fonctions réelles : 1 / 54 1 Fonctions logarithmes et exponentielles Le logarithme népérien L exponentielle Logarithmes et exponentielles de base

Plus en détail

FONCTIONS USUELLES. 1 fonctions polynomiales et rationnelles. Cours PCSI 2

FONCTIONS USUELLES. 1 fonctions polynomiales et rationnelles. Cours PCSI 2 Cours PCSI Lycée Joffre FONCTIONS USUELLES 1 fonctions polynomiales et rationnelles fonction polynomiale : une fonction polynomiale sur R est une fonction f pour laquelle il existe un entier naturel d,

Plus en détail

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle FONCTIONS USUELLES Fonctions logarithme, eponentielle et puissances. Fonction logarithme et eponentielle Définition. Logarithme La fonction ln est l unique primitive de sur R + s annulant en. Proposition.

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

AN 1 FONCTIONS USUELLES et RÉCIPROQUES

AN 1 FONCTIONS USUELLES et RÉCIPROQUES Analyse /0 AN FONCTIONS USUELLES et ÉCIPOQUES Les notions de limites, dérivées, primitives, continuité sont supposées connues, elles seront revues ultérieurement THEOEMES FONDAMENTAUX D ANALYSE Théorème

Plus en détail

Fonctions Arcsin,Arccos,Arctan

Fonctions Arcsin,Arccos,Arctan Fonctions Arcsin,Arccos,Arctan Professeur : Christian CYRILLE 5 octobre 008 Théorème de la bijection Soit f une fonction numérique d'une variable réelle dénie sur un intervalle I de R. Si f est continue

Plus en détail

Fonctions usuelles. lim x 1. lim. x α ln x = 0

Fonctions usuelles. lim x 1. lim. x α ln x = 0 I Fonction logarithme Fonctions usuelles Définition : n appelle fonction logarithme népérien la primitive de la fonction définie sur ]0, + [ qui s annule en. n notera cette fonction ln. Remarque : L eistence

Plus en détail

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction.

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. A 00-0 FONCTIONS USUELLES Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. Exponentielles, logarithmes, puissances. Exponentielle

Plus en détail

Cours sur les fonctions usuelles

Cours sur les fonctions usuelles Cours sur les fonctions usuelles c Emmanuel Vieillard Baron, Table des matières Préambule Fonctions logarithmes, eponentielles et puissances. Logarithme néperien................................ Eponentielle

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

(pour tout x > 0) et ln(1) = 0.

(pour tout x > 0) et ln(1) = 0. Eo7 Fonctions usuelles Vidéo partie. Logarithme et eponentielle Vidéo partie. Fonctions circulaires inverses Vidéo partie 3. Fonctions hperboliques et hperboliques inverses Eercices Fonctions circulaires

Plus en détail

Fonctions usuelles réelles

Fonctions usuelles réelles Fonctions usuelles réelles fonctions polynômes et rationnelles 0. les fonctions polynômes Les polynômes seront étudiés en le détail au chapitre 7. définition 4. : n dit que p est une fonction polynôme

Plus en détail

I. Equation et inéquation du second degré

I. Equation et inéquation du second degré I. Equation et inéquation du second degré Théorème : Soient a, b et c des nombres réels avec a non nul, on appelle discriminant et on note Δ le nombre b 2 4ac. L équation ax 2 + bx + c = 0, - admet deux

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

Chap V : De nouvelles fonctions de référence

Chap V : De nouvelles fonctions de référence Chap V : De nouvelles fonctions de référence Cours Chap V, page 1 sur 6 I) Le théorème des bijections réciproques Théorème Théorème des bijections réciproques Si f : I R est continue sur l intervalle I

Plus en détail

1 Exponentielles de base a

1 Exponentielles de base a Lycée Sainte Geneviève BCPST Révisions : Fonctions usuelles et trigonométrie. Exponentielles de base a Définition. Pour tout a ]0,+ [, on définit la fonction x a x par x R,a x = e xln(a) Proposition. (x,y)

Plus en détail

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0 Fonctions usuelles. I Bestiaire du collège-lycée I.1 Valeur absolue. Signe. Définition 1. R R{ La fonction signe est la fontion sg : 1 si x > 0 x 1 si x < 0. Définition 2. R R{ La fonction valeur absolue

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

1 Fonction valeur absolue

1 Fonction valeur absolue ISEL - Année Mathématiques FONCTIONS USUELLES Fonction valeur absolue Dénition La valeur absolue d'un nombre réel est = ma(, ) = Propriété Soient a et b deu réels, on a: a = a ; a b b a b; a b a b ou a

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Mathématiques: Mise à niveau Séance 0: Fonctions usuelles Table des matières Fonction

Plus en détail

1 Fonctions trigonométriques : Formules à connaître.

1 Fonctions trigonométriques : Formules à connaître. Université de Provence Mathématiques Générales - Parcours PEI Fonctions Usuelles Fonctions trigonométriques : Formules à connaître. Formules de duplication. Pour tous x, y R, cos(x + y) = cos x cos y sin

Plus en détail

Résumés de cours et Méthodes Maths Terminale S

Résumés de cours et Méthodes Maths Terminale S Stages intensifs Résumés de cours et Méthodes Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 2 Chapitre 1 Fonction exponentielle, logarithme népérien, logarithme décimal 1.1 Fonction

Plus en détail

Cas particulier des fonctions trigonométriques

Cas particulier des fonctions trigonométriques Dans ce chapitre, nous continuons le travail sur les fonctions usuelles et nous redéfinissons les fonctions trigonométriques. Si celles sont définies à partir de la géométrie euclidienne, elles permettent

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

La fonction Logarithme Népérien

La fonction Logarithme Népérien Terminale S, Logarithme népérien 1 La fonction Logarithme Népérien Existence Théorème: (admis) Soit f une fonction dérivable sur un intervalle I de R, strictement monotone sur I à valeurs dans J. Alors

Plus en détail

II. Fonctions usuelles

II. Fonctions usuelles 1 Fonctions exponentielles et logarithmes 1.1 Fonctions exponentielle népérienne et logarithme népérien Définition 1. On appelle fonction exponentielle népérienne l unique fonction définie sur R égale

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

DÉRIVATION CHAPITRE 8. 1 Dérivée d une fonction. 1.1 Dérivabilité

DÉRIVATION CHAPITRE 8. 1 Dérivée d une fonction. 1.1 Dérivabilité CHAPITRE 8 DÉRIVATION Dans tout ce chapitre, sauf mention contraire, D, E, F désigneront des parties de R et I, J des intervalles de R On supposera donné, quand nécessaire, un repère du plan et l on notera

Plus en détail

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle 40 Chapitre 7 Fonctions usuelles. 7. Les fonctions trigonométriques inverses. tan :] π/, π/[ R est strictement croissante car sa dérivée + tan est strictement positive. La fonction tg est donc bijective

Plus en détail

Étude de fonction et de courbes dans le plan

Étude de fonction et de courbes dans le plan Chapitre Étude de fonction et de courbes dans le plan Dans ce chapitre on étudie le problème suivant : étant donne une fonction donné par f) y, comment tracer approimativement la courbe représentative

Plus en détail

Fiche de cours 3 : Fonctions usuelles, Développements limités, Équivalents, Séries Numériques

Fiche de cours 3 : Fonctions usuelles, Développements limités, Équivalents, Séries Numériques Ecole Polytechnique, 009-00 EV- Mathématiques Appliquées Fiche de cours 3 : Fonctions usuelles, Développements ités, Équivalents, Séries Numériques Fonctions usuelles. Quelques rappels Théorème. (Fonctions

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Corrigé du TD 2 : Fonctions simples

Corrigé du TD 2 : Fonctions simples Corrigé du TD : Fonctions simples Exercice : Fonctions élémentaires. Cas f(x) = Il est clair qu il n y a aucun problème de définition et que cette fonction est définie pour tout x réel. De plus, la fonction

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

FONCTIONS CIRCULAIRES

FONCTIONS CIRCULAIRES BTS DOMOTIQUE Fonctions circulaires 8- FONCTIONS CIRCULAIRES Table des matières I Fonctions circulaires I. Définitions............................................... I. Valeurs remarquables.........................................

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

Devoir Surveillé /Evaluation

Devoir Surveillé /Evaluation Lycée Pierre-Gilles de Gennes BCPST Mathématiques 4-5 Devoir Surveillé /Evaluation Le 4 septembre 4 Documents écrits, électroniques, calculatrices et téléphones portables interdits La plus grande attention

Plus en détail

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand.

Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. Chapitre 1 Étude de fonctions Un problème sans solution est un problème mal posé. Albert Einstein. Physicien allemand. 1 Fonctions usuelles 1.1 Fonction en escalier Définition 1.1 Une fonction en escalier

Plus en détail

Chapitre 4. Généralités sur les Fonctions-Fonctions Transcendantes

Chapitre 4. Généralités sur les Fonctions-Fonctions Transcendantes I Introduction Les fonctions sont des outils fondamentaux pour décrire le monde réel en langage mathématique Une fonction m en correspondance deux variables, la variable indépendante (ou variable d'entrée,

Plus en détail

Comment faut-il enseigner les fonctions logarithme et exponentielle?

Comment faut-il enseigner les fonctions logarithme et exponentielle? Comment faut-il enseigner les fonctions logarithme et exponentielle? A. El Kacimi Dans les manuels récents de Terminale (c est ce qui figure aussi dans les programmes officiels) la fonction logarithme

Plus en détail

Chapitre 3 : Trigonométrie

Chapitre 3 : Trigonométrie Chapitre : Trigonométrie PTSI B Lycée Eiffel septembre Quel est le comble pour un cosinus? Attraper une sinusite! Pour compléter le chapître précédent consacré au fonctions usuelles, un chapître à part

Plus en détail

Cours informel sur la fonction réciproque.

Cours informel sur la fonction réciproque. Cours informel sur la fonction réciproque. Ce cours aborde de nombreuses parties du programme de terminale scientifique. Les parties qui n'appartiennent pas au programme seront signalées par le sigle hp,

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES

CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES CHAPITRE 3 PRIMITIVES ET INTEGRALES FONCTIONS LOGARITHMES ET EXPONENTIELLES 3--PRIMITIVES ET INTEGRALES 3---Primitives Soit f une fonction définie sur un intervalle I. On appelle fonction primitive de

Plus en détail

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS

x x ; Chapitre 2 GÉNÉRALITÉS SUR LES FONCTIONS Chapitre GÉNÉRALITÉS SUR LES FONCTIONS I. GÉNÉRALITÉS SUR LES FONCTIONS DE VARIABLE RÉELLE Sau indication particulière, pour simpliier, les onctions sont déinies sur un intervalle I de non réduit à un

Plus en détail

Suites et fonctions équivalentes

Suites et fonctions équivalentes Chapitre 8 Suites et fonctions équivalentes Savoir manipuler les symboles, o, Savoir les utiliser pour calculer des limites, Connaître les équivalents classiques, Éviter les pièges (somme et composition),

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

Fonctions d'une variable réelle (M-1.1)

Fonctions d'une variable réelle (M-1.1) Fonctions d'une variable réelle (M-.) I. Fonctions définies par morceaux Définition des fonctions en escalier : une fonction en escalier est une fonction constante par intervalles. Sa représentation graphique

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Terminale ES. La fonction logarithme népérien

Terminale ES. La fonction logarithme népérien Terminale ES La fonction logarithme népérien 1 I Liens avec la fonction exponentielle Définition On sait que la fonction exponentielle est strictement croissante sur et à valeurs dans ]0;+ [. Ainsi, pour

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Fonctions usuelles Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr Eercice **I * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Fonctions continues et dérivables

Fonctions continues et dérivables Capitre 2 Fonctions continues et dérivables 2.1 La notion de fonction 2.1.1 Definition Une fonction est une relation particulière entre deux variables. De façon précise, on dit qu une variable y est fonction

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Chapitre 8 Fonction logarithme népérien Contenus Capacités attendues Commentaires Fonction logarithme népérien Fonction x lnx Relation fonctionnelle, dérivée. Connaître le sens de variation, les limites

Plus en détail

Fonctions usuelles. 1 Fonctions trigonométriques réciproques.

Fonctions usuelles. 1 Fonctions trigonométriques réciproques. Fonctions usuelles Arthur LANNUZEL http ://mathutbmal.free.fr le 8 Janvier 009 Fonctions usuelles Fonctions trigonométriques réciproques.. arcsin(.). sin : [ π, π ] R est continue strictement croissante.

Plus en détail

AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE. Option Économie

AVRIL 2012 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE. Option Économie AVRIL 22 CONCOURS INGÉNIEURS STATISTICIENS ÉCONOMISTES ISE Option Économie CORRIGÉ DE LA ère COMPOSITION DE MATHÉMATIQUES Exercice Les symboles Ln et tan représentent respectivement le logarithme népérien

Plus en détail

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle Chapitre 4 Fonction exponentielle Objectifs du chapitre : item références auto évaluation propriétés numériques de la fonction exponentielle propriétés de la fonction exponentielle calculs de ites avec

Plus en détail

Documents pour l étudiant : Chapitre III : continuité

Documents pour l étudiant : Chapitre III : continuité 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Gestion MATH101 : Pratique des Fonctions numériques Documents pour l étudiant : Chapitre III : continuité Notations

Plus en détail

LEÇON N 71 : Fonctions exponentielles

LEÇON N 71 : Fonctions exponentielles LEÇON N 71 : Fonctions onentielles Pré-requis : Notions de dérivabilité ; Une fonction dont la dérivée est nulle est constante ; Théorème de Cauchy-Lipschitz pour l existence d une solution d une équation

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Jérôme Germoni Novembre 2 Première étude : par équation différentielle.. Définition On s inspire de la définition de l exponentielle vue en terminale. Théorème (admis) Il existe

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 2016-2017 Analyse I PLANCHE 3 : DÉRIVATION - DÉVELOPPEMENTS LIMITÉS Dérivabilité, dérivée, Eercice 1 [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de

Plus en détail

Cours de Mathématiques Limites, continuité, fonctions usuelles Sommaire

Cours de Mathématiques Limites, continuité, fonctions usuelles Sommaire Sommaire Sommaire I Fonctions numériques, généralités................... 3 I.1 Opérations sur F(I,R)........................... 3 I. Relation d ordre sur F(I,R)........................ 3 I.3 Fonctions

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

FONCTIONS USUELLES. 1 t dt. ln(x) =

FONCTIONS USUELLES. 1 t dt. ln(x) = 0 - Gérard Lavau - http://lavau.pagesperso-orange.fr/inde.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreu ou utilisation

Plus en détail

Argument d un nombre complexe

Argument d un nombre complexe Argument d un nombre complexe Dans ce chapître, nous allons introduire les éléments indispensables à la résolution de notre grand problème : montrer la clôture algébrique de C, c està-dire le fait que

Plus en détail

Limites, continuité, fonctions usuelles

Limites, continuité, fonctions usuelles Sommaire Limites, continuité, fonctions usuelles Sommaire Fonctions numériques, généralités....................1 Opérations sur F(, R)............................ Relation d ordre sur F(, R).........................3

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

Etude de la fonction logarithme

Etude de la fonction logarithme Etude de la fonction logarithme Après un bref rappel des résultats vus dans le module de définition des fonctions logarithmes, nous menons l étude approfondie de la fonction logarithme népérien. 1/ Rappels

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

FONCTION LOGARITHME. ln = a.

FONCTION LOGARITHME. ln = a. FONCTION LOGARITHME I. DEFINITION DU LOGARITHME a) Définition Problème : Soit a un réel strictement positif. Démontrer que l équation e x = a admet une solution unique α dans IR. (théorème des valeurs

Plus en détail

Fonctions puissances Croissances comparées

Fonctions puissances Croissances comparées Fonctions puissances Croissances comparées Christophe ROSSIGNOL Année scolaire 200/20 Table des matières Puissances réelles 2. Définition Premières propriétés.................................... 2.2 Propriétés

Plus en détail

Les fonctions usuelles

Les fonctions usuelles Les fonctions usuelles Objectif : Connaître les représentations graphiques de ces fonctions et leurs propriétés s principales Les fonctions usuelles vues en terminale Logarithme et exponentielle f(x)=ln(x)

Plus en détail

Remise à Niveau Mathématiques

Remise à Niveau Mathématiques Mathématiques RAN - Fonctions Remise à Niveau Mathématiques Deuième partie : Fonctions Corrigés des eercices Page sur 0 RAN Fonctions Eercices corrigés - Rev 03 Mathématiques RAN - Fonctions DÉFINITIONS

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I) La fonction logarithme népérien : Définition 1) Définition de la fonction logarithme népérien Soit a un nomre réel strictement positif. On appelle logarithme népérien de

Plus en détail

UN PEU DE TRIGONOMÉTRIE. Table des matières. 1. Quelques formules de trigonométrie

UN PEU DE TRIGONOMÉTRIE. Table des matières. 1. Quelques formules de trigonométrie UN PEU DE TRIGONOMÉTRIE Table des matières. Quelques formules de trigonométrie. Fonctions trigonométriques réciproques.. Arc cosinus.. Arc sinus 4.. Arc tangente 4. Fonctions hyperboliques 5.. Heuristique

Plus en détail

1.2. EXPONENTIELLE ET LOGARITHME 15. Passons à la fonction tangente, dont on rappelle la définition : tan(x) =

1.2. EXPONENTIELLE ET LOGARITHME 15. Passons à la fonction tangente, dont on rappelle la définition : tan(x) = .. EXPONENTIELLE ET LOGARITHME 5 seront démontrées dans le chapitre approprié en eercice : cos() sin() lim = 0, et lim =. 0 0 Passons à la fonction tangente, dont on rappelle la définition : tan() = sin()

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

Les fonctions usuelles

Les fonctions usuelles Les fonctions usuelles MPSI-Cauchy Prytanée National Militaire Pascal DELAHAYE 14 octobre 016 Le flocon de Von Koch est un objet de dimension ln4 ln3 1.6 1 Rappels 1.1 Fonctions polynomiales et rationnelles

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Fonctions numériques : dérivation

Fonctions numériques : dérivation Fonctions numériques : dérivation Table des matières I Notion de tangente à une courbe Soit f une fonction définie sur un intervalle I de courbe représentative C f et soit A un point fixe de C f. Soit

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

DÉVELOPPEMENTS LIMITÉS

DÉVELOPPEMENTS LIMITÉS CHAPITRE 9 DÉVELOPPEMENTS LIMITÉS Dans ce chapitre, I désignera systématiquement un intervalle de R non réduit à un point. 1 Développement limité d une fonction au voisinage d un point Définition 9.1 Soient

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

Fonctions Numériques :

Fonctions Numériques : Fonctions Numériques : Limites et continuité. 1. Notion de limites Dénitions, opérations et Exemples. 2. Fonctions monotones. (a) Dénitions. (b) Limites des fonctions monotones. 3. Fonctions continues.

Plus en détail

Analyse (1) : fonctions d une variable réelle

Analyse (1) : fonctions d une variable réelle MP 1. Semestre 1. Cours. Chapitre 2 : Analyse Analyse (1) : fonctions d une variable réelle continuité, limites, asymptotes dérivées, variations Application : courbes paramétriques 1. GÉNÉRALITÉS SUR LES

Plus en détail