(Isométrie et produit scalaire)

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "(Isométrie et produit scalaire)"

Transcription

1 1. Définitions et propriétés Définition (d une isométrie) Soit f une application du plan dans lui-même. On dit que f est une isométrie du plan si elle conserve la distance c est-à-dire pour tous points M et N d image respectives M et N par f on a : MN M N. (Isométrie et produit scalaire) Soit f une application du plan dans lui-même. f est une isométrie, si et seulement si, elle conserve le produit scalaire Autrement dit:: f est une isométrie Pour tous points A, B et C d images respectives A, B et C par f; on a : A B. A C AB. AC. Conséquences 1. L isométrie conserve les mesures des angles géométriques. C est-à-dire: Si f est une isométrie et A, B et C sont trois points d images respectives A, B et C par f; on a : A B C ABC. 2. L isométrie conserve l alignement et aussi elle transforme trois points non alignés en trois points non alignés. 3. L isométrie transforme un repère orthonormé en un repère orthonormé. C est -à-dire: Si f est une isométrie et A, B et C sont trois points d images respectives A, B et C par f; on a : Si A, AB, AC est un repère orthonormé alors A, A B, A C est aussi un repère orthonormé. 4. Si f est une isométrie et A, B, C et M sont trois quatre points d images respectives A, B, C et M par f; on a : Si A, AB, AC est un repère orthonormé et M tel que AMxAByAC avec x, y IR 2 alors A M xa B ya C (Isométrie réciproque) Soit f une isométrie. On a: Pour tout point M du plan, il existe un seul M du plan tel que fmm C est-à-dire tout point du plan admet un seul antécédent par f. Page : 1

2 Conséquence et Définition Toute isométrie est une bijection du plan dans lui-même. Soit f une isométrie. L application, qui à tout point du plan associe son unique antécédent, est appelée la réciproque de f et notée f 1. Ainsi fm N f 1 N M avec M, N P 2. Remarques 1. est une droite. On a : S 1 S 2. u est un vecteur. On a: t u 1 t u. 3. O est un point. On a: S 1 A S A I est un point et un réel. On a: R I, R I,. 2. Isométries et configurations Soit f est une isométrie et A, B, C et D sont quatre points d images respectives A, B, C et D par f; on a : Si AB CD avec un réel alors A B C D Conséquences 1. Toute isométrie conserve le barycentre en particulier le milieu. 2. L image, par une isométrie, d un parallélogramme est un parallélogramme. 3. L image, par une isométrie, d un segment est un segment qui lui est isométrique. 4. L image, par une isométrie, d une droite est une droite. 5. Toute isométrie conserve le parallélisme et l orthogonalité. 6. L image d un cercle par une isométrie est un cercle qui lui est isométrique. 7. L image, par une isométrie, de la tangente en un point M à un cercle est la tangente au cercle image au point M image de M. On dit qu une isométrie conserve le contact. 3. Composition d isométries Définitions (Composée de deux applications) Soient f et g deux application du plan dans lui-même. L application composée de f par g, noté g f, qui à tout point M associe le point M gfm. Page : 2

3 M f f M g g f M g f Conséquence Soient f, g et h trois applications du plan dans lui même. On a: g f h g f h g f h. La composée de deux isométries est une isométrie. Soient f et g deux isométries. g f 1 f g Id où Id désigne l identité du plan. f g 1 g 1 f 1. g f g h f h avec h est une troisième isométrie. (Composée de 2 symétries orthogonales) Soient D 1 et D 2 deux droites. On a : Si D 1 et D 2 sont sécantes en un points I alors S D1 S D2 R I;2 la rotation de centre I et d angle u 2 ; u 1 avec u 1 un vecteur directeur de D 1 et u 2 un vecteur directeur de D 2. Si D 1 et D 2 sont perpendiculaires et sécantes en un point I alors S D1 S D2 S I la symétrie centrale de centre I. Si D 1 et D 2 sont parallèles alors S D1 S D2 t 2IJ la translation de vecteur 2IJ avec I un point de D 2 et J son projeté orthogonal sur D Isométries et points fixes Toute isométrie qui fixe trois points non alignés est l identité du plan. Soient A et B deux points distincts du plan P et f une isométrie de P différente de Id.l identité du plan). On a : f fixe A et B f S AB la symétrie orthogonale d axe AB Page : 3

4 Soient est un point de P et f une isométrie de P différente de Id. On a : f ne fixe que f est une rotation de centre Soient f est une isométrie qui ne fixe aucun point et O un point de P d image O par f. On a : Il existe une seule isométrie g fixant O et telle que f t OO g. Une isométrie qui n a pas de point fixe est soit une translation de vecteur non nul, soit la composée d une translation de vecteur non nul u et d une symétrie orthogonal d axe tel que u est directeur de. Définitions (Symétrie glissante) La composée d une translation de vecteur non nul u et d une symétrie orthogonal d axe tel que u est directeur de est appelée symétrie glissante. 5. Décomposition d une isométrie Toute isométrie se décompose en au plus trois symétries orthogonales (Décomposition d une rotation) Soit R une rotation de centre un point I et d angle un réel. On a: R S D S D avec D une droite passant par I et dirigée par un vecteur u et D est la droite passant par I et dirigée par un vecteur v vérifiant u, v 2. Soient u un vecteur et t u la translation de vecteur u. On a : t u S D2 S D1 avec D 1 une droite quelconque de direction orthogonale à celle de u et D 2 t 1 2 u D 1. Page : 4

5 (Classification des isométries) Nature de l isométrie Décomposition en symétries orthogonales Ensemble des points fixes Identité du plan S D S D Tout le plan symétries orthogonales d axe D rotation de centre I et d angle 0 2 Translation de vecteur non nul Symétrie glissante de d axe D et de vecteur u S D S S D D ( D D I S S D D ( D D S D S S D D avec D D et D D La droite D I Page : 5

LES SIMILITUDES PLANES. Le plan est orienté et le plan complexe est muni d un repère orthonormal direct ( O ; u, v ). I. TRANSFORMATIONS PLANES

LES SIMILITUDES PLANES. Le plan est orienté et le plan complexe est muni d un repère orthonormal direct ( O ; u, v ). I. TRANSFORMATIONS PLANES LES SIMILITUDES PLANES Le plan est orienté et le plan complexe est muni d un repère orthonormal direct ( O ; u, v ). I. TRANSFORMATIONS PLANES Définition 1 1 Lorsque dans un plan, à chaque point M on associe

Plus en détail

SIMILITUDES PLANES P'Q' P Q

SIMILITUDES PLANES P'Q' P Q SIMILITUDES PLANES I Généralités Dans tout ce qui suit, le plan est orienté et lorsqu'il s agit du plan complexe, il est rapporté à un repère orthonormal direct (O ; u, v ).. Notion de transformation Définition

Plus en détail

Le plan est orienté dans le sens direct.

Le plan est orienté dans le sens direct. LSMarsa Elriadh Le plan est orienté dans le sens direct 1) Définitions et propriétés : Activité 1 : 1) Soit ABCD un carré direct de centre O et I, J, K, L les milieux respectifs des segments [AB],[BC],[CD]

Plus en détail

Transformations du plan Chap 10 : et de l espace

Transformations du plan Chap 10 : et de l espace Transformations du plan Chap 10 : et de l espace Les définitions et propriétés sont valides aussi bien dans le plan que dans l espace. I. Définitions Définition 1 : On appelle transformation du plan (ou

Plus en détail

Déplacements-Antidéplacements *Aptitudes à développer :

Déplacements-Antidéplacements *Aptitudes à développer : Déplacements-Antidéplacements *Aptitudes à développer : Déterminer la nature et les éléments caractéristiques d un déplacement et d un antidéplacement. Plan du chapitre : I- Définition et propriétés II-

Plus en détail

Transformations. Exemple : Dans une rotation, il y a un seul point invariant : le centre de la rotation.

Transformations. Exemple : Dans une rotation, il y a un seul point invariant : le centre de la rotation. Transformations 1. Généralités 1.1. Transformations Définition : On appelle transformation du plan (respectivement de l'espace), une bijection du plan (respectivement de l'espace) dans lui-même, c'est

Plus en détail

TRANSFORMATIONS DU PLAN

TRANSFORMATIONS DU PLAN 1 Généralités TRNSFRTINS DU PLN 1.1 Définitions Une transformation du plan est une application bijective du plan dans lui-même. utrement dit, c est un mécanisme qui associe à tout point du plan un point

Plus en détail

GÉOMÉTRIE DANS L ESPACE

GÉOMÉTRIE DANS L ESPACE GÉOMÉTRIE DANS L ESPACE On se place dans un repère orthonormal du plan ( O ; i, j, k ) I Équation de plan Exercice 1 : On considère le point A ( 0;1;4) et le vecteur n ( ;3; ) Déterminer une équation du

Plus en détail

Cours : SIMILITUDES PLANES.

Cours : SIMILITUDES PLANES. A la fin de ce chapitre vous devez être capable de : définir une similitude plane à partir de la conservation des rapports des distances. en déduire la définition du rapport de similitude. faire le lien

Plus en détail

Les Similitudes planes

Les Similitudes planes Les Similitudes planes. Les transformations du plan : Déf : T est une transformation du plan si tout point admet une unique image et si quelque soit de P, il existe un unique antécédent X ( T ( X ) = )

Plus en détail

Similitudes directes du plan

Similitudes directes du plan Similitudes directes du plan I Transformations du plan - Déplacements Définition On dit qu'une application f du plan dans lui-même est une transformation si f est une bijection du plan dans lui-même, c'est-à-dire

Plus en détail

Similitudes planes. I Transformations du plan. Définition. Propriété (voir démonstration 01) Exemple. Exercice 01. Exercice 02. Exemple.

Similitudes planes. I Transformations du plan. Définition. Propriété (voir démonstration 01) Exemple. Exercice 01. Exercice 02. Exemple. Similitudes planes I Transformations du plan On dit qu'une application f du plan dans lui-même est une transformation si f est une bijection du plan dans lui-même, c'est-à-dire si pour tout point N du

Plus en détail

Transformations. 1 Généralités. 2 Transformations usuelles. 2.1 Translation. 2.2 Homothétie

Transformations. 1 Généralités. 2 Transformations usuelles. 2.1 Translation. 2.2 Homothétie 1 Généralités Transformations Dé nition 1 Une transformation f du plan est une bijection du plan dans lui-même (tout point du plan possède un unique antécédent par f). Remarque 1 Une projection sur une

Plus en détail

Isométries planes. 1 Transformations du plan. 1.1 Dé nitions. 1.2 Composition

Isométries planes. 1 Transformations du plan. 1.1 Dé nitions. 1.2 Composition Isométries planes 1 Transformations du plan 1.1 Dé nitions Dé nition 1 Une transformation f du plan est une application du plan dans lui-même telle que pour tout point M 0 duplan,ilexisteununique point

Plus en détail

I. Généralités sur les transformations du plan.

I. Généralités sur les transformations du plan. 1/Les Similitudes Chapitre Les Similitudes I Généralités sur les transformations du plan Définition 1 : On définit une application f du plan dans lui-même lorsque l on associe à chaque point M du plan

Plus en détail

Les similitudes. Définition Une isométrie est une transformation du plan conservant les distances.

Les similitudes. Définition Une isométrie est une transformation du plan conservant les distances. Mme Morel-Spécialité math-cours similitudes 1 Les similitudes 1 Vocabulaire, rappels 1.1 Transformations du plan Définition 1.1.1. Une application f du plan dans lui même est une tranformation si f est

Plus en détail

Les similitudes. Table des matières

Les similitudes. Table des matières Les similitudes Table des matières 1 Rappels sur les nombres complexes 3 1.1 Expression d un nombre complexe................... 3 1.2 Représentation d un nombre complexe................. 3 1.3 Opérations

Plus en détail

Définir précisément (tout énoncé inexact ou incomplet sera compté comme faux) ce qu est une homothétie (dans un plan euclidien).

Définir précisément (tout énoncé inexact ou incomplet sera compté comme faux) ce qu est une homothétie (dans un plan euclidien). L1 2016-2017 Géométrie en petite dimension orrigé du contrôle continu 2 Exercice 1 Énoncer précisément (tout énoncé inexact ou incomplet sera compté comme faux) les trois cas d égalité des triangles. Toutes

Plus en détail

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition:

M : Zribi. 4 ème Maths Cour. Produit scalaire dans l espace : Définition: Produit scalaire dans l espace : Définition: Soit A, B et C trois points, le produit scalaire des vecteurs AB et AC est le réel défini par : AB AC = si AB = 0 ou AC = 0 AB AC = si AB 0 et AC 0 Conséquence

Plus en détail

IIº ) Similitudes du plan ( généralités) Le plan complexe est muni d un repère orthonormé direct (O;u ; v ) Iº ) TRANSFORMATIONS DU PLAN

IIº ) Similitudes du plan ( généralités) Le plan complexe est muni d un repère orthonormé direct (O;u ; v ) Iº ) TRANSFORMATIONS DU PLAN Les similitudes planes Le plan complexe est muni d un repère orthonormé direct (O;u ; v ) Iº ) TRANSFORMATIONS DU PLAN s 1 Soit f une fonction du plan dans lui même. On dit que f est une transformation

Plus en détail

Si une isométrie fixe trois points non alignés de P, c est l identité de P.

Si une isométrie fixe trois points non alignés de P, c est l identité de P. Isométries du plan Nous allons représenter les isométries du plan par des opérations algébriques. ais un peu de géométrie sera nécessaire au préalable. Nous considérons ici le plan euclidien P, c est-à-dire

Plus en détail

Résumé : Coniques Niveau : Bac mathématiques Réalisé par : Prof. Benjeddou Saber

Résumé : Coniques Niveau : Bac mathématiques Réalisé par : Prof. Benjeddou Saber Résumé : Coniques Niveau : Bac mathématiques Réalisé par : Prof. Benjeddou Saber saberbjd2003@yahoo.fr éfinition : "Parabole" Soit une droite et un point n appartenant pas à. Pour tout point M du plan,

Plus en détail

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17

Terminale S Chapitre «Géométrie dans l espace» Page 1 sur 17 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 Terminale S Chapitre «Géométrie dans l espace» Page sur 7 I) Produit scalaire Dans tout ce paragraphe, on travaillera dans un repère orthonormé

Plus en détail

TRANSFORMATIONS DU PLAN

TRANSFORMATIONS DU PLAN TRANSFORMATIONS DU PLAN On appelle transformation plane (ou transformation du plan) dans lui-même tout procédé qui, à partir de n importe quel point M du plan, permet de construire un point M du plan.

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

Droites et plans dans l espace

Droites et plans dans l espace Droites et plans dans l espace Positions relatives de deux plans Deux plans de l espace sont strictement s ils n ont aucun point en commun. Positions relatives de deux plans Plans Deux plans peuvent être

Plus en détail

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P

Résumé du cours. Droites et plans de l espace. Positions relatives P P P P Résumé du cours roites et plans de l espace ans l espace un plan est caractérisé par la donnée de trois points non alignés, deux droites sécantes ou strictement parallèles. Un plan passant par trois points

Plus en détail

Produit d un vecteur par un réel, classe de seconde

Produit d un vecteur par un réel, classe de seconde , classe de seconde F.Gaudon http://mathsfg.net.free.fr 8 avril 2012 1 2 Traduction de propriétés géométriques Milieux de segments Alignement et parallélisme 1 2 Traduction de propriétés géométriques Milieux

Plus en détail

LES SIMILITUDES PLANES

LES SIMILITUDES PLANES LES SIMILITUDES PLANES Table des matières 1 Transformation du plan 2 1.1 Définition.................................................... 2 1.2 Propriété : application réciproque.......................................

Plus en détail

Les similitudes planes

Les similitudes planes Les similitudes planes 1. Transformation du plan On dit que f une application du plan dans lui même est une transformation du plan lorsque f est une bijection du plan c est dire que pour tout point M du

Plus en détail

HOMOTHÉTIES - TRANSLATIONS - ROTATIONS

HOMOTHÉTIES - TRANSLATIONS - ROTATIONS HOOTHÉTIES - TRASLATIOS - ROTATIOS I s - Propriétés On appelle translation de vecteur u, l'application qui à un point associe l'unique point tel que = u On la note souvent t u (ou simplement t lorsqu'il

Plus en détail

Livre : Chapitre 12 p. 319

Livre : Chapitre 12 p. 319 TABLE DES MATIÈRES Produit scalaire dans l espace D. Péron 14 Livre : Chapitre 12 p. 319 Table des matières 1 Diérentes expressions du produit scalaire.................................. 2 2 Orthogonalité

Plus en détail

Géométrie dans l espace

Géométrie dans l espace L-P-Bourguiba detunis Chapitre 6 Fiche6 Résumé du cours Produit scalaire Définition : l espace E est orienté dans le sens direct Prof :Ben jedidia chokri Classe :4 Math Géométrie dans l espace * Soit A,

Plus en détail

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace

Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Synthèse de cours PanaMaths (Terminale S) Produit scalaire dans l espace Notes : dans cette synthèse de cours, on suppose connues les notions du programme de 1 ère S relatives au produit scalaire dans

Plus en détail

Géométrie transformation du plan.

Géométrie transformation du plan. Géométrie transformation du plan. I. Cercle 2 A. Définitions 2 B. Positions relatives d une droite et d un cercle 2 C. Positions relatives de deux cercles 2 II. 2 A. Construction à la règle et au compas

Plus en détail

ISOMETRIES DANS LE PLAN

ISOMETRIES DANS LE PLAN Année Scolaire Isométrie 2011-2012 Terminale Association des Professeurs de Mathématiques de la Région de Sikasso et Sympathisants ISOMETRIES DANS LE PLAN 7 ème ASSEMBLEE GENERALE Koutiala Du 28 au 30

Plus en détail

() Compléments de géométrie 1 / 33

() Compléments de géométrie 1 / 33 Compléments de géométrie () Compléments de géométrie 1 / 33 1 Compléments de géométrie dans le plan complexe 2 Calcul barycentrique 3 Transformations du plan complexe () Compléments de géométrie 2 / 33

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Géométrie analytique dans l espace

Géométrie analytique dans l espace Généralités Points coplanaires Quatre points de l espace sont dits coplanaires s ils appartiennent à un même plan (rappel : 3 points d un plan sont dits alignés s ils appartiennent à une même droite) Vecteurs

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

1 ère S Exercices sur le produit scalaire dans le plan) Réponses

1 ère S Exercices sur le produit scalaire dans le plan) Réponses ère S Exercices sur le produit scalaire dans le plan) Soit CD un carré de côté a. Calculer les produits scalaires p C ; p C ; p3 CD ; p D D. Soit et deux points tels que a. On note I le milieu de [] et

Plus en détail

Chapitre : ISOMETRIES PLANES

Chapitre : ISOMETRIES PLANES [COURS DE MATHEMATIQUES NIVEAU TC] 15 jin 2012 Chapitre : ISOMETRIES PLANES I. GENERALITES 1. Définition On appelle isométrie d plan tote transformation plan dans li-même qi conserve les distances ; c'est-à-dire

Plus en détail

Ellipse déduite d un cercle par affinité orthogonale dans le plan. Applications (en particulier, projection orthogonale d un cercle sur un plan).

Ellipse déduite d un cercle par affinité orthogonale dans le plan. Applications (en particulier, projection orthogonale d un cercle sur un plan). DOCUMENT 19 Ellipse déduite d un cercle par affinité orthogonale dans le plan. Applications (en particulier, projection orthogonale d un cercle sur un plan). Dans ce document on va montrer que toute ellipse

Plus en détail

Application du produit scalaire: Géométrie analytique

Application du produit scalaire: Géométrie analytique Application du produit scalaire: Géométrie analytique I) Vecteur normal et équation de droite 1) Vecteur normal à une droite Dire que est un vecteur non nul normal à une droite (d) de vecteur directeur

Plus en détail

Exercices supplémentaires : Produit scalaire dans l espace

Exercices supplémentaires : Produit scalaire dans l espace Exercices supplémentaires : Produit scalaire dans l espace Dans tous les exercices, sauf quand cela est précisé, on considère un repère orthonormal de l espace ; ; ;. Partie A : Repère et vecteurs coplanaires

Plus en détail

Geométrie dans l espace

Geométrie dans l espace Geométrie dans l espace Quelques règles Montrer qu une droite est perpendiculaire à un plan il faut montrer qu elle est orthogonale à deux droites sécantes de ce plan Une droite perpendiculaire à un plan

Plus en détail

Chapitre 5 : Vecteurs et. translations. Le bipoints ( A, A ) ; ( B, B ) représentent un même vecteur appelé le vecteur nul et noté :

Chapitre 5 : Vecteurs et. translations. Le bipoints ( A, A ) ; ( B, B ) représentent un même vecteur appelé le vecteur nul et noté : MR : GARY Lycée Mourouge 2 Chapitre 5 : Vecteurs et translations https://sites.google.com/site/badrmathtunisia Classe : 1 er Secondaire I ) Vecteurs 1) Définition Un vecteur est un bipoints possède les

Plus en détail

Les vecteurs du plan

Les vecteurs du plan Les vecteurs du plan Colinéarité Lycée du golfe de Saint Tropez Année 2015/2016 Première S ( Lycée du golfe de Saint Tropez) Vecteurs Année 2015/2016 1 / 13 1 Vecteurs colinéaires Définition et première

Plus en détail

Chapitre XII : Géométrie dans l espace

Chapitre XII : Géométrie dans l espace I - Positions relatives dans l espace 1) Positions relatives de droites et de plans Chapitre XII : Géométrie dans l espace Définition 1 : On dit que deux droites et de l espace sont coplanaires lorsqu

Plus en détail

Agrégation interne de Mathématiques. Session Première épreuve écrite. (et CAERPA)

Agrégation interne de Mathématiques. Session Première épreuve écrite. (et CAERPA) Agrégation interne de Mathématiques (et CAERPA) Session 2001 Première épreuve écrite Partie I : Une identité remarquable Dans cette partie, k désigne un corps commutatif. On note k l ensemble des éléments

Plus en détail

Transformations anes du plan et de l'espace

Transformations anes du plan et de l'espace Transformations anes du plan et de l'espace PCSI 2 Dans tous le chapitre, (E, ( )) désigne un espace vectoriel euclidien de dimension 2 (parties 1 et 2) ou 3 (partie 3). On notera la norme euclidienne

Plus en détail

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Déplacements et Antidéplacements 4 ième Math

Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Déplacements et Antidéplacements 4 ième Math Lycée secondaire Série D exercices Prof : Selmi.Ali Mareth Thème : Déplacements et Antidéplacements 4 ième Math Exercice 1 : Dans le plan orienté on considère deux cercle C 1 et C de même rayon R > 0 et

Plus en détail

Sylvain ETIENNE 2003/2004 PLC 1 Exposé 27

Sylvain ETIENNE 2003/2004 PLC 1 Exposé 27 HOMOTHETIES ET TRANSLATIONS ; TRANSFORMATION VECTORIELLE ASSOCIEE. INVARIANTS ELEMENTAIRES : EFFET SUR LES DIRECTIONS, L ALIGNEMENT, LES DISTANCES APPLICATIONS A L ACTION SUR LES CONFIGURATIONS USUELLES.

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

Première S 2 mai 2011

Première S 2 mai 2011 Première S mai 011 Exercices 11 1 Homothétie 1 Mathématiques Soit ABC un triangle, ( Γ ) son cercle circonscrit et O le centre de ( Γ ) Soit H le milieu de [BC] et D le point de ( Γ ) diamétralement opposé

Plus en détail

Produit scalaire dans l'espace

Produit scalaire dans l'espace Produit scalaire dans l'espace Il y a de la géométrie dans l'espace au bac tous les ans. Dans tout ce chapitre, on se place dans un repère (O, ı, j, k ) orthonormal de l'espace. Introduction L'espace,

Plus en détail

Géométrie dans l espace.

Géométrie dans l espace. Géométrie dans l espace. I. Perspective cavalière a) Définition On appelle plan frontal tout plan vu de face Une ligne de fuite est une droite perpendiculaire aux plans frontaux Ex : sur la représentation

Plus en détail

III. Géométrie du plan

III. Géométrie du plan 1 Repérage dans le plan 11 Repérage cartésien Définition 1 On appelle base du plan un couple ( i, avec i et deux vecteurs non colinéaires du plan Tout vecteur u du plan s exprime de manière unique comme

Plus en détail

Proposition1.1. (i) Le composé d une rotation et d une translation (ou d une translation et d une rotation) est une rotation de même angle.

Proposition1.1. (i) Le composé d une rotation et d une translation (ou d une translation et d une rotation) est une rotation de même angle. Géométrie affine 0. Objet du cours. L objet de ce cours est de présenter les principales idées et les résultats importants de la géométrie élémentaire dans le cadre réel affine et dans le cadre réel euclidien,

Plus en détail

ESPACE ET GÉOMÉTRIE Programmes cycle 2

ESPACE ET GÉOMÉTRIE Programmes cycle 2 Connaissances ESPACE ET GÉOMÉTRIE Programmes cycle 2 Capacités Repérage, orientation - Situer un objet, une personne par rapport à soi ou par rapport à une - Connaître et savoir utiliser le vocabulaire

Plus en détail

Université de Rennes Préparation au CAPES de mathématiques Feuille d exercices de géométrie

Université de Rennes Préparation au CAPES de mathématiques Feuille d exercices de géométrie Université de Rennes 1 2008-2009 Préparation au CAPES de mathématiques Feuille d exercices de géométrie Géométrie affine Exercice n 1 1) Montrer qu une partie non vide Γ d un espace affine réel X est un

Plus en détail

Exercices sur les vecteurs

Exercices sur les vecteurs Exercices sur les vecteurs Exercice 1 : Associativité de la somme de trois vecteurs. On donne trois vecteurs u, v et w. Sur les deux figures suivantes tracer la somme u + v + w de deux manières : u + v

Plus en détail

Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel.

Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel. I Colinéarité de deux vecteurs Définition 1: Deux vecteurs sont colinéaires si et seulement si l un est le produit de l autre par un réel. Exemples : Les vecteurs u -5 3 et v 15-9 sont colinéaires car

Plus en détail

Chapitre 10 : Le Produit Scalaire

Chapitre 10 : Le Produit Scalaire Chapitre 10 : Le Produit Scalaire A) Définitions et cas particuliers 1) Rappels a) Norme d'un vecteur La norme d'un vecteur est sa longueur. Par exemple, la norme du vecteur AB la longueur AB, ou encore

Plus en détail

Mathématiques Terminale C Calcul Vectoriel Résumé de cours

Mathématiques Terminale C Calcul Vectoriel Résumé de cours . arycentre I- arycentre de deux points pondérés I. 1. Définition 1: Soit (, ) et (, ) deux points pondérés tels que + 0, Il existe un point unique G tel que G G 0 ; le point G est appelé barycentre des

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Programme selon les sections : - formules de trigonométrie, produit scalaire dans le plan : toutes sections - produit scalaire dans l espace : ST2A, S - vecteur normal : S Pré-requis : Vecteurs

Plus en détail

QCM. 1. Soit u un vecteur non nul et A un point quelconque. L application t SA. est. symétrie glissante.

QCM. 1. Soit u un vecteur non nul et A un point quelconque. L application t SA. est. symétrie glissante. QCM Cocher la réponse exacte Soit u un vecteur non nul et A un point quelconque L application t SA est une translation une symétrie centrale une symétrie glissante u Un déplacement qui fixe deux points

Plus en détail

Nombres complexes et géométrie

Nombres complexes et géométrie Université Claude Bernard Lyon 1 L1 de Mathématiques : Algèbre Année 2013 2014 Nombres complexes et géométrie I Le point de vue de ce chapitre consiste à relier une géométrie plane supposée connue aux

Plus en détail

Droites et plans de l espace - Vecteurs

Droites et plans de l espace - Vecteurs Chapitre 8 Droites et plans de l espace - Vecteurs Objectifs du chapitre : item références auto évaluation étude de la position relative de droite(s) et de plan(s) vecteurs de l espace formules dans un

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

Exercices sur la géométrie affine

Exercices sur la géométrie affine Soit ABCDEFGH un cube de l espace Déterminer S o S AFG BCH Exercices sur la géométrie affine Soit ABC un triangle indirect dans le plan orienté A l extérieur de ce triangle, on construit les points I et

Plus en détail

Cours de Terminale S /Produit scalaire et orthogonalité. E. Dostal

Cours de Terminale S /Produit scalaire et orthogonalité. E. Dostal Cours de Terminale S /Produit scalaire et orthogonalité E. Dostal Mars 2015 Table des matières 10 Produit scalaire et orthogonalité 2 10.1 Produit scalaire.......................................... 2 10.2

Plus en détail

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES Géométrie analytique C est Descartes (1596-1650) qui a développé l idée de représenter les figures géométriques dans un repère, les points du plan étant définis

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

Terminale S Géométrie dans l espace

Terminale S Géométrie dans l espace Terminale S Géométrie dans l espace 1 Positions relatives de droites et de plans 1.1 Positions relatives de deux droites Deux droites de l espace sont : soit..................... elles sont alors soit...............

Plus en détail

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES?

COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1 COMMENT DEMONTRER QUE DEUX DROITES SONT PARALLELES? 1) En utilisant les propriétés vues en 6 ème Si deux droites sont parallèles à une même droite alors elles sont parallèles entre elles On sait que

Plus en détail

I. Propriétés de géométrie analytique.

I. Propriétés de géométrie analytique. I. Propriétés de géométrie analytique. Activité 1 Dans un repère orthonormé (O ; I ; J), a. Distance entre deux points. Dans un repère orthonormée (O ; I ; J) on considère deux point A(2 ; 1) et B(5 ;

Plus en détail

(donnés) a et b tels que : f : x où a est le coefficient directeur de f et b l ordonnée à l origine.

(donnés) a et b tels que : f : x où a est le coefficient directeur de f et b l ordonnée à l origine. ❶ - Fonctions affines I-1- Définitions et vocabulaire Définition 1: On dit que f est une fonction affine si pour tout réel, il eistent deu réels (donnés) a et b tels que : f : a + b où a est le coefficient

Plus en détail

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u.

Définition. Dans le plan muni d un repère (O;! i,! j ), les coordonnées d un vecteur! u sont les coordonnées de l unique point M tel que. OM=! u. Interprétation Propriété Coordonnées d un vecteur Dans le plan muni d un repère (O; i, j ), les coordonnées d un vecteur u sont les coordonnées de l unique point M tel que OM= u. On écrit u (x; y) pour

Plus en détail

I. Théorème de Thalès

I. Théorème de Thalès MDI Lycée Clément Ader THEOREME DE THALES I. Théorème de Thalès 1. Rappel (4ème) Dans un triangle ABC, si M est un point du côté [AB], N un point du côté [AC], et si les droites (BC) et (MN) sont parallèles,

Plus en détail

1) Théorème de Thales

1) Théorème de Thales Exposé 24 : Théorème de Thalès. Projection dans le plan et dans l'espace, caractère affine des projections Pré requis: - positions de 2 droites dans le plan. Droite et plan dans l'espace - mesure algébrique,

Plus en détail

Introduction 1. I Géométrie plane 11

Introduction 1. I Géométrie plane 11 Table des matières Introduction 1 I Géométrie plane 11 1 Géométrie pure 13 1.1 Parallélisme......................... 13 1.1.1 Axiomes d incidence................ 13 1.1.2 Positions relatives de deux droites.........

Plus en détail

Complexe des Ecoles Privées EL-KHIYAR ilot L

Complexe des Ecoles Privées EL-KHIYAR ilot L Complexe des Ecoles Privées EL-KHIYAR ilot L 45500 44559 654558 Réflexions et rotations dans le plan A) Réflexion I-Définition : Soit une droite donnée On appelle réflexion d axe la transformation qui

Plus en détail

CAPES Les deux problèmes de géométrie.

CAPES Les deux problèmes de géométrie. Ecrit CAPES 014. Les deux problèmes de géométrie. 1. Epreuve 1, problème 1 : le sujet Cette épreuve s intéresse aux applications bijectives du plan qui transforment une droite en une droite. Cette propriété

Plus en détail

Chapitre 13. Applications de l espace Translation de l espace Homothéties de l espace

Chapitre 13. Applications de l espace Translation de l espace Homothéties de l espace Chapitre 13 Applications de l espace Dans les classes antérieures, nous avons étudié les transformations du plan : translation, symétries centrale et axiale, rotation, homothétie, similutudes. Dans ce

Plus en détail

Rotations définies comme composées de réflexions

Rotations définies comme composées de réflexions Rotations définies comme composées de réflexions Notes pour la préparation à l oral du CPES - Strasbourg - Novembre 2006 La méthode la plus économique pour définir une rotation consiste à dire que c est

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

Produit scalaire dans l espace Types Bac

Produit scalaire dans l espace Types Bac Lycée Paul Doumer 2013/2014 TS 1 Exercices Produit scalaire dans l espace Types Bac Exercice 1 Pondichery avril 2012 Dans le repère orthonormé les plans P et P d équations : de l espace, on considère :

Plus en détail

Isométries du plan. Daniel Perrin

Isométries du plan. Daniel Perrin Isométries du plan Daniel Perrin 1 Introduction 1.1 Avertissement Le but de ce texte est d offrir une piste pour traiter l exposé de CAPES numéro 37 (liste 2011) qui porte sur les isométries du plan 1.

Plus en détail

Translations et vecteurs

Translations et vecteurs Translations et vecteurs A) Translation. 1. Définition. Soient trois points A, B et M. L image du point M par la translation qui transforme A en B est le point M tel que ABM M, dans cet ordre, soit un

Plus en détail

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION

CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION CALCUL VECTORIEL I) EXERCICE D'INTRODUCTION 1) On donne les points A et A', construire à l'aide du quadrillage les points B' et C' tels que AA'B'B et AA'C'C soient des parallélogrammes. 2) On donne les

Plus en détail

DROITES, PLANS ET VECTEURS DE L ESPACE.

DROITES, PLANS ET VECTEURS DE L ESPACE. DROITES, PLANS ET VECTEURS DE L ESPACE. I- Droites et plans de l espace : Rappels des règles de base Par deux points distincts de l espace, passe une unique droite. Par trois points non alignés passe un

Plus en détail

Justifier. 2) Comment déceler des transformations dans une figure? 7-8

Justifier. 2) Comment déceler des transformations dans une figure? 7-8 Justifier 1) Comment justifier que page a) un quadrilatère est un parallélogramme, 2 b) un quadrilatère est un rectangle, 3 c) un quadrilatère est un losange, 4 d) un quadrilatère est un carré, 4 e) un

Plus en détail

Droites et plans dans l espace

Droites et plans dans l espace Droites et plans dans l espace Positions relatives de deux plans Définition Deux plans de l espace sont strictement s ils n ont aucun point en commun. Positions relatives de deux plans Plans Deux plans

Plus en détail

1 Révisions de géométrie

1 Révisions de géométrie Université Paris 7 Premier semestre 2008-2009 L MASS - Groupe M4 MA - Algèbre et Analyse élémentaires TD 7 : Matrices. Orthogonalité et distances Révisions de géométrie Exercice. a) Distance de l origine

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

LEÇON N 27 : Composées d homothéties et de translations du plan. Groupes des homothéties-translations. Applications.

LEÇON N 27 : Composées d homothéties et de translations du plan. Groupes des homothéties-translations. Applications. LEÇON N 27 : Composées d homothéties et de translations du plan. Groupes des homothéties-translations. Applications. Pré-requis : Calcul vectoriel (en particulier, relation de Chasles) ; Notions de groupes,

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base

MATHÉMATIQUES II. Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base MATHÉMATIQUES II Soit IP le plan vectoriel IR 2 muni du produit scalaire usuel et orienté par la base canonique (, ij) On notera o = (,) 00 l origine du plan Tout élément ( xy, ) de IP peut s interpréter

Plus en détail

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST...

LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... THEME : LES QUADRILATERES COMMENT DEMONTRER QU UN QUADRILATERE EST... SOMMAIRE : PARALLELOGRAMME? RECTANGLE? LOSANGE? CARRE? PARALLELOGRAMME? Vous disposez principalement de deux méthodes, une concernant

Plus en détail