Intégrale de Lebesgue.
|
|
|
- Pierre-Marie Labbé
- il y a 9 ans
- Total affichages :
Transcription
1 Intégrale de Lebesgue. L. Quivy Ens Cachan 23 septembre 2013
2 1 Changement de variables 2 Le lien entre l intégrale de Lebesgue et l intégrale "usuelle" 3 L espace L 1 4 Intégrales dépendant d un paramètre Continuité Dérivabilité 5 Transformées de Fourier de fonctions de L 1 Définitions Propriétés Convolution dans R
3 Théorème Convergence monotone de Beppo Levi: Soit (f n ) n N une suite de fonctions mesurables et positives sur R. On suppose que, pour tout x R, la suite (f n (x)) n N est croissante. Alors, la fonction f : R R {+ }, définie par f (x) = lim n f n(x) pour tout x R, est mesurable et vérifie lim n f n (x)dx = f (x)dx cette quantité pouvant être finie ou infinie.
4 Théorème Intégration terme à terme de séries de fonctions: Soit (f n ) n N une suite de fonctions mesurables de R dans R vérifiant f n (x) dx < +, n=0 alors la série de fonctions f n converge absolument presque partout et sa somme est intégrable. De plus, on peut permuter somme et intégrale: ( ) f n (x) dx = f n (x)dx. n=0 n=0
5 Théorème Théorème de Fubini: Si x R P, y R Q, avec P + Q = N; si f : R N R et si f < +, alors, R N pour presque tout x R P, la fonction f (x, ) est intégrable sur R Q et x f (x, y)dy est intégrable sur R P R Q pour presque tout y R Q, la fonction f (, y) est intégrable sur R P et y f (x, y)dx est intégrable sur R Q R P et ( ) ( ) f (x, y)dxdy = f (x, y)dx dy = f (x, y)dy dx. R N R Q R P R P R Q
6 Dans le cas des fonctions positives, on a un théorème réciproque: Théorème Fubini-Tonelli Soit f : R N R + une fonction positive et mesurable. Alors l intégrale de f (finie ou infinie) est donnée par: ( ) ( f (x, y)dxdy = f (x, y)dy dx = R N R P R Q R Q R P f (x, y)dx ) dy.
7 Definition (x, y, z) (u, v, w) = ϕ(x, y, z). Soient Ω et Ω deux ouverts de R 3 et soit ϕ une bijection de Ω sur Ω, continûment différentiable ainsi que son inverse. On appelle matrice jacobienne la matrice des dérivées partielles: Jac ϕ (x, y, z) = D(u, v, w) D(x, y, z) = u x v x w x u y v y w y u z v z w z. On appelle jacobien de la transformation, le déterminant de la matrice jacobienne: J ϕ (x, y, z) = det(jac ϕ (x, y, z)). Cette définition se généralise à une transformation dans R n.
8 Théorème Soient U et V deux ouverts de R n. Soit ϕ : U V une fonction de classe C 1, bijective, dont le jacobien ne s annule pas sur U et soit f : V R p. Alors on a l équivalence f intégrable sur V (f ϕ)j ϕ intégrable sur U et, en notant x = (x 1,, x n ) et u = (u 1,, u n ) = ϕ(x), f (u)d n u = f ϕ(x) J ϕ (x) d n x. V U
9 Proposition Si f est une fonction continue (ou continue par morceaux) sur un intervalle [a, b], (a < b) de R, il y a égalité entre l intégrale de Lebesgue de f sur cet intervalle et l intégrale "usuelle" (celle de Riemann ou celle des fonctions réglées, définie à partir de fonctions en escalier). En particulier, on a toujours d dx x a f (t)dt = f (x) lorsque f est continue sur [a, b], a < x < b et f (b) f (a) = b a f (t)dt lorsque f est de classe C 1 sur [a, b].
10 Proposition Soit f une fonction positive sur [a, b[ (pour un certain a R et b > a, éventuellement infini) et continue (ou continue par morceaux) sur [a, b[. Il y a convergence de l intégrale impropre (la quantité lim f x b [a,x] existe et est finie) si et seulement si l intégrale de Lebesgue est finie. De plus, on a égalité entre l intégrale de f au sens de Lebesgue sur [a, b[ et l intégrale impropre lim f. x b [a,x] [a,b[ f
11 Proposition Soit f une fonction continue (ou continue par morceaux) sur [a, b[ (pour un certain a R et b > a, éventuellement infini). Il y a convergence absolue de l intégrale impropre (la quantité lim f existe et est finie) si et seulement si l intégrale de x b [a,x] Lebesgue f est finie. De plus, on a égalité entre l intégrale de [a,b[ f au sens de Lebesgue sur [a, b[ et l intégrale impropre lim f. x b [a,x]
12 Definition Espaces L 1 : Soit X un sous-ensemble de R n. L espace L 1 (X ) est l espace vectoriel des fonctions (réelles ou complexes), intégrables sur X, définies à une égalité presque partout près. En particulier, L 1 (R) (ou simplement L 1 ) est l espace des fonctions intégrables sur R par rapport à la mesure de Lebesgue, définies à une égalité presque partout près. Pour tout segment [a; b] de R, L 1 ([a; b]) est l espace des fonctions définies sur [a; b], intégrables pour la restriction de la mesure de Lebesgue sur [a; b]. Cela signifie que le prolongement de f à R, obtenu en posant f (x) = 0 pour tout x / [a; b], est élément de L 1 (R). Ces espaces peuvent être munis de la norme (dite norme de convergence en moyenne): f 1 = f dµ.
13 Proposition Les fonctions continues à support compact dans R n (càd qui valent 0 en dehors d un ensemble borné) sont denses dans L 1 (R n ) pour la norme L 1. Autrement dit, pour tout élément f de L 1 (R n ), il existe une suite (f n ) n N de fonctions continues à support compact telle que f n f L 1 (R n ) 0.
14 Definition On note L 1 loc (Rn ) l ensemble des classes d équivalence de fonctions de R n dans R dont la restriction à X appartient à L 1 (X ) pour tous les X bornés inclus dans R n.
15 Théorème (Riesz-Fischer) Soit X un sous-ensemble de R n. L espace L 1 (X ) des fonctions intégrables au sens de Lebesgue, muni de la norme f 1 = f dµ, est un espace vectoriel normé, complet. En particulier, les espaces L 1 (R) et L 1 ([a; b]) sont des espaces vectoriels normés complets. De plus, l espace C([a; b]) des fonctions continues sur [a; b] est dense dans l espace L 1 ([a; b]). Il en est de même pour l espace C(R) des fonctions continues sur R et pour L 1 (R).
16 Continuité Proposition Soit A un sous-ensemble de R n, soit U un ouvert de R p. On considère une fonction f : A U R telle que f (a, ) est continue sur U pour presque tout a A et telle qu il existe g L 1 (A) vérifiant pour presque tout a A, x U, f (a, x) g(a). Alors A f (a,.)da est bien définie et continue sur U.
17 Dérivabilité Proposition Soit A un sous-ensemble de R n, soit U un ouvert de R p. On considère une fonction f : A U R telle que f (, x) est intégrable pour x U, f (a, ) est dérivable par rapport à la i-ème variable sur U pour presque tout a A et de dérivée xi f (a, ) il existe h L 1 (A) vérifiant pour presque tout a A, Alors A f (a,.)da x U, xi f (a, x) h(a). en tout point x de U, de dérivée xi f (a, x)da. est dérivable par rapport à la i-ème variable A
18 Séries de Fourier pour les fonctions non périodiques: f n (x) = 1 T avec (sommes partielles de Fourier) Généralisation: c k = 1 T T ˆf (ν) = 0 + n k= n c k e 2iπkx T f (t)e 2iπkt T dt. f (t)e 2iπνt dt, avec t en secondes et ν la fréquence (en Hz).
19 Définitions Definition On note L 1 (R) l ensemble des fonctions f définies de R dans R, continue par morceaux et telles que f (t) dt <. R Ce sont les fonctions intégrables au sens de Lebesgue. La "norme" dans L 1 est définie par f 1 = + f (t) dt.
20 Définitions Definition Soit f une fonction. On dit que f L (R) si f est une fonction mesurable bornée. La norme dans L est définie par f = sup f (x). x R
21 Définitions Definition Pour f L 1 (R), on note ˆf ou F(f ) la transformée de Fourier de la fonction f définie sur R N par ˆf (ν) = 1 f (x)e iνx dx = F(f )(ν). 2π
22 Définitions Proposition F : f L 1 (R) ˆf L (R). On a donc un problème de non stabilité de la transformée de Fourier de L 1.
23 Définitions Definition On définit F (f ) la cotransformée de Fourier ou transformée de Fourier conjuguée de la fonction f par F(f )(x) = 1 f (ν)e iνx dν 2π
24 Définitions Proposition On a F(f )(ν) = F(f )( ν), et, sous certaines conditions F(F(f )) = f.
25 Propriétés Propriété Si f L 1 (R), alors ˆf est continue sur R et est de plus bornée: ˆf f 1.
26 Propriétés Théorème est un opérateur linéaire. F : f L 1 (R) ˆf L (R)
27 Propriétés Proposition On a les propriétés suivantes: 1 ˆf est continue. 2 Si x n f L 1, alors ˆf est C n et ˆf (n) (ν) = F (( ix) n f (x)).
28 Propriétés Proposition Si f L 1 est dérivable avec f L 1 alors F(f ) = iνf(f ).
29 Propriétés Proposition Plus généralement, si f C n et si m n, f (m) L 1, alors ( F f (n)) = (iν) n F(f ).
30 Propriétés Proposition Soit τ a f la translatée de f de a, c est-à-dire τ a f (x) = f (x + a), alors F (τ a f ) = e i νa F(f ).
31 Propriétés Proposition Soit η a f la dilatée de f de a, c est-à-dire η a f (x) = f ( x a ), alors F (η a f ) (ν) = af(f )(aν).
32 Convolution dans R Definition Soient f et g deux fonctions de L 1 (R). On définit h par h(x) = f (x s)g(s)ds. R On dit que h est la convoluée de f et g et on la note f g.
33 Convolution dans R Propriété 1 Le produit de convolution est commutatif: f g = g f. 2 h L 1 (R).
34 Convolution dans R Proposition Pour f L 1 (R), g Cc p (R) on a f g C p (R) et pour α N, α p, α (f g) = f α g.
35 Convolution dans R Definition On appelle suite régularisante (sur R) une suite de fonctions (φ n ) n 1 définie par φ n (x) = nφ(nx), où φ est une fonction positive, de classe C, d intégrale égale à 1 et de support inclus dans ] 1; 1[.
36 Convolution dans R Proposition Pour f L 1 (R), f φ n (x) = R f ( x z ) φ(z)dz. n la suite régularisantef φ n f, dans L 1 (R). On en déduit la densité de C L 1 (R) dans L 1 (R) (pour la norme L 1 (R)).
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Produits d espaces mesurés
Chapitre 7 Produits d espaces mesurés 7.1 Motivation Au chapitre 2, on a introduit la mesure de Lebesgue sur la tribu des boréliens de R (notée B(R)), ce qui nous a permis d exprimer la notion de longueur
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
MESURE ET INTÉGRATION EN UNE DIMENSION. Notes de cours
MSUR T INTÉGRATION N UN DIMNSION Notes de cours André Giroux Département de Mathématiques et Statistique Université de Montréal Mai 2004 Table des matières 1 INTRODUCTION 2 1.1 xercices.............................
Espérance conditionnelle
Espérance conditionnelle Samy Tindel Nancy-Université Master 1 - Nancy Samy T. (IECN) M1 - Espérance conditionnelle Nancy-Université 1 / 58 Plan 1 Définition 2 Exemples 3 Propriétés de l espérance conditionnelle
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Construction de l'intégrale de Lebesgue
Université d'artois Faculté des ciences Jean Perrin Mesure et Intégration (Licence 3 Mathématiques-Informatique) Daniel Li Construction de l'intégrale de Lebesgue 10 février 2011 La construction de l'intégrale
Théorie de la Mesure et Intégration
Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble
Intégration et probabilités TD1 Espaces mesurés Corrigé
Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
Intégrale de Lebesgue
Intégrale de Lebesgue L3 Mathématiques Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2014 version du 2/12/14 Table des matières 1 Tribus (σ-algèbres) et mesures 1 1.1 Rappels ensemblistes..............................
THÉORIE DE LA MESURE ET DE L INTÉGRATION.
THÉORIE DE LA MESURE ET DE L INTÉGRATION. THIERRY GALLAY Transcrit par Tancrède LEPOINT 29 UNIVERSITÉ JOSEPH FOURIER, GRENOBLE TABLE DES MATIÈRES Avant-propos Biographie sommaire...........................................
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Intégration et probabilités TD1 Espaces mesurés
Intégration et probabilités TD1 Espaces mesurés 2012-2013 1 Petites questions 1) Est-ce que l ensemble des ouverts de R est une tribu? 2) Si F et G sont deux tribus, est-ce que F G est toujours une tribu?
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Equations aux Dérivées Partielles
Equations aux Dérivées Partielles Tony Lelièvre 29-2 Après avoir considéré dans le capitre précédent des équations d évolution pour des fonctions ne dépendant que du paramètre temps, nous nous intéressons
De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que
Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer
Séminaire TEST. 1 Présentation du sujet. October 18th, 2013
Séminaire ES Andrés SÁNCHEZ PÉREZ October 8th, 03 Présentation du sujet Le problème de régression non-paramétrique se pose de la façon suivante : Supposons que l on dispose de n couples indépendantes de
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Notes de cours M2 Équations aux dérivées partielles elliptiques. Hervé Le Dret
Notes de cours M2 Équations aux dérivées partielles elliptiques Hervé Le Dret 4 mars 2010 2 Table des matières 1 Rappels en tous genres 7 1.1 Les théorèmes de convergence de Lebesgue............ 7 1.2
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Intégration sur des espaces produits
Chapitre 5 Intégration sur des espaces produits 5.1 Produit de deux mesures Étant donnés deux espaces mesurés (Ω 1, F 1, µ 1 ) et (Ω 2, F 1, µ 2 ), le but de cette section est de construire une mesure
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Sur certaines séries entières particulières
ACTA ARITHMETICA XCII. 2) Sur certaines séries entières particulières par Hubert Delange Orsay). Introduction. Dans un exposé à la Conférence Internationale de Théorie des Nombres organisée à Zakopane
Fonctions de plusieurs variables
Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Moments des variables aléatoires réelles
Chapter 6 Moments des variables aléatoires réelles Sommaire 6.1 Espérance des variables aléatoires réelles................................ 46 6.1.1 Définition et calcul........................................
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
3. Caractéristiques et fonctions d une v.a.
3. Caractéristiques et fonctions d une v.a. MTH2302D S. Le Digabel, École Polytechnique de Montréal H2015 (v2) MTH2302D: fonctions d une v.a. 1/32 Plan 1. Caractéristiques d une distribution 2. Fonctions
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
INTRODUCTION AUX ÉQUATIONS AUX DÉRIVÉES PARTIELLES Cours de maîtrise, L. Boutet de Monvel
EDP - Cours de Maîtrise LBdM 1 INTRODUCTION AUX ÉQUATIONS AUX DÉRIVÉES PARTIELLES Cours de maîtrise, L. Boutet de Monvel Ce polycopié regroupe les notes du cours d Équations aux dérivées partielle de la
Mesures gaussiennes et espaces de Fock
Mesures gaussiennes et espaces de Fock Thierry Lévy Peyresq - Juin 2003 Introduction Les mesures gaussiennes et les espaces de Fock sont deux objets qui apparaissent naturellement et peut-être, à première
Approximations variationelles des EDP Notes du Cours de M2
Approximations variationelles des EDP Notes du Cours de M2 Albert Cohen Dans ce cours, on s intéresse à l approximation numérique d équations aux dérivées partielles linéaires qui admettent une formulation
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Introduction à la. Points Critiques. Otared Kavian. et Applications aux Problèmes Elliptiques. Springer-Verlag
Otared Kavian Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques Springer-Verlag Berlin Heidelberg NewYork London Paris Tokyo Hong Kong Barcelona Budapest Avant propos
Que faire lorsqu on considère plusieurs variables en même temps?
Chapitre 3 Que faire lorsqu on considère plusieurs variables en même temps? On va la plupart du temps se limiter à l étude de couple de variables aléatoires, on peut bien sûr étendre les notions introduites
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Résolution d équations non linéaires
Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique
Apprentissage non paramétrique en régression
1 Apprentissage non paramétrique en régression Apprentissage non paramétrique en régression Résumé Différentes méthodes d estimation non paramétriques en régression sont présentées. Tout d abord les plus
Mesures et Intégration
Mesures et Intégration Marc Troyanov - EPFL - Octobre 2005 30 avril 2008 Ce document contient les notes du cours de Mesure et Intégration enseigné à l EPFL par Marc Troyanov, version 2005-2006. Table des
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Commun à tous les candidats
EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle
Théorie de la Mesure et Intégration
Université Pierre & Marie Curie (Paris 6) Licence de Mathématiques L3 UE LM364 Intégration 1 & UE LM365 Intégration 2 Année 2010 11 Théorie de la Mesure et Intégration Responsable des cours : Amaury LAMBERT
Fonctions holomorphes
Université Joseph Fourier, Grenoble Maths en Ligne Fonctions holomorphes Christine Laurent-Thiébaut Ceci est le second volet de l étude des fonctions d une variable complexe, faisant suite au chapitre
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
Théorèmes du Point Fixe et Applications aux Equations Diérentielles
Université de Nice-Sophia Antipolis Mémoire de Master 1 de Mathématiques Année 2006-2007 Théorèmes du Point Fixe et Applications aux Equations Diérentielles Auteurs : Clémence MINAZZO - Kelsey RIDER Responsable
Chp. 4. Minimisation d une fonction d une variable
Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie
Probabilités avancées. Florin Avram
Probabilités avancées Florin Avram 24 janvier 2014 Table des matières 1 Mise en scène discrète 3 1.1 Espace des épreuves/résultats possibles, événements, espace probabilisé, mesure de probabilités, variables
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
Programmes des classes préparatoires aux Grandes Ecoles
Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Biologie, chimie, physique et sciences de la Terre (BCPST) Discipline : Mathématiques Seconde année Préambule Programme
Optimisation des fonctions de plusieurs variables
Optimisation des fonctions de plusieurs variables Hervé Hocquard Université de Bordeaux, France 8 avril 2013 Extrema locaux et globaux Définition On étudie le comportement d une fonction de plusieurs variables
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Cours d analyse numérique SMI-S4
ours d analyse numérique SMI-S4 Introduction L objet de l analyse numérique est de concevoir et d étudier des méthodes de résolution de certains problèmes mathématiques, en général issus de problèmes réels,
Structures algébriques
Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
C1 : Fonctions de plusieurs variables
1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions
Calcul différentiel sur R n Première partie
Calcul différentiel sur R n Première partie Université De Metz 2006-2007 1 Définitions générales On note L(R n, R m ) l espace vectoriel des applications linéaires de R n dans R m. Définition 1.1 (différentiabilité
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Mesure et Intégration (Notes de cours de L3)
Mesure et Intégration (Notes de cours de L3) Ahmed Zeriahi Version préliminaire-octobre 2011 Avertissement : Ceci est une version préliminaire des notes du cours que l auteur a dispensé en troisème année
Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé
Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue
Entiers aléatoires et analyse harmonique
Entiers aléatoires et analyse harmonique Jean-Pierre Kahane et Yitzhak Katznelson Introduction. Il s agit dans cet article d ensembles de Sidon et de processus de Poisson ponctuels. Les ensembles de Sidon
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1
La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois
Équations non linéaires
Équations non linéaires Objectif : trouver les zéros de fonctions (ou systèmes) non linéaires, c-à-d les valeurs α R telles que f(α) = 0. y f(x) α 1 α 2 α 3 x Equations non lineaires p. 1/49 Exemples et
Exercices Alternatifs. Une fonction continue mais dérivable nulle part
Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version
MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME
Notre cadre de réflexion MATHÉMATIQUES EN PREMIER CYCLE PRÉSENTATION DU PROGRAMME La proposition de programme qui suit est bien sûr issue d une demande du Premier Cycle : demande de rénovation des contenus
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE
ÉTUDE ASYMPTOTIQUE D UNE MARCHE ALÉATOIRE CENTRIFUGE JEAN-DENIS FOUKS, EMMANUEL LESIGNE ET MARC PEIGNÉ J.-D. Fouks. École Supérieure d Ingénieurs de Poitiers. 40 avenue du Recteur Pineau, 860 Poitiers
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Cours d Analyse I et II
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Cours d Analyse 3 Fonctions de plusieurs variables
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet [email protected]
Capacité d un canal Second Théorème de Shannon. Théorie de l information 1/34
Capacité d un canal Second Théorème de Shannon Théorie de l information 1/34 Plan du cours 1. Canaux discrets sans mémoire, exemples ; 2. Capacité ; 3. Canaux symétriques ; 4. Codage de canal ; 5. Second
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Espaces de Sobolev et introduction aux équations aux dérivées partielles
Espaces de Sobolev et introduction aux équations aux dérivées partielles A. Munnier 1 Institut Élie Cartan 27-28 1 Maître de conférences, Institut Élie Cartan, Université Henri Poincaré, Nancy 1, B.P.
