La trigonométrie en seconde

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "La trigonométrie en seconde"

Transcription

1 Niveau : De la 4 e à la Terminale. Trigonométrie Prérequis :Géométrie du triangle, théorème de Pythagore,notion de fonction et produit scalaire. Vocabulaire :Tri - gono - métrie = trois - cotés - mesure La trigonométrie est une branche des mathématiques qui étudie la relation qui existe entre la mesure des trois cotés d'un triangle et la mesure de ses angles. La trigonométrie au collège Définition :Dans un triangle ABC rectangle en A, on définit le sinus, le cosinus et la tangente de l angle aigu ÂBC de la manière suivante : Côté opposé à ÂBC sin ÂBC= = AC hypoténuse BC Côté adjacent à ÂBC cos ÂBC= = AB hypoténuse BC Coté opposé à ÂBC tan ÂBC= côté adjacent à ÂBC = AC AB Remarque :On a aussi avec l angle ÂCB : cos ÂCB= CA CB, sin ÂCB= AB CB, tan ÂCB= AB AC. Proposition: Pour tout réel x, on a : cos x+sin x=1 cos ÂBC=sin ÂCB et cos ÂCB=sin ÂBC La trigonométrie en seconde Enroulement de la droite numérique sur le cercle trigonométrique (voir le fichier joint ggb) La trigonométrie en première S : A. Le Radian Définition : Le radian est l'unité de mesure des angles telle que la mesure en radian d'un angle est égale à la longueur de l'arc que cet angle intercepte sur un cercle de rayon 1. Propriété:Les mesures en degrés et en radians d'un angle sont proportionnelles. Remarque :Pour trouver la mesure d un angle de x degrés, on a recours à un tableau de proportionnalité.

2 B. Repérage sur un cercle trigonométrique Définition : Le cercle trigonométriquec de centre O est de rayon 1, sur lequel on choisit un sens de parcours, appelé sens direct (ou sens giratoire) Soit M un point du cercle tel que α soit une mesure (en radians) de l angle orienté ( OI, OM ). Définition :On appelle cosinus et sinus de α et on note cos α et sin α, les coordonnées du point M dans le repère (O, i, j ) : OM=(cos α) OI+(sin α) OJ Soit Δ la droite d équation x =1 dans le repère orthonormé (O, i, j ) et H le point défini par (OM) Δ. Ce point H existe dès lors que Δ et (OM) ne sont pas parallèles, c est-à-dire : α π +k π(k Z). Définition :On appelle tangente de α et on note tan α l'ordonnée de H dans(o, i, j )

3 Propriétés: Pour tout réel x et tout entier relatif k : 1. 1 cos x 1. 1 sin x 1 3.sin(x+k π) = sin x 4.cos(x+k π) = cos x Exemple : on admet que cos π 5 =1+ 5 4,on veut calculer la valeur exacte de sin π 5 la relation cos x+sin x=1,donc on obtient : π cos 5 +sin π 5 =1 donc sin π 5 ( = = ) 16 4 donc on utilise donc sin π 5 = = 5 5 car sin π 5 0 puisque π [0 ;π ] 5 C. Fonction sinus et cosinus Définition : Pour tout T R * on a : Une fonction f est dite périodique de période T si pour tout réel x, on a : f (x + T) = f (x). Remarque: pour étudier une fonction périodique, on se limite à une période Propriété :Les fonctions sinus et cosinus sont périodiques de période π. la fonction cosinus est paire cos(-x) = cos (x). la fonction sinus est impaire sin(-x) = -sin(x).

4 Propriété : Les fonctions cosinus et sinus sont dérivables sur R et : sin'(x)=cos(x) cos'(x)=-sin(x) Représentation graphique de la fonction sinus et cosinus D. Résolution des équations cos x = a et sin x = a pour tout x R i. Cos(x)=a On va supposer que -1 a 1, sinon le problème n a pas de solution. On commence par chercher les valeurs de x sur l intervalle [ 0 ; π ], en s aidant du cercle trigonométrique. On place donc a sur l axe des abscisses, puis on trace la droite parallèle à l axe des ordonnées qui passe par ce point. Elle croise le cercle en deux points C et D. On détermine alors deux angles : α et - α. L ensemble des solutions est alors l ensemble des réels x tels que : x = α + kπ ou x = - α +kπ où k est un entier relatif. ii. sin(x)=a On commence par chercher les valeurs de x sur l intervalle [0 ; π], en s aidant du cercle trigonométrique. On place donc a sur l axe des ordonnées, puis on trace la droite parallèle à l axe des abscisses qui passe par ce point. Elle coupe le cercle en deux points C et D. On détermine alors deux angles : α et π - α. L ensemble des solutions est alors l ensemble des réels x tels que

5 x = α + kπ ou x = π - α +kπ où k est un entier relatif. E. Angles associés Propriétés : 1. cos(-x) = cos x, 6. sin(π + x) = sin x. sin(-x) = sin x, 7. cos( π +x) = sin x, 3. cos(π - x) = -cos x, 8. sin( π 4. sin(π - x) = sin x, 9. cos( π 5. cos(π + x) = -cos x, 10. sin( π + x) = cos x, x) = sin x, x) = cos x.

6 Développement : Les relations cos(-x) = cos x et sin(-x) = -sin x s obtiennent immédiatement par symétrie par rapport à l axe des abscisses. On veut démontrer la propriété 9 : Soit x un réel appartenant à l'intervalle [0 ; π ] et M le point du cercle trigonométrique de centre O associé à x.on appelle H le projeté orthogonale de M sur l'axe des abscisses On a : cos MOH = OH =sin ĤMO sin MOH = MH =cos ĤMO or ĤMO=π π x= π x car la somme des angles dans un triangle est égale à π. cos ĤMO =cos π x =sin MOH =sin x d'où cos π x =sin x. Propriété 10 :cos MOH =cos x =sin ĤMO =sin π x d'où cos x =sin π x si maintenant on écrit : π x= π +( x) on peut démontrer facilement la propriété 7 et 8.

7 F. Formules trigonométriques Propriétés: 1. cos(a b) = cos a cos b + sin a sin b,. cos(a + b) = cos a cos b sin a sin b, 3. sin(a b) = sin a cos b cos a sin b, 4. sin(a + b) = sin a cos b + cos a sin b. G. Formules de duplication Proposition : 1. cos(a) = cos²a sin² a,. sin(a) = sin a cos a. H. Formules de linéarisation Proposition : cos a= 1+cos(a) et sin a= 1 cos(a) Exercice (3 e ) Voici un schéma de la statut de la liberté : Calculer une valeur approchée de la hauteur SI de la statue de la liberté. Exercice (niveau 3 e ) Tracer à l'aide uniquement d'une règle graduée (sans rapporteur) le triangle ABC tel que AB=4,5cm; BAC=63 et ABC=50. Exercice n 94 p 71 Terracher Géométrie ( 1 er S ) Dans la figure ci-contre,acde est un carré de côté 1 et ABC est un triangle équilatéral. 1) Montrer que BED= π 1. ) Calculer BH et en déduire que : tan π = 3 3)En déduire que : cos π 1 = et sin π 1 =1 3

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment Chapitre 6 Trigonométrie CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Utiliser le cercle trigonométrique, notamment

Plus en détail

Chapitre 12 Trigonométrie

Chapitre 12 Trigonométrie Chapitre Trigonométrie I. Enroulement de la droite numérique ) Cercle trigonométrique Définition : Dans un repère orthonormé (O ; I, J), on appelle cercle trigonométrique le cercle c de centre O et de

Plus en détail

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6)

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 3D2 LMRL CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 1 Rappels - classe de quatrième Théorème de Pythagore : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques I) Rappels 1) Repérage sur le cercle trigonométrique Sur un cercle trigonométrique : - à tout nombre réel t on associe un point M unique ; - si un point M est associé à un nombre

Plus en détail

TRIGONOMÉTRIE ET ANGLES ORIENTÉS

TRIGONOMÉTRIE ET ANGLES ORIENTÉS TRIGONOMÉTRIE ET ANGLES ORIENTÉS Première S - Chapitre 5 Table des matières I Le cercle trigonométrique et le radian 2 I 1 Le cercle trigonométrique..................................... 2 I 2 Le radian..............................................

Plus en détail

Trigonométrie. I] Cercle trigonométrique et radians

Trigonométrie. I] Cercle trigonométrique et radians I] Cercle trigonométrique et radians Dans le plan muni d un repère orthonormé, on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens

Plus en détail

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1 Chapitre Trigonométrie TABLE DES MATÈRES page -1 Chapitre Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

Angles orientés et repérage, cours, première S

Angles orientés et repérage, cours, première S Angles orientés et repérage, cours, première S F.Gaudon 24 mai 2010 Table des matières 1 Cercle trigonométrique et radian 2 2 Angles orientés 3 3 Propriétés des mesures d'angles orientés 4 4 Cosinus et

Plus en détail

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Contenu: Radian; Cercle trigonométrique; Mesure d un angle orienté; Mesure principale. Mevel

Plus en détail

TRIGONOMETRIE. Maths APP 1S

TRIGONOMETRIE. Maths APP 1S Partie A : Cercle trigonométrique, cosinus et sinus Convertir en radians les mesures d angles exprimées en degrés : 60 ; 150 ; 10 ; 1 ; 198 ; 15 Exercice Dans chacun des cas suivant, donner trois autres

Plus en détail

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b).

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b). Angles et Trigonométrie I º] Rappels : repérage d'un point sur le cercle trigonométrique Le sens direct est aussi appelé sens trigonométrique ou sens positif Un cercle trigonométrique est un cercle de

Plus en détail

Chapitre : Trigonométrie

Chapitre : Trigonométrie Chapitre : Trigonométrie Dans tout le chapitre, le plan est muni d un repère orthonormé ;, I. Cercle trigonométrique 1) Repérage sur le cercle trigonométrique Définition : Le cercle trigonométrique C est

Plus en détail

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique Chapitre 4 Trigonométrie 4. Enroulement de la droite des réels 4.. Le cercle trigonométrique Dénition. On se place dans le plan repéré par le repère orthonormé (O; u; v). Le cercle trigonométrique est

Plus en détail

Trigonométrie et angles orientés

Trigonométrie et angles orientés Trigonométrie et angles orientés A) Angles orientés. 1. Le radian. Le radian est une unité de mesure d un angle comme le degré. Il est défini comme la longueur de l arc entre deux points du cercle unité

Plus en détail

Chapitre 2 : Trigonométrie & angles orientés

Chapitre 2 : Trigonométrie & angles orientés I. Le cercle trigonométrique 1. Définition Le cercle trigonométrique de centre O est le cercle de rayon 1 et qui est muni d un sens direct : le sens inverse des aiguilles d'une montre. On note C le cercle

Plus en détail

I Exercices I I I I I I I I I I-3

I Exercices I I I I I I I I I I-3 Chapitre 1 Trigonométrie TABLE DES MATÈRES page -1 Chapitre 1 Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

I- Les rappels : des triangles particuliers. Trigonométrie

I- Les rappels : des triangles particuliers. Trigonométrie Index I- Les rappels : des triangles particuliers... 1 I-1- Triangle équilatéral... 1 I-2- Triangle rectangle isocèle... 1 II- Sur le cercle trigonométrique... 2 II-1- Comment graduer un cercle? (se repérer

Plus en détail

Cours - Méthodes. 1. Repérage sur le cercle trigonométrique. A. Enroulement de la droite numérique. B. Le radian. DÉFINITION : Cercle trigonométrique

Cours - Méthodes. 1. Repérage sur le cercle trigonométrique. A. Enroulement de la droite numérique. B. Le radian. DÉFINITION : Cercle trigonométrique Dans ce chapitre, on munit le plan du repère orthonormé ;,.. Repérage sur le cercle trigonométrique A. Enroulement de la droite numérique DÉFNTN : Cercle trigonométrique Le cercle trigonométrique C est

Plus en détail

Chapitre 4 Trigonométrie

Chapitre 4 Trigonométrie Chapitre 4 Trigonométrie I. Radian cercle trigonométrique 1) Le radian On appelle radian (symbole : rad) la mesure d'un angle qui intercepte un arc dont la longueur est égale à son rayon R. Cte définition

Plus en détail

Angles orientés et coordonnées polaires

Angles orientés et coordonnées polaires 1 Angles orientés et coordonnées polaires Table des matières 1 Angles orientés 1.1 Définition................................. 1. Mesure d un angle orienté........................ 1. Propriétés.................................

Plus en détail

I- Cercle trigonométrique, Radian

I- Cercle trigonométrique, Radian er S TRIGONOMETRIE Objectifs : Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Déterminer les cosinus et les sinus d angles associés. Résoudre dans les équations d inconnue

Plus en détail

Chapitre 8 : Géométrie

Chapitre 8 : Géométrie Chapitre 8 : Géométrie I. Triangles rectangles.le théorème de Pythagore Le côté le plus long dans un triangle rectangle est l hypoténuse ; c est le côté où il n y a pas d angle droit. Le théorème de Pythagore

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

Chapitre 7 : Trigonométrie

Chapitre 7 : Trigonométrie Chapitre : Trigonométrie I. Longueur d arc de cercle Par cœur : Le périmètre d un cercle de rayon R : R L aire d un disque de rayon R : R Savoir-faire : calculer la longueur d un arc de cercle Le cercle

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015

Trigonométrie. Mathématique. Sylvie Jancart. septembre 2015 Mathématique Sylvie Jancart sylvie.jancart@ulg.ac.be septembre 2015 Equations trigonométriques élémentaires Exemple 1 : résoudre dans IR l équation sin x = 1 : 2 L examen du cercle trigonométrique montre

Plus en détail

TRIGONOMÉTRIE REPÉRAGE POLAIRE

TRIGONOMÉTRIE REPÉRAGE POLAIRE TRIGNMÉTRIE REPÉRAGE PLAIRE I Angles orientés Remarque n considère le cercle de centre et de rayon, que l'on appelle cercle trigonométrique. Le périmètre de ce cercle est. n considère la droite graduée

Plus en détail

La trigonométrie. I Le cercle trigonométrique 1 1 Associer un point à un réel Valeurs particulières... 2

La trigonométrie. I Le cercle trigonométrique 1 1 Associer un point à un réel Valeurs particulières... 2 Table des matières I Le cercle trigonométrique Associer un point à un réel........................................ Valeurs particulières............................................ II Angles orientés Mesures

Plus en détail

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo.

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. I- LE RADIAN Le radian est, comme le degré ou le grade, une unité de mesure d angles. Sur un cercle de centre O, l angle

Plus en détail

Exercices Trigonométrie

Exercices Trigonométrie I Le cercle trigonométrique Savoir-faire 1 : Associer nombres réels et points du cercle trigonométrique Exercice 1 Tracer le cercle trigonométrique, puis placer les points A, B, C et D, images par enroulement

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté de deux vecteurs................................... 1.3 Projection orthogonale........................................

Plus en détail

Degré Radian. 2π 9. ACTIVITÉ 2 (Enroulement de la droite des réels)

Degré Radian. 2π 9. ACTIVITÉ 2 (Enroulement de la droite des réels) ACTIVITÉ 1 (Le radian L objectif de cette première activité est de définir une nouvelle unité de mesure d angle. 1. Soit C un cercle de centre O et de rayon cm. (a Calculer le périmètre de ce cercle. (b

Plus en détail

Chapitre 7 Angles orientés

Chapitre 7 Angles orientés hapitre 7 ngles orientés. ngles orientés. ercle trigonométrique Définition. Le plan est rapporté à un repère orthonormé ; i, Le cercle de et sur lequel on a choisi un sens sens inverse des aiguilles d

Plus en détail

Trigonométrie I-Extrait du programme officiel de BEP/CAP.

Trigonométrie I-Extrait du programme officiel de BEP/CAP. Trigonométrie I-Extrait du programme officiel de BEP/CAP. a) Cercle trigonométrique mesures de l'angle orienté de deux vecteurs unitaires, mesure principale b) Cosinus et sinus d'un nombre réel. Relation

Plus en détail

TRIGONOMÉTRIE Rappels de Seconde et 1S. II. Enroulement de la droite des réels sur le cercle trigonométrique

TRIGONOMÉTRIE Rappels de Seconde et 1S. II. Enroulement de la droite des réels sur le cercle trigonométrique I. Définition du cercle trigonométrique TRIGONOMÉTRIE Rappels de Seconde et 1S Le plan est muni d'un repère orthonormé (O, i, j ) et orienté dans le sens direct. Le cercle trigonométrique est le cercle

Plus en détail

TRIGONOMÉTRIE. I Cercle trigonométrique - Radian. Définition. Remarques. Exemples ( voir animation )

TRIGONOMÉTRIE. I Cercle trigonométrique - Radian. Définition. Remarques. Exemples ( voir animation ) TRIGNMÉTRIE I Cercle trigonométrique - Radian sens trigonométrique M Le plan est rapporté à un repère orthonormé ( i, j ). n appelle cercle trigonométrique le cercle de centre et de rayon 1, sur lequel

Plus en détail

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE Seconde 4 006/007 Lycée de Bouwiller Introduction Dans ce chapitre, nous allons étudier les fonctions usuelles (linéaires, affines, carré, inverse, cosinus et sinus). Nous commencerons par des rappels

Plus en détail

TRIGONOMETRIE CIRCULAIRE

TRIGONOMETRIE CIRCULAIRE TRIGONOMETRIE CIRCULAIRE A. Rappels et compléments sur arcs et angles orientés A-I. Les notions d arc de cercle Expérience n : Une roue tourne autour de son axe. Un crayon fixé à la roue laisse une trace

Plus en détail

ANGLES ORIENTÉS - TRIGONOMETRIE

ANGLES ORIENTÉS - TRIGONOMETRIE hapitre 04 Angles orientés - Trigonométrie ANGLES RIENTÉS - TRIGNETRIE I- esure d un angle en radians Soit, A, B trois points du plan distincts deux à deux. n considère le cercle de centre et de rayon

Plus en détail

1 Le radian : unité de mesure d angle

1 Le radian : unité de mesure d angle Le radian : unité de mesure d angle Définition. Soit C un cercle de centre et de rayon. Un radian est la mesure d un angle au centre qui intercepte un arc de longueur du cercle. La mesure en radians d

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats Fiche BAC 09 Terminale S Nombres complexes (ème partie) Exercice 1 ( Ex n Antilles-Guyane juin 000 adapté) Commun à tous les candidats 1 ) Pour tout nombre complexe z, on pose P (z)=z 3 3 z +3 z+7. a)

Plus en détail

Fonctions sinus et cosinus.

Fonctions sinus et cosinus. . Rappels de trigonométrie... P. Variations et représentations graphiques des fonctions sinus et cosinus... p8. Compléments... p0 Copyright meilleurenmaths.com. Tous droits réserwidevec{}vés . Rappels

Plus en détail

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel)

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel) Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 80 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 La mesure principale de l angle A 1 π. B 1π est

Plus en détail

Autour de LA TRIGONOMETRIE

Autour de LA TRIGONOMETRIE CRPE S.14 Autour de LA TRIGONOMETRIE La trigonométrie est l étude des relations liant les mesures des angles et des longueurs des côtés dans un triangle rectangle. Mise en route A. Dans le triangle MNP,

Plus en détail

TRIGONOMETRIE. Il en découle que nous pourrons effectuer les conversions de mesure à l aide d un tableau de proportionnalité :

TRIGONOMETRIE. Il en découle que nous pourrons effectuer les conversions de mesure à l aide d un tableau de proportionnalité : TRIGONOMETRIE I. LE RADIAN Définition : On appelle radian (rad) l angle au centre qui intercepte, sur un cercle de rayon R, un arc de longueur R Il en découle que nous pourrons effectuer les conversions

Plus en détail

TRIGONOMETRIE. I. Radian et cercle trigonométrique

TRIGONOMETRIE. I. Radian et cercle trigonométrique TRIGONOMETRIE I Radian et cercle trigonométrique ) Le radian Soit un cercle C de centre O et de rayon On appelle radian, noté rad, la mesure de l'angle au centre qui intercepte un arc de longueur du cercle

Plus en détail

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v )

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v ) 1 Norme d un vecteur Définition 1. Soit #» u un vecteur, A et B deux points du plan tels que #» AB = #» u. On appelle norme du vecteur #» u, que l on note #» u, la longueur du segment [AB] : #» u = AB

Plus en détail

I. MESURE D UN ANGLE EN RADIANS

I. MESURE D UN ANGLE EN RADIANS www.mathsenligne.com STID - N - FNCTINS TRIGNMETRIQUES CURS (/6) PRGRAMMES CAPACITES ATTENDUES CMMENTAIRES Fonctions circulaires Éléments de trigonométrie : cercle trigonométrique, radian, mesure d un

Plus en détail

OUTILS MATHEMATIQUES L1 SVG Paul Broussous

OUTILS MATHEMATIQUES L1 SVG Paul Broussous OUTILS MATHEMATIQUES L1 SVG 011 01 Paul Broussous Paul Broussous Maître de Conférences, Département de Mathématiques Contact : Laboratoire de Mathématiques, Site du Futuroscope, Bureau 013 (Prendre rendez-vous

Plus en détail

Angles orientés, cours, première S

Angles orientés, cours, première S Angles orientés, cours, première S F.Gaudon 14 février 201 Table des matières 1 Cercle trigonométrique et radian 2 2 Angles orientés 3 3 Propriétés des mesures d'angles orientés 5 1 1 Cercle trigonométrique

Plus en détail

Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA

Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA Terminale S Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA Octobre 2013 Table des matières Objectifs 5 Introduction 7 I - Définition - dérivabilité 9 A. Construction Sinus et Cosinus...9 B.

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

Chapitre 2 - Trigonométrie

Chapitre 2 - Trigonométrie Cours de Mathématiques Classe de Première STID - Chapitre - Trigonométrie Chapitre - Trigonométrie A) Rappels compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le

Plus en détail

Chapitre 2 : Fonctions cosinus et sinus

Chapitre 2 : Fonctions cosinus et sinus Chapitre 2 : Fonctions cosinus et sinus I) Rappels sur les fonction cosinus et sinus Dans un repère orthonormée (O,I,J), tout réel x admet un unique point M sur le cercle trigonométrique (cercle d'origine

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore.

RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. RELATIONS METRIQUES du TRIANGLE RECTANGLE - Propriétés de Pythagore. - Les relations trigonométriques dans le triangle rectangle. COURS I ) propriétés de Pythagore Pré requis Théorème : Dans un triangle

Plus en détail

cosinus - mathématiques. 1 PRÉSENTATION

cosinus - mathématiques. 1 PRÉSENTATION cosinus - mathématiques. 1 PRÉSENTATION cosinus, fonction trigonométrique, complémentaire de la fonction sinus, introduites toutes deux dans la définition de la mesure d un angle en géométrie euclidienne.

Plus en détail

Rappels et compléments sur les angles

Rappels et compléments sur les angles Rappels et compléments sur les angles Longueur d un arc de cercle. Mesure des angles: Choix d une unité, le radian. A et B étant deux points situés sur le cercle de centre O, on dit que l angle au centre

Plus en détail

TRIGONOMETRIE - Cours

TRIGONOMETRIE - Cours CHAPITRE N Cours de Mathématique 1S TRIGONOMETRIE - Cours Partie : Géométrie I - Radian et cercle trigonométrique 1) Le radian Définition : Soit un cercle C de centre O. On appelle radian, noté rad, la

Plus en détail

Applications du Produit Scalaire ( En première S )

Applications du Produit Scalaire ( En première S ) Applications du Produit Scalaire ( En première S ) Dernière mise à jour : Mercredi 1 Décembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 010-011) 1 J aimais et j aime encore les

Plus en détail

Trigonométrie (Méthodes et objectifs)

Trigonométrie (Méthodes et objectifs) Trigonométrie (Méthodes et objectifs) G. Petitjean Lycée de Toucy 28 janvier 2009 G. Petitjean (Lycée de Toucy) Trigonométrie (Méthodes et objectifs) 28 janvier 2009 1 / 45 1 Repérer un point ou un ensemble

Plus en détail

Trigonométrie. I. Le cercle trigonométrique

Trigonométrie. I. Le cercle trigonométrique I. Le cercle trigonométrique Définition. Dans le plan rapporté à un repère orthonormal ( ), le cercle trigonométrique est le cercle de centre O et de raon sur lequel on choisit une orientation : le sens

Plus en détail

( ) Trigonométrie - équations. Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STI2D. 1. unité d angle : le radian

( ) Trigonométrie - équations. Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STI2D. 1. unité d angle : le radian Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STID Trigonométrie - équations 1. unité d angle : le radian Dans un cercle de rayon r, on définit un angle AOB de 1 radian si la longueur

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques ère STID I - Cercle trigonométrique - Mesure des angles orientés Définition Dans le plan muni d un repère ; i, j, le cercle trigonométrique est le cercle de centre et de rayon

Plus en détail

I) Angle orienté formé par deux vecteurs du plan

I) Angle orienté formé par deux vecteurs du plan CHAPITRE Angles orientés, trigonométrie Capacités au programme : Utiliser le cercle trigonométrique, notamment pour : déterminer les cosinus et sinus d angles associés ; résoudre dans R les équations d

Plus en détail

Exercices de Mathématiques 1 ère S

Exercices de Mathématiques 1 ère S Exercices de Mathématiques 1 ère S Pour préparer la rentrée en TS Fonctions, équations et inéquations Exercice 1 1. Pour quelle(s) valeur(s ) de m, l'équation x² - (m+1) x +4 = 0 a-t-elle une seule solution

Plus en détail

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles

UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire Mathématiques: Mise à niveau. Séance 10: Fonctions usuelles UNIVERSITÉ PARIS OUEST NANTERRE LA DÉFENSE U.F.R. SEGMI Année universitaire 04 05 L Économie Cours de M. Desgraupes Mathématiques: Mise à niveau Séance 0: Fonctions usuelles Table des matières Fonction

Plus en détail

Configurations du plan et trigonométrie

Configurations du plan et trigonométrie Configurations du plan et trigonométrie A) Le triangle rectangle. 1. Le théorème de Pythagore et sa réciproque. Si ABC est un triangle rectangle en A, alors Théorème réciproque : Si ABC est un triangle

Plus en détail

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles.

Angle et parallèles. Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Angle et parallèles Si 2 droites sont perpendiculaires à une même droite, alors elles sont parallèles entre elles. Si 2 droites sont perpendiculaires, toute parallèle à l une est perpendiculaire à l autre.

Plus en détail

TRIGONOMÉTRIE. Ph DEPRESLE. 27 juin Le radian : unité de mesure d angle 2. 2 Le cercle trigonométrique 2

TRIGONOMÉTRIE. Ph DEPRESLE. 27 juin Le radian : unité de mesure d angle 2. 2 Le cercle trigonométrique 2 TRIGNMÉTRIE Ph DEPRESLE 7 juin 015 Table des matières 1 Le radian : unité de mesure d angle Le cercle trigonométrique Cosinus et Sinus.1 Enrlement d une droite autr du cercle trigonométrique.............

Plus en détail

TRIGONOMÉTRIE. Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre.

TRIGONOMÉTRIE. Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre. 1 sur 8 TRIGONOMÉTRIE I. Le cercle trigonométrique Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre. Définition : Dans

Plus en détail

FONCTIONS CIRCULAIRES

FONCTIONS CIRCULAIRES ère STI Ch : Fonctions circulaires /7 FONCTIONS CIRCULAIRES Table des matières I Le radian II Cercle trigonométrique III Angles orientés III. Mesure d un arc ou d angle orienté de vecteurs........................

Plus en détail

NOM : TRIGONOMETRIE 1ère S

NOM : TRIGONOMETRIE 1ère S Exercice 1 Résoudre sur R les équations suivantes : 1) sin 2 x = 3 4 ; 2) cos 2 x = 1 2 ; 3) sin(2x) = cos(x). D. LE FUR 1/ 50 Exercice 2 1) Simplifier au maximum les expressions suivantes : ( π ) a) A(x)

Plus en détail

UTILISATION DU CERCLE TRIGONOMÉTRIQUE

UTILISATION DU CERCLE TRIGONOMÉTRIQUE FICHE DE PRÉSENTATION FICHE DE PRÉSENTATION FICHE DE PRÉSENTATION Utiliser le cercle trigonométrique. OBJECTIF(S) EXPLICITATION Être capable à l'issue des travaux d'utiliser le cercle trigonométrique pour

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE I. Les fonctions affines : LES FONCTIONS DE REFERENCE Définition : On appelle fonction affine toute fonction définie sur IR, ou sur un intervalle de IR, par f : a + b avec a et b deu nombres réels. Propriétés

Plus en détail

Séquence 7. Trigonométrie

Séquence 7. Trigonométrie Séquence 7. Trigonométrie I. RAPPELS DE SECONDE 1 ) ORIENTATION DU PLAN Dans le plan muni d'un repère (O,I,J) et orienté positivement, le cercle trigonométrique est le cercle de centre O et de rayon 1.

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Rappels de trigonométrie. Définitions, premières propriétés..................................... Formules de trigonométrie.......................................

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Dans tout le chapitre, le plan est muni d'un repère orthonormé (O ; i ; j ). Les fonctions trigonométriques sont des fonctions dont la variable est une mesure d'angle. Elles

Plus en détail

ANGLES ORIENTES+TRIGONOMETRIE

ANGLES ORIENTES+TRIGONOMETRIE ANGLES ORIENTES+TRIGONOMETRIE LISTE DES COMPETENCES CODE DENOMINATION T0 T0 T0 T0 T05 T0 T07 T08 T09 T0 T T T T T5 T T7 T8 T9 T0 T T T 99 Douala Mathematical Society : www.doualamaths.net : Workbook :

Plus en détail

Chapitre 8 : Fonctions trigonométriques

Chapitre 8 : Fonctions trigonométriques Chapitre 8 : Fonctions trigonométriques I Fonctions cosinus et sinus I. Périodicité Définition Soient f une fonction définie sur R, et T > un nombre strictement positif. n dit que f est périodique de période

Plus en détail

RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE

RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE Le triangle A est rectangle en A. C hypoténuse côté opposé à l'angle A B côté adjacent à l'angle A est un triangle donc : B + A + B = 80. A est un triangle

Plus en détail

Club math du collège privé laïc les «pigeons» TRAVAUX DIRIGES DE MATHEMATIQUES CLASSE 2 e S Année scolaire Fiche numéro 1et 2

Club math du collège privé laïc les «pigeons» TRAVAUX DIRIGES DE MATHEMATIQUES CLASSE 2 e S Année scolaire Fiche numéro 1et 2 TRVUX IRIGES E MTHEMTIQUES LSSE 2 e S nnée scolaire 2011-2012 Fiche numéro 1et 2 Structure : ngles orientés-trigonométrie-produit scalaire-roites et cercles dans le plan Exercice 1. x étant la mesure principale

Plus en détail

ANGLES ORIENTES DE VECTEURS TRIGONOMETRIE

ANGLES ORIENTES DE VECTEURS TRIGONOMETRIE ANGLES ORIENTES DE VECTEURS TRIGONOMETRIE I/ ANGLES ORIENTES DE VECTEURS 1.Orientation du plan Orienter un cercle, c'est choisir un sens de parcours sur ce cercle appelé sens direct ( ou positif ). L'autre

Plus en détail

; et un sens direct (sens positif, au

; et un sens direct (sens positif, au I- Angles dans un cercle I- 1 : Cercle trigonométrique Définition 1: Un cercle trigonométrique, est un cercle orienté de centre O et de rayon 1, auquel, on associe un repère orthogonal direct, ( O i, j

Plus en détail

Les angles orientés ( En première S )

Les angles orientés ( En première S ) Les angles orientés ( En première S ) Dernière mise à jour : Mercredi 4 Septembre 008 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble Lycée Stendhal, Grenoble ( Document de : Vincent Obaton )

Plus en détail

TRIGONOMÉTRIE I) LE CERCLE TRIGONOMÉTRIQUE. 1) Définition. 2) Enroulement de la droite des réels

TRIGONOMÉTRIE I) LE CERCLE TRIGONOMÉTRIQUE. 1) Définition. 2) Enroulement de la droite des réels TRGNMÉTRE La trigonométrie dans le triangle rectangle est bien utile pour calculer des angles et des longueurs, mais hélas elle se limite aux angles aigus! Nous allons donc choisir cette année une nouvelle

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

de trigonométrie FORMULES D'ADDITION cos a b cosa cosb sinasin b sin a b sina cosb cosasin b sin2a 2sina cosa FORMULES DE LINÉARISATION cos a 1 cos2a

de trigonométrie FORMULES D'ADDITION cos a b cosa cosb sinasin b sin a b sina cosb cosasin b sin2a 2sina cosa FORMULES DE LINÉARISATION cos a 1 cos2a Compléments de trigonométrie FORMULES D'ADDITION cos a b cosa cosb sinasin b cos a b cosa cosb sinasin b sin a b sina cosb cosasin b sin a b sina cosb cosasin b cosa cosa sina cosa sina sina sina cosa

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

Aide mémoire Géométrie 3 è m e

Aide mémoire Géométrie 3 è m e Sinus d'un angle aigu: ide mémoire Géométrie è m e Sinus: est un triangle rectangle en. le sinus de l'angle, noté sin, est le rapport sin = longueur du côté opposé de l'angle longueur de 'hypoténuse côté

Plus en détail

5. Vecteurs du plan et produit scalaire

5. Vecteurs du plan et produit scalaire I. Vecteur du plan Soit les points A et B donnés dans un repère orthonormal (O, i, j ) Rappel : un repère (O, i, j ) est orthonormal si i et j sont perpendiculaires et de même norme (longueur) 1. Donner,

Plus en détail

Nombres Complexes Part Two

Nombres Complexes Part Two Nombres Complexes Part Two Catherine Decayeux Catherine Decayeux () Nombres Complexes Part Two 1 / 22 Prérequis : Forme algébrique d un nombre complexe. Lignes trigonométriques (cosinus et sinus) des angles

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE

APPLICATIONS DU PRODUIT SCALAIRE APPLICATIONS DU PRODUIT SCALAIRE Lycée Stendhal Première S M Obaton L équipe des professeurs de mathématiques Lycée Stendhal En mathématique, c est comme dans un roman policier ou un épisode de Columbo:

Plus en détail

Triangles rectangles et trigonométrie

Triangles rectangles et trigonométrie Chapitre 6 Triangles rectangles et trigonométrie I] Rappels a) Définition Un triangle qui a un angle droit est un triangle rectangle. Le côté opposé à l angle droit est l hypoténuse, c est le plus grand

Plus en détail

d) cos(x + 5π) e) sin( x π) 1) cos 2x + π ) où x est l inconnue. où x [0 ; 2π]. est sur le cercle trigonométrique.

d) cos(x + 5π) e) sin( x π) 1) cos 2x + π ) où x est l inconnue. où x [0 ; 2π]. est sur le cercle trigonométrique. I Exercices Exercice 1 : Déterminer la mesure principale des angles suivants : a) 45π b) 75π c) 11π d) 15π e) 14π 4 6 6 Exercice : Simplifier les formules suivantes : f) 1961π a) cos(π x) b) sin(π + x)

Plus en détail

Chapitre 5 : Fonctions de référence. 1 Fonction carré. 1.1 Définition et représentation graphique. 1.2 Symétrie. 1.3 Variations et extrémum

Chapitre 5 : Fonctions de référence. 1 Fonction carré. 1.1 Définition et représentation graphique. 1.2 Symétrie. 1.3 Variations et extrémum Chapitre 5 : Fonctions de référence 1 Fonction carré 1.1 Définition et représentation graphique Définition 1 La fonction définie sur R par f(x) = x est la fonction carré. Dans la suite de cette partie,

Plus en détail