Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique."

Transcription

1 Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du cours exigible : Retrouver les expressions en fonction de la tangente de l arc moitié ( en posant t = tan θ ). Retrouver très rapidement à partir de cos (a ± b) et sin (a ± b) les formules donnant cos a cos b, sin a sin b, sin a cos b, cos p ± cos q et sin p ± sin q. Propriétés principales de Arcsin (et dérivée) à partir de la définition (bijection réciproque de...). Idem avec Arccos. Idem avec Arctan. Proposition de questions de synthèse : Tout sur la fonction tangente. Les formules donnant cos ( x), cos (π x), cos (π + x), cos explicatifs. ( π ) ( π ) x, cos + x, idem avec sin et tan avec dessins Les formules d addition, de duplication et les deux formules de linéarisation donnant cos (a) et sin (a). Savoir énoncer le théorème de la bijection et le théorème de dérivabilité d une fonction réciproque. Les fonctions ch et sh Les fonctions x x α avec α R. Les fonctions racines n ièmes Voir pages suivantes pour plus de détails.

2 Trigonométrie. Dans un triangle rectangle ABC. Fonctions circulaires sin (θ) = AC BC cos (θ) = AB BC tan (θ) = AC AB Sur le cercle trigonométrique : on peut lire le sinus, le cosinus et la tangente d un nombre réel x : { 1 cos (x) 1 On a : x R, 1 sin (x) 1 Le théorème de Pythagore nous donne la relation : x R, sin (x) + cos (x) = 1 { π } Soit x R\ + kπ, k Z. On a, par définition, tan (x) = sin x cos x. Soit x R\ {kπ, k Z}. On a, par définition, cotan (x) = cos (x) sin (x). (Lire cotangente) L équation du cercle trigonométrique est x + y = 1. On a ainsi le théorème suivant : Théorème : Soit x et y deux réels tels { que x + y = 1. x = cos (θ) Il existe alors un réel θ tel que y = sin (θ) De plus, { cos (θ) = cos (θ ) sin (θ) = sin (θ ) θ = θ [π]. Autrement dit, il y a unicité, à π près. Soit x un nombre réel quelconque. On a : cos(x + π) = cos (x) sin (x + π) = sin (x) tan (x + π) = tan (x) lorsque x / { π + kπ, k Z }.

3 Mais aussi d autres relations à retrouver à partir des dessins suivants

4 Résolutions d équations simples : cos(x) = cos (a) sin(x) = sin (a) tan(x) = tan (a) x = a [π] ou x = a [π] x = a [π] ou x = π a [π] x = a [π] ou x = π + a [π] x = a [π] Les fonctions sinus et cosinus sont définies, continues et dérivables sur R et π périodiques. impaire, la fonction cosinus paire et on a : La fonction sinus est cos = sin et sin = cos Représentations graphiques : { π } La fonction tangente est définie, continue et dérivable sur R\ + kπ, k Z, est π périodique et impaire et on a : Représentation graphique : tan = 1 cos = 1 + tan

5 Diverses formules (certaines démontrées plus tard dans le chapitre sur les nombres complexes) : Formules d addition cos(a + b) = cos a cos b sin a sin b sin(a + b) = sin a cos b + sin b cos a tan (a + b) = cos(a b) = cos a cos b + sin a sin b sin(a b) = sin a cos b sin b cos a tan (a b) = tan a + tan b 1 tan a tan b tan a tan b 1 + tan a tan b Formules de duplication cos(a) = cos a sin a = 1 sin a = cos a 1 sin(a) = sin a cos a tan (a) = tan a 1 tan a Formules de linéarisation cos a = 1 + cos(a) sin a = 1 cos(a) cos a cos b = 1 [cos (a + b) + cos (a b)] sin a sin b = 1 [cos (a b) cos (a + b)] sin a cos b = 1 [sin (a + b) + sin (a b)] Sommes de cos et de sin ( ) ( ) p + q p q cos p + cos q = cos cos ( ) ( ) p + q p q sin p + sin q = sin cos ( ) ( ) p + q p q cos p cos q = sin sin ( ) ( ) p q p + q sin p sin q = sin cos Expressions en fonction de la tangente de l arc moitié : Pour θ π [π]. En posant t = tan θ, tan θ = t t 1 t, sin θ = et cos θ = 1 t 1 + t 1 + t.

6 1 Bijection et fonction réciproque Bijectivité ; Fonctions circulaires réciproques Définition : f : X Y est une bijection si tout élément de Y admet exactement un antécédent par f dans X. Dans ce cas, l application qui, à tout y Y, associe cet unique antécédent est appelée bijection réciproque de f et notée f 1. On a alors : x X, f 1 (f (x)) = x et y Y, f ( f 1 (y) ) = y x X, y Y, y = f (x) x = f 1 (y). Dans un repère orthonormé, les courbes représentatives de f et f 1 sont symétriques par rapport à la droite d équation y = x. Théorème de la bijection : Soit I un intervalle et f : I R une fonction continue et strictement monotone. Alors f réalise une bijection de I sur l intervalle f (I), donné par les valeurs ou limites de f aux bornes de I (voir tableau cours) De plus, la bijection réciproque f 1 : f (I) I est continue et de même sens de variation que f. Théorème de dérivabilité d une fonction réciproque : Si, de plus, f est dérivable sur I et si f ne s annule pas sur I, alors f 1 est dérivable sur f (I) et ( x f (I), ) f 1 1 (x) = f (f 1 (x)). Fonctions Arcsinus et Arccosinus { [ π La fonction, π ] [ 1, 1] est une bijection strictement croissante et Arcsin est sa bijection réciproque. x sin x [ Arcsin est continue, strictement croissante et impaire de [ 1, 1] sur π, π ]. { [0, π] [ 1, 1] La fonction est une bijection strictement décroissante et Arccos est sa bijection réciproque. x cos x Arccos est continue, strictement décroissante de [ 1, 1] sur [0, π]. x 1 1 π Arcsinx π Arcsin n est dérivable que sur ] 1, 1[ x ] 1, 1[, (Arcsin) 1 (x) = 1 x x 1 1 π Arccosx 0 Arccos n est dérivable que sur ] 1, 1[ x ] 1, 1[, (Arccos) 1 (x) = 1 x

7 3 Fonction Arctangente { ] π La fonction, π [ R est une bijection strictement croissante et Arctan est sa bijection réciproque. x tan x ] Arctan est continue, strictement croissante et impaire de R sur π, π [. On a donc : x + π Arctanx et π lim x + Arctanx = π La fonction Arctan est dérivable sur R et lim x Arctanx = π x R, (Arctan) (x) = x.

8 Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique 1 Fonctions puissances entières Fonctions exponentielle et logarithme népérien (de base e) Définition exp On appelle fonction{ exponentielle et on note exp l unique fonction dérivable sur R vérifiant l équation différentielle avec y condition initiale : = y y (0) = 1 Propriétés. Définition ln, comme bijection réciproque Propriétés. 3 Fonctions cosinus hyperbolique et sinus hyperbolique Définitions Relation fondamentale ch sh = 1 Pourquoi hyperbolique? Étude des fonctions ch et sh. 4 Puissance quelconque d un réel strictement positif Définition Propriétés algébriques des puissances 5 Fonction logarithme décimal 6 Fonctions puissances (quelconques), racines n ièmes 6.1 Fonctions puissances Soit α R. Étude de la fonction x xα = e α ln x. 6. Fonctions racines n ièmes 7 Croissances comparées de ces fonctions Théorème : Comparaison exponentielles/puissances : a > 1, α R +, lim Comparaison puissances/logarithme : α, β R +, lim x + x + x α Comparaison exponentielles/logarithme : a > 1, β R +, lim a x = + et xα lim x x α a x = 0. = + et lim (ln x) β = 0. β (ln x) x 0 +xα x + a x (ln x) β = +.

AN 1 FONCTIONS USUELLES et RÉCIPROQUES

AN 1 FONCTIONS USUELLES et RÉCIPROQUES Analyse /0 AN FONCTIONS USUELLES et ÉCIPOQUES Les notions de limites, dérivées, primitives, continuité sont supposées connues, elles seront revues ultérieurement THEOEMES FONDAMENTAUX D ANALYSE Théorème

Plus en détail

Fiche de cours 3 : Fonctions usuelles, Développements limités, Équivalents, Séries Numériques

Fiche de cours 3 : Fonctions usuelles, Développements limités, Équivalents, Séries Numériques Ecole Polytechnique, 009-00 EV- Mathématiques Appliquées Fiche de cours 3 : Fonctions usuelles, Développements ités, Équivalents, Séries Numériques Fonctions usuelles. Quelques rappels Théorème. (Fonctions

Plus en détail

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle

FONCTIONS USUELLES. 1 Fonctions logarithme, exponentielle et puissances. 1.1 Fonction logarithme et exponentielle FONCTIONS USUELLES Fonctions logarithme, eponentielle et puissances. Fonction logarithme et eponentielle Définition. Logarithme La fonction ln est l unique primitive de sur R + s annulant en. Proposition.

Plus en détail

1 Fonction valeur absolue

1 Fonction valeur absolue ISEL - Année Mathématiques FONCTIONS USUELLES Fonction valeur absolue Dénition La valeur absolue d'un nombre réel est = ma(, ) = Propriété Soient a et b deu réels, on a: a = a ; a b b a b; a b a b ou a

Plus en détail

Cours sur les fonctions usuelles

Cours sur les fonctions usuelles Cours sur les fonctions usuelles c Emmanuel Vieillard Baron, Table des matières Préambule Fonctions logarithmes, eponentielles et puissances. Logarithme néperien................................ Eponentielle

Plus en détail

Cours informel sur la fonction réciproque.

Cours informel sur la fonction réciproque. Cours informel sur la fonction réciproque. Ce cours aborde de nombreuses parties du programme de terminale scientifique. Les parties qui n'appartiennent pas au programme seront signalées par le sigle hp,

Plus en détail

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction.

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. A 00-0 FONCTIONS USUELLES Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. Exponentielles, logarithmes, puissances. Exponentielle

Plus en détail

Fonctions d'une variable réelle (M-1.1)

Fonctions d'une variable réelle (M-1.1) Fonctions d'une variable réelle (M-.) I. Fonctions définies par morceaux Définition des fonctions en escalier : une fonction en escalier est une fonction constante par intervalles. Sa représentation graphique

Plus en détail

1 Fonctions trigonométriques : Formules à connaître.

1 Fonctions trigonométriques : Formules à connaître. Université de Provence Mathématiques Générales - Parcours PEI Fonctions Usuelles Fonctions trigonométriques : Formules à connaître. Formules de duplication. Pour tous x, y R, cos(x + y) = cos x cos y sin

Plus en détail

Fiche méthodologique Fonctions usuelles

Fiche méthodologique Fonctions usuelles Fiche méthodologique Fonctions usuelles BCPST Lycée Hoche $\ CC BY: = Pelletier Sylvain On liste ici les fonctions à connaître et leur propriétés. Fonction puissance n-ième et racine n-ième { R R Fonction

Plus en détail

Chapitre 4. Généralités sur les Fonctions-Fonctions Transcendantes

Chapitre 4. Généralités sur les Fonctions-Fonctions Transcendantes I Introduction Les fonctions sont des outils fondamentaux pour décrire le monde réel en langage mathématique Une fonction m en correspondance deux variables, la variable indépendante (ou variable d'entrée,

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

(pour tout x > 0) et ln(1) = 0.

(pour tout x > 0) et ln(1) = 0. Eo7 Fonctions usuelles Vidéo partie. Logarithme et eponentielle Vidéo partie. Fonctions circulaires inverses Vidéo partie 3. Fonctions hperboliques et hperboliques inverses Eercices Fonctions circulaires

Plus en détail

Fonctions Arcsin,Arccos,Arctan

Fonctions Arcsin,Arccos,Arctan Fonctions Arcsin,Arccos,Arctan Professeur : Christian CYRILLE 5 octobre 008 Théorème de la bijection Soit f une fonction numérique d'une variable réelle dénie sur un intervalle I de R. Si f est continue

Plus en détail

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54 Fonctions réelles : rappels de lycée et compléments () Fonctions réelles : 1 / 54 1 Fonctions logarithmes et exponentielles Le logarithme népérien L exponentielle Logarithmes et exponentielles de base

Plus en détail

FONCTIONS CIRCULAIRES

FONCTIONS CIRCULAIRES BTS DOMOTIQUE Fonctions circulaires 8- FONCTIONS CIRCULAIRES Table des matières I Fonctions circulaires I. Définitions............................................... I. Valeurs remarquables.........................................

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail

Fonctions usuelles réelles

Fonctions usuelles réelles Fonctions usuelles réelles fonctions polynômes et rationnelles 0. les fonctions polynômes Les polynômes seront étudiés en le détail au chapitre 7. définition 4. : n dit que p est une fonction polynôme

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

mathématiques. (Joseph Fourier) Discours préliminaire à la théorie analytique de la chaleur.

mathématiques. (Joseph Fourier) Discours préliminaire à la théorie analytique de la chaleur. 1 Niveau : Titre Cours : Terminale S Chapitre 04 Compléments sur les fonctions. Fonctions trigonométriques et dérivabilité. Jospeh Fourier (21 mars 1768-16 mai 1830) Année : 2014-2015 Citation du moment

Plus en détail

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0

Fonctions usuelles. Bestiaire du collège-lycée. I.1 Valeur absolue. Signe. I.2 Fonctions puissances (entières) Définition 1. 1 si x > 0 x 1 si x < 0 Fonctions usuelles. I Bestiaire du collège-lycée I.1 Valeur absolue. Signe. Définition 1. R R{ La fonction signe est la fontion sg : 1 si x > 0 x 1 si x < 0. Définition 2. R R{ La fonction valeur absolue

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Les fonctions cosinus et sinus

Les fonctions cosinus et sinus TS Les fonctions cosinus et sinus ) Application à la dérivée de la composée d une fonction affine suivie de la fonction sinus ou cosinus Rappel I. Dérivées des fonctions cosinus et sinus ) Formules (admises

Plus en détail

Les fonctions usuelles

Les fonctions usuelles Les fonctions usuelles MPSI-Cauchy Prytanée National Militaire Pascal DELAHAYE 14 octobre 016 Le flocon de Von Koch est un objet de dimension ln4 ln3 1.6 1 Rappels 1.1 Fonctions polynomiales et rationnelles

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Bcpst 1 27 février 2017 Notations du chapitre Dans tout ce chapitre, et sauf mention contraire : I est un intervalle de non vide et non réduite à un point ; est un domaine

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Jérôme Germoni Novembre 2 Première étude : par équation différentielle.. Définition On s inspire de la définition de l exponentielle vue en terminale. Théorème (admis) Il existe

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

Fonctions puissances Croissances comparées

Fonctions puissances Croissances comparées Fonctions puissances Croissances comparées Christophe ROSSIGNOL Année scolaire 200/20 Table des matières Puissances réelles 2. Définition Premières propriétés.................................... 2.2 Propriétés

Plus en détail

Annexe du chapitre 6: Fonctions trigonométriques

Annexe du chapitre 6: Fonctions trigonométriques FONCTIONS TRIGONOMETRIQUES I Annee du chapitre 6: Fonctions trigonométriques A. Limites de fonctions trigonométriques Théorème des deu gendarmes Le théorème suivant implique 3 fonctions f, g et h dont

Plus en détail

Quatrième Aventure A - BIJECTION - INJECTION - SURJECTION. A - 1 : Parlons patate

Quatrième Aventure A - BIJECTION - INJECTION - SURJECTION. A - 1 : Parlons patate Quatrième Aventure Résumé Nous allons nous occuper d un problème important : une fonction f envoie vers f(). Eiste-t-il un moen pour revenir vers? I - ÉTUDE THÉORIQUE A - BIJECTION - INJECTION - SURJECTION

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Les fonctions usuelles

Les fonctions usuelles Les fonctions usuelles Objectif : Connaître les représentations graphiques de ces fonctions et leurs propriétés s principales Les fonctions usuelles vues en terminale Logarithme et exponentielle f(x)=ln(x)

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Etude de fonctions Eercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

Plus en détail

Cours de Mathématiques Continuité, dérivabilité, convexité

Cours de Mathématiques Continuité, dérivabilité, convexité Table des matières I Continuité....................................... 2 I.1 Continuité en un point............................ 2 I.2 Propriétés................................... 3 I.3 Continuité sur

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques I) Rappels 1) Repérage sur le cercle trigonométrique Sur un cercle trigonométrique : - à tout nombre réel t on associe un point M unique ; - si un point M est associé à un nombre

Plus en détail

cosinus - mathématiques. 1 PRÉSENTATION

cosinus - mathématiques. 1 PRÉSENTATION cosinus - mathématiques. 1 PRÉSENTATION cosinus, fonction trigonométrique, complémentaire de la fonction sinus, introduites toutes deux dans la définition de la mesure d un angle en géométrie euclidienne.

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

Fonctions usuelles. 1 Fonctions trigonométriques réciproques.

Fonctions usuelles. 1 Fonctions trigonométriques réciproques. Fonctions usuelles Arthur LANNUZEL http ://mathutbmal.free.fr le 8 Janvier 009 Fonctions usuelles Fonctions trigonométriques réciproques.. arcsin(.). sin : [ π, π ] R est continue strictement croissante.

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

QUELQUES NOTIONS MATHEMATIQUES

QUELQUES NOTIONS MATHEMATIQUES Annee 1 page 1 QUELQUES NTINS MATHEMATIQUES A. Les mesures algébriques 1. De la droite à l ae normé ' u fig. A1.1 : l'ae () Nous considérons une droite ( ) sur laquelle nous choisissons une origine, notée,

Plus en détail

étude de fonctions trigonométriques 5) Calculer les limites aux bornes de cet ensemble d étude. Y a-t-il une asymptote?

étude de fonctions trigonométriques 5) Calculer les limites aux bornes de cet ensemble d étude. Y a-t-il une asymptote? Chapitre Eercice : étude de fonctions trigonométriques Terminale S sin Le but est d étudier et de représenter la fonction tangente définie par : tan = cos ) Déterminer l ensemble de définition de la fonction

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie Corrigés des eercices de trigonométrie I. Résoudre algébriquement des équations, des inéquations Pour les eercices suivants, on utilisera le cercle trigonométrique Eercice 1 Résoudre dans l intervalle

Plus en détail

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle

Fonctions usuelles. Chapitre Les fonctions trigonométriques inverses. 7.2 Les fonctions logarithme et exponentielle 40 Chapitre 7 Fonctions usuelles. 7. Les fonctions trigonométriques inverses. tan :] π/, π/[ R est strictement croissante car sa dérivée + tan est strictement positive. La fonction tg est donc bijective

Plus en détail

Chapitre 3 : Trigonométrie

Chapitre 3 : Trigonométrie Chapitre : Trigonométrie PTSI B Lycée Eiffel septembre Quel est le comble pour un cosinus? Attraper une sinusite! Pour compléter le chapître précédent consacré au fonctions usuelles, un chapître à part

Plus en détail

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique Chapitre 4 Trigonométrie 4. Enroulement de la droite des réels 4.. Le cercle trigonométrique Dénition. On se place dans le plan repéré par le repère orthonormé (O; u; v). Le cercle trigonométrique est

Plus en détail

Résumés de cours et Méthodes Maths Terminale S

Résumés de cours et Méthodes Maths Terminale S Stages intensifs Résumés de cours et Méthodes Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 2 Chapitre 1 Fonction exponentielle, logarithme népérien, logarithme décimal 1.1 Fonction

Plus en détail

Plan d'étude d'une fonction. , f x = f x alors f est impaire.

Plan d'étude d'une fonction. , f x = f x alors f est impaire. 1 Recherche de l'ensemble de définition Plan d'étude d'une fonction. Fonctions rationnelles. f x existe si le dénominateur n'est pas nul. 2n Fonctions avec radical du type. f x existe si la quantité sous

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Fonction puissance entière. Fonction puissance négative. Fonction racines. Fonction logarithme ln. Quelques rappels. ECS Fonctions usuelles 1/5

Fonction puissance entière. Fonction puissance négative. Fonction racines. Fonction logarithme ln. Quelques rappels. ECS Fonctions usuelles 1/5 ECS-0 Fonctions usuelles /5 Fonction puissance entière (x x n ), pour n N : bijection de R + dans R + si n pair, bijection de R dans R si n impair, croît vers l'inni d'autant plus vite que n est grand

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Etude de fonction : notion de continuité

Etude de fonction : notion de continuité Etude de fonction : notion de continuité Leur faire lire des rappels sur les fonctions pour le jour en question. Toutes les fonction considérées dans ce chapitre sont définies sur ou une partie de et sont

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail

Calcul de primitives et d intégrales. () Calcul de primitives et d intégrales 1 / 53

Calcul de primitives et d intégrales. () Calcul de primitives et d intégrales 1 / 53 Calcul de primitives et d intégrales () Calcul de primitives et d intégrales 1 / 53 1 Primitives et intégrale d une fonction continue sur un intervalle 2 Première méthode de calcul : reconnaître la dérivée

Plus en détail

La trigonométrie en seconde

La trigonométrie en seconde Niveau : De la 4 e à la Terminale. Trigonométrie Prérequis :Géométrie du triangle, théorème de Pythagore,notion de fonction et produit scalaire. Vocabulaire :Tri - gono - métrie = trois - cotés - mesure

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Chapitre 6. Fonctions trigonométriques

Chapitre 6. Fonctions trigonométriques Chapitre 6 Fonctions trigonométriques Corrigés des exercices-tests Vrai La hauteur issue de M dans le triangle OIM est également médiane Donc le triangle OIM est isocèle en M Étant aussi isocèle en O,

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel)

Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 280 du manuel) Chapitre 8 : Nombres complexes QCM Pour bien commencer (cf. p. 80 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 La mesure principale de l angle A 1 π. B 1π est

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Rappels de trigonométrie. Définitions, premières propriétés..................................... Formules de trigonométrie.......................................

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

Fonctions : Dérivation-Composition

Fonctions : Dérivation-Composition Fonctions : Dérivation-Composition Terminale S 2011/2012 15 septembre 2011 Terminale S (2011/2012) Lycée Français de Valence 15 septembre 2011 1 / 21 Nombre dérivé Plan 1 Compléments sur la dérivation

Plus en détail

Trigonométrie Approfondissement

Trigonométrie Approfondissement Trigonométrie Approfondissement Le 5--05 Linéariser : mettre la définition Notions de base I. Le cercle trigonométrique On se place dans le plan orienté, c est-à-dire que l on a décidé d un sens de parcours

Plus en détail

Analyse (1) : fonctions d une variable réelle

Analyse (1) : fonctions d une variable réelle MP 1. Semestre 1. Cours. Chapitre 2 : Analyse Analyse (1) : fonctions d une variable réelle continuité, limites, asymptotes dérivées, variations Application : courbes paramétriques 1. GÉNÉRALITÉS SUR LES

Plus en détail

1 ère S Exercices sur les fonctions trigonométriques

1 ère S Exercices sur les fonctions trigonométriques 1 ère S Exercices sur les fonctions trigonométriques 1 Dans chaque cas, démontrer que la fonction f dont l expression est donnée est périodique de période T. 1 ) f ( x) cosx 4 et T ) f ( x) cos 6x sin

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

3.4 Fonctions hyperboliques

3.4 Fonctions hyperboliques 3.4. FONCTIONS HYPERBOLIQUES 39 3.4 Fonctions yperboliques 3.4. Fonctions paires et impaires Téorème 8 Soit f une fonction définie sur R (ou sur un ensemble de définition D f symétrique par rapport à 0).

Plus en détail

FONCTIONS CIRCULAIRES ET HYPERBOLIQUES

FONCTIONS CIRCULAIRES ET HYPERBOLIQUES FONCTIONS CIRCULAIRES ET HYPERBOLIQUES Table des matières. Quelques formules de trigonométrie.. Identité remarquable.. Periodicité.3. Relations remarquables 3.. Formules d addition 3.5. Formules de duplication.6.

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2

CORRECTION DU DEVOIR DU 21/11/2016. Partie I. 1 cos (2t) 2 Lycée Thiers CORRECTION DU DEVOIR DU //06 Partie I Rappelons d une part que : et d autre part que : t R, sin (t cos (t ( t [, ], cos (arcsin (t t ( La formule de linéarisation ( est bien connue. La formule

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

= arctanx. 1+x. 1. Résoudre g(x) = 0. R R. x sh 2 (x) ch(x) 1. Exercice { 7. Soit g : Résoudre les équations suivantes : (arcsinx) 2 dx.

= arctanx. 1+x. 1. Résoudre g(x) = 0. R R. x sh 2 (x) ch(x) 1. Exercice { 7. Soit g : Résoudre les équations suivantes : (arcsinx) 2 dx. Lycée Joffre Année 05-06 PCSI Feuille 9 TD n 9: Analyse et fonctions usuelles Fonctions trigonométriques Exercice Résoudre les équations suivantes : cos (x sin (x = 0 4sin(xcos(x = cos (x+cos(x = 4 4 cos(x

Plus en détail

Faculté des Sciences de Luminy Année Licence MASS1 Unité Mat18 Exercices d analyse

Faculté des Sciences de Luminy Année Licence MASS1 Unité Mat18 Exercices d analyse Faculté des Sciences de Luminy Année 20 202 Licence MASS Unité Mat8 Exercices d analyse A.BROGLIO TD : Révisions.. Domaine de définition. Déterminer pour chaque valeur de f ci-dessous le domaine de définition

Plus en détail

Terminale ES. La fonction logarithme népérien

Terminale ES. La fonction logarithme népérien Terminale ES La fonction logarithme népérien 1 I Liens avec la fonction exponentielle Définition On sait que la fonction exponentielle est strictement croissante sur et à valeurs dans ]0;+ [. Ainsi, pour

Plus en détail

TRIGONOMÉTRIE REPÉRAGE POLAIRE

TRIGONOMÉTRIE REPÉRAGE POLAIRE TRIGNMÉTRIE REPÉRAGE PLAIRE I Angles orientés Remarque n considère le cercle de centre et de rayon, que l'on appelle cercle trigonométrique. Le périmètre de ce cercle est. n considère la droite graduée

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Mathématiques. Fonctions : domaine, opérations, parité, périodicité, extrema, fonctions élémentaires

Mathématiques. Fonctions : domaine, opérations, parité, périodicité, extrema, fonctions élémentaires Mathématiques Fonctions : domaine, opérations, parité, périodicité, extrema, fonctions élémentaires Pierre Mathonet Département de Mathématique Faculté des Sciences Liège, printemps 06 Relations entre

Plus en détail

Fonction logarithme népérien.

Fonction logarithme népérien. 1. Généralités... p2 2. Propriété fondamentale de ln... p5 3. Étude et représentation graphique de la fonction logarithme népérien... p10 Copyright meilleurenmaths.com. Tous droits réservés 1. Généralités

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa

Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa 3//2 Université Hassan II Faculté des Sciences Juridiques et Économiques Aïn Sebaa Année Universitaire 2/2 MATHEMATIQUES (Semestre ) Professeur: M.REDOUABY 3//2 Partie 2 A. Fonctions à une variable réel

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

Compléments à la fonction ln. Fonctions exponentielles. Fonctions puissances.

Compléments à la fonction ln. Fonctions exponentielles. Fonctions puissances. Compléments à la fonction ln. Fonctions exponentielles. Fonctions puissances.. Fonctions composées avec ln... p2 4. Fonctions puissances... p8 2. Exposants réels... p4 5. Croissances comparées... p0 3.

Plus en détail

FX 24 - EQUATIONS DIFFÉRENTIELLES

FX 24 - EQUATIONS DIFFÉRENTIELLES Lycée Thiers FX 24 - EQUATIONS DIFFÉRENTIELLES EDL - 1 Soit n N. Résoudre sur ], + [ l équation différentielle 2t + = t n. Résoudre sur R l équation différentielle ch (t) + sh (t) = 1 1 + t 2. Soit I un

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014 Mise à niveau en mathématiques Licences de mathématiques et d informatique 25 août 2014 1 1 Calculs dans R 1.1 Fractions Eercice 1 Pour a = 4/9 et b = 5/12, calculer a + b, a b, ab et a/b. On donnera le

Plus en détail

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1

Chapitre 6 Trigonométrie. Table des matières. Chapitre 6 Trigonométrie TABLE DES MATIÈRES page -1 Chapitre Trigonométrie TABLE DES MATÈRES page -1 Chapitre Trigonométrie Table des matières Exercices -1 1................................................ -1................................................

Plus en détail

FONCTIONS USUELLES. 1 t dt. ln(x) =

FONCTIONS USUELLES. 1 t dt. ln(x) = 0 - Gérard Lavau - http://lavau.pagesperso-orange.fr/inde.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreu ou utilisation

Plus en détail

Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1.

Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. Interrogation n 1. 1) Soit x R. Linéariser cos 3 (x) sin (x) ) Résoudre dans C les équations suivantes : a) (1 i)z + z + 5 + 5i = 0 b) z z + 1 i = 0 1) Soit x R. Linéariser cos 3 (x) sin (x) ) Résoudre dans C les équations

Plus en détail

UN PEU DE TRIGONOMÉTRIE. Table des matières. 1. Quelques formules de trigonométrie

UN PEU DE TRIGONOMÉTRIE. Table des matières. 1. Quelques formules de trigonométrie UN PEU DE TRIGONOMÉTRIE Table des matières. Quelques formules de trigonométrie. Fonctions trigonométriques réciproques.. Arc cosinus.. Arc sinus 4.. Arc tangente 4. Fonctions hyperboliques 5.. Heuristique

Plus en détail

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD

Les supports de cours suivants font référence au cours de Mr SOL et à son livre : Accès à l'université chez DUNOD Les supports de cours suivants font référence au cours de Mr SOL et à son livre : "Accès à l'université" chez DUNOD Les supports de cours ne sont pas complets, ils ne contiennent ni les démonstrations,

Plus en détail