Continuité Compléments de dérivation

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Continuité Compléments de dérivation"

Transcription

1 Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a Définitions Exemples Cas des fonctions dérivables Application aux limites de suites Théorème des valeurs intermédiaires 4.1 Théorème des valeurs intermédiaires Cas des fonctions continues strictement monotones Compléments de dérivation Dérivation d une fonction composée Application : méthodes classiques de recherche de primitives Table des figures 1 Limite finie lorsque x tend vers le réel a Fonction partie entière Équation f (x) = k : cas d une fonction continue Équation f (x) = k : cas d une fonction non continue Ce cours est placé sous licence Creative Commons BY-SA 1

2 1 NOTION DE CONTINUITÉ 1 Notion de continuité 1.1 Limite finie en un réel a Définition : Soit a un réel et f une fonction définie sur un intervalle I avec a I ou a est une borne de I. Soit l un nombre réel. On dit que f a comme limite l lorsque x tend vers a si, si tout intervalle ouvert contenant l contient toutes les valeurs de f (x) pour pour x suffisamment proche de a (voir figure 1). On note alors : lim f (x) = l ou lim f = l x a a Figure 1 Limite finie lorsque x tend vers le réel a 1. Définitions Exemples Définition 1 : Soit f une fonction et a D f. On dit que f est continue en a si lim x a f (x) = f (a). Remarque : Il ne suffit pas que la fonction soit définie en a pour qu elle soit continue en a. Par exemple, la fonction partie entière (voir figure ) est définie en mais n est pas continue en : E () = et E (x) = 1. lim x x< Figure Fonction partie entière Définition : Soit f une fonction et I un intervalle inclus dans D f. On dit que f est continue sur I si elle est continue en tout réel a de l intervalle I. Remarque : Graphiquement, la fonction f est continue sur l intervalle I si on peut tracer sa représentation graphique «sans lever le crayon».

3 1 NOTION DE CONTINUITÉ 1.3 Cas des fonctions dérivables Exemples : Les fonctions x x n (n entier supérieur ou égal à 1) sont continues sur R. La fonction racine carrée x x est continue sur [0 ; + [ Les fonctions x sin x et x cos x sont continues sur R. Les fonctions x 1 x n (n entier supérieur ou égal à 1) sont continues sur ] ; 0[ et ]0 ; + [. 1.3 Cas des fonctions dérivables Théorème : Soit f une fonction dérivable sur un intervalle I Alors f est continue sur l intervalle I. Démonstration : f(x) f(a) Soit a I. f est dérivable en a donc lim x a x a = f (a).. On a donc lim x a g (x) = f (a). De plus, f (x) f (a) = g (x) (x a) d où f (x) = f (a) + g (x). (x a). Or, lim x a g (x) = f (a) et lim x a (x a) = 0, donc lim x a g (x). (x a) = 0 et lim x a f (x) = f (a). Par suite, la fonction f est continue en a. On note g la fonction définie sur I\ {a} par g (x) = f(x) f(a) x a Remarque : Attention! La réciproque de cette propriété est FAUSSE. La fonction racine carrée est continue en zéro mais n est pas dérivable en zéro. Conséquences : 1. Les fonctions polynômes sont continues sur R.. Les fonctions rationnelles sont continues sur tout intervalle de leur ensemble de définition. 3. La fonction exponentielle est continue sur R. 4. Les fonctions obtenues par opérations sur les fonctions usuelles (somme, produit, quotient) sont continues sur tout intervalle de leur ensemble de définition. Exercice : 1, 3, 4, 5 page 115 et 6, 63 page page 130 [TransMath] 1.4 Application aux limites de suites Propriété : Soit (u n ) la suite définie par la relation de récurrence u n+1 = f (u n ). Si la suite (u n ) a une limite finie l et si f est continue en l alors : f (l) = l Démonstration : Comme f est continue en l, lim x l f (x) = f (l). Comme, de plus, lim n + u n = l, par composition, on a : lim n =+ f (u n ) = f (l). De plus, lim n + u n+1 = l. Donc, en passant à la limite dans la relation de récurrence u n+1 = f (u n ), on obtient l = f (l). Remarque : Cette propriété permet de déterminer la limite d une suite lorsque l on sait au préalable qu elle est convergente ; par exemple, dans le cas des suites monotones bornées. Exercices : 74 page 17 et 75 page 18 3 [TransMath] 1. Continuité d une fonction.. Type BAC. 3. Étude de suites. 3

4 THÉORÈME DES VALEURS INTERMÉDIAIRES Théorème des valeurs intermédiaires Applications.1 Théorème des valeurs intermédiaires Théorème 1 : (admis) Soit f une fonction continue sur un intervalle I et a, b I avec a < b. Pour tout réel k compris entre f (a) et f (b), il existe (au moins) un réel c de [a ; b] tel que f (c) = k (voir figure 3). Figure 3 Équation f (x) = k : cas d une fonction continue Remarque : L hypothèse de la continuité est essentielle. La fonction de la figure 4 n est pas continue sur [0 ; 4] et, bien que f (0) = 1 et f (4) = 5, l équation f (x) =, 5 n admet aucune solution. Figure 4 Équation f (x) = k : cas d une fonction non continue 4

5 THÉORÈME DES VALEURS INTERMÉDIAIRES. Cas des fonctions continues strictement monotones. Cas des fonctions continues strictement monotones Théorème : Cas des fonctions strictement monotones Soit f une fonction continue et strictement monotone sur un intervalle I et a, b I avec a < b. Pour tout réel k compris entre f (a) et f (b), il existe un unique réel c de [a ; b] tel que f (c) = k Démonstration : L existence de c [a ; b] est assurée par le théorème précédent (car f est continue). De plus, s il existe deux solutions c 1 et c, on a alors f (c 1 ) = f (c ) = k. La fonction f étant strictement monotone, on en déduit que c 1 = c. D où l unicité de la solution. Exemple : Montrer que l équation e x = admet une solution unique sur [0 ; 1]. Soit f la fonction définie sur [0, 1] par f (x) = e x. f est continue sur [0 ; 1] et strictement croissante sur [0 ; 1]. De plus, f (0) = 1 et f (1) = e et [0 ; 1]. Donc, l équation e x = admet une solution unique sur [0.; 1]. Remarques : 1. Il n est en général pas possible de déterminer de manière exacte cette solution. Par contre, des méthodes (comme la méthode de balayage ou de dichotomie) permettent d en trouver une valeur approchée (voir exercices).. Ces deux théorèmes s étendent aux cas où l intervalle d étude est de la forme ]a ; b[, [a ; b[, [a ; + [, etc. Dans ce cas, pour conclure, il faut étudier les limites de f aux bornes de l intervalle d étude pour conclure. Exemple : Montrer que l équation x 3 = admet une solution unique sur R. Soit f la fonction définie sur R par f (x) = x 3. f est continue sur R (car dérivable) et strictement croissante sur R 4. De plus, lim x f (x) = et lim x + f (x) = + et ] ; [. Donc, l équation x 3 = admet une solution unique sur R. Exercices : 6, 7 page 116 ; 65 page 16 et 69 page page [TransMath] Propriété : Un cas particulier important Soit f une fonction continue et strictement monotone sur un intervalle I et a, b I avec a < b. Si f (a).f (b) < 0 alors l équation f (x) = 0 admet une solution unique dans l intervalle ]a ; b[. Exercices : 8, 9, 11, 13 page 117 ; 66 page 16 et 68 page page page page 10 et 71 page , 86 page 130 et 88, 89 page [TransMath] 4. Il suffit d étudier le signe de sa dérivée. 5. Cas de fonctions strictement monotones. 6. Vrai-Faux. 7. Détermination d une valeur approchée de la solution. 8. Algorithme de dichotomie. 9. Polynômes de degré impair. 10. Avec une fonction auxiliaire. 11. Type BAC. 5

6 3 COMPLÉMENTS DE DÉRIVATION 3 Compléments de dérivation 3.1 Dérivation d une fonction composée Théorème : (admis) Soit u une fonction dérivable sur un intervalle I et f une fonction dérivable sur un intervalle J telles que, pour tout x I, u (x) J/ Alors la fonction g définie par g (x) = f (u (x)) est dérivable sur I et, pour tout x I : Exemple : g (x) = u (x) f (u (x)) 1. Soit g la fonction définie sur R par g (x) = 1 + x. On pose u (x) = 1 + x et f (x) = x. On a : g (x) = f (u (x)) u est dérivable sur R et f est dérivable sur ]0 ; + [. Pour tout x R, u (x) > 0. Par suite, g est dérivable sur R et g (x) = u (x) f (u (x)) = x 1 x +1 = x x +1. Quelques cas particuliers importants : Soit u une fonction dérivable sur un intervalle I. Pour tout entier naturel n non nul, la fonction u n est dérivable sur I et (u n ) = nu u n 1. Si pour tout x I, u (x) 0, La fonction 1 u est dérivable sur I et ( ) 1 n u = nu n u. n+1 Si pour tout x I, u (x) > 0, La fonction u est dérivable sur I et ( u) = u u. La fonction e u est dérivable sur I et (e u ) = u e u. Exercices : 14, 15, 16, 17, 18, 19, 0 page 118 et 49, 50, 55, 56 page , 44 page 14 et 45, 57, 58 page , 67 page 16 et 70 page [TransMath] 3. Application : méthodes classiques de recherche de primitives Les résultats du tableau 1 s obtiennent par lecture «inversée» des résultats concernant la dérivation de fonctions composées. Dans ce tableau, u désigne une fonction dérivable sur un intervalle I. Fonction f de la forme... Une primitive F Commentaires u.u n (avec n entier > 0) u n+1 n + 1 u u n (avec n entier ) 1 n 1 1 u n 1 u (x) 0 sur I u u u u (x) > 0 sur I u.e u e u Table 1 Méthodes classiques de recherche de primitives 1. Calculs de dérivées. 13. Applications. 14. Théorème des valeurs intermédiaires. 6

7 RÉFÉRENCES RÉFÉRENCES Exemples : 1. f (x) = (x + 1) 5 sur I = R f semble de la forme u.u 5 avec u (x) = x + 1 et u (x) =. f (x) = 1 (x + 1)5 1. f (x) = sur I = ] [ ; 1 (1 x) F (x) = 1 (x + 1)6 6 f semble de la forme u u avec u (x) = 1 x et u (x) =. f (x) = 1 (1 x) F (x) = 1 ( 1 ) 1 x 3. f (x) = 1 3x sur I = ] [ ; 1 3 f semble de la forme u u avec u (x) = 1 3x et u (x) = 3. f (x) = x = (x + 1)6 1 = 1 1 x F (x) = 3 1 3x = x 4. f (x) = 3xe x sur I = R f semble de la forme u e u avec u (x) = x et u (x) = x. ) f (x) = 3 ( xe x F (x) = 3e x Exercices : 6, 8, 9, 10 page 01 et 7, 74, 75 page , 4, 5 page 04 et 79, 80, 81, 8 page page 6 et 143 page 9 17 [TransMath] Références [TransMath].TransMATH Term S, Programme 01 (Nathan) 3, 5, 6, Recherches classiques de primitives. 16. Calculs d intégrales. 17. Type BAC. 7

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Continuité : une approche graphique 2 2 Théorème des valeurs intermédiaires 3 2.1 Cas des fonctions continues.......................................

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

Compléments sur les suites

Compléments sur les suites Compléments sur les suites Christophe ROSSIGNOL Année scolaire 215/216 Table des matières 1 Limites par comparaison 2 1.1 Théorèmes de comparaison....................................... 2 1.2 Application

Plus en détail

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES

ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES I. La continuité : Définition : ÉTUDE DE FONCTIONS, FONCTIONS CONTINUES 1 ) Définition : Soit f une fonction définie sur un intervalle I. Graphiquement, on reconnaît qu'une fonction est continue sur un

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

Continuité, cours, terminale S

Continuité, cours, terminale S Continuité, cours, terminale S Continuité, cours, terminale S F.Gaudon http://mathsfg.net.free.fr 26 mars 2013 1 Continuité 2 Généralisation à des intervalles quelconques Continuité 1 Continuité 2 Généralisation

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013

Suites numériques. Christophe ROSSIGNOL. Année scolaire 2012/2013 Suites numériques Christophe ROSSIGNOL Année scolaire 01/013 Table des matières 1 Suites géométriques : Rappels et compléments 1.1 Définition, exemples........................................... 1. Expression

Plus en détail

Fonctions dérivées Applications

Fonctions dérivées Applications Fonctions dériées Applications Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Quelques rappels. Nombre dérié Tangente......................................... Notion de fonction dériée.........................................3

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Rappels de trigonométrie. Définitions, premières propriétés..................................... Formules de trigonométrie.......................................

Plus en détail

Fonctions exponentielles

Fonctions exponentielles Fonctions exponentielles Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Fonctions x q x, avec q > 0 2 1.1 Fonction exponentielle de base q.................................... 2 1.2

Plus en détail

Limites de suites. Christophe ROSSIGNOL. Année scolaire 2013/2014

Limites de suites. Christophe ROSSIGNOL. Année scolaire 2013/2014 Limites de suites Christophe ROSSIGNOL Année scolaire 2013/2014 Table des matières 1 Limite d une suite 2 1.1 Limite finie................................................ 2 1.2 Limite infinie...............................................

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Fonctions Polynômes. Table des matières. Table des figures. Liste des tableaux. Christophe ROSSIGNOL. Année scolaire 2014/2015

Fonctions Polynômes. Table des matières. Table des figures. Liste des tableaux. Christophe ROSSIGNOL. Année scolaire 2014/2015 Fonctions Polynômes Christophe ROSSIGNOL Année scolaire 2014/2015 Table des matières 1 Dérivée d une fonction polynôme 2 1.1 Quelques rappels............................................. 2 1.2 Cas général................................................

Plus en détail

Les fonctions : Limites, Continuité

Les fonctions : Limites, Continuité Les fonctions : Limites, Continuité f désigne une fonction définie sur un intervalle I ; On note C f sa courbe représentative dans un repère du plan I) Limite d une fonction au voisinage de l infini I

Plus en détail

LIMITES ET CONTINUITE

LIMITES ET CONTINUITE LIMITES ET CONTINUITE I) LIMITES A L'INFINI ) Limite infinie à l'infini Si tout intervalle ]A;+ [ contient tous les f(x) pour x assez grand, on dit que f a pour ite + en +. on écrit f x = f x = A > 0,

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

Limites Comportement asymptotique

Limites Comportement asymptotique Limites Comportement asymptotique Christophe ROSSIGNOL Année scolaire 2009/200 Table des matières Limite d une fonction en, en 3. Limite infinie en, en...................................... 3.2 Limite

Plus en détail

Etude de fonction : notion de continuité

Etude de fonction : notion de continuité Etude de fonction : notion de continuité Leur faire lire des rappels sur les fonctions pour le jour en question. Toutes les fonction considérées dans ce chapitre sont définies sur ou une partie de et sont

Plus en détail

Limites Droites asymptotes

Limites Droites asymptotes Limites Droites asymptotes Christophe ROSSIGNOL Année scolaire 2009/200 Table des matières Rappels : Limites des fonctions usuelles 2 2 Opérations sur les ites 2 2. Somme de deux fonctions........................................

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

LIMITES ET CONTINUITE (Partie 2)

LIMITES ET CONTINUITE (Partie 2) LIMITES ET CONTINUITE (Partie 2) 1 I. Limite d'une fonction composée 1 Exemple : Soit la fonction f définie sur 2 ;+ par f (x) = 2 1 x. On souhaite calculer la limite de la fonction f en +. On considère

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Résumé du cours. Fonction dérivable

Résumé du cours. Fonction dérivable Résumé du cours Fonction dérivable Nombre dérivé et fonction dérivée Soit f une fonction définie sur un intervalle ouvert I contenant a. On dit que f est dérivable en a et de nombre dérivé f (a) si Définition

Plus en détail

Continuité sur un intervalle.

Continuité sur un intervalle. 1. Continuité d'une fonction... p2 2. Le théorème des valeurs intermédiaires... p5 Copyright meilleurenmaths.com. Tous droits réservés 1. Continuité d'une fonction 1.1. Continuité en un point Définition

Plus en détail

Limites et continuité

Limites et continuité 1 Limites et continuité Table des matières 1 Limites - Rappels de première 2 1.1 Définition................................. 2 1.2 Asymptotes parallèles aux axes..................... 3 1.3 Limites des

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013 Fonctions convexes Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Convexité Point d inflexion 2 1.1 Notion de convexité, de concavité.................................... 2 1.2 Point

Plus en détail

Partie A : Limites de fonctions

Partie A : Limites de fonctions Chapitre 2 I Limite d une fonction en ou en A) Limite finie en ou en 1) Activité 1 Partie A : Limites de fonctions On considère la fonction définie pour tout par de courbe représentative a) A l aide d

Plus en détail

CH1 Analyse : Continuité 3 ème Maths Octobre 2009

CH1 Analyse : Continuité 3 ème Maths Octobre 2009 CH1 Analyse : Continuité 3 ème Maths Octobre 29 A LAATAOUI I Approche de la notion : Déterminer le domaine de définition et tracer la courbe représentative de la fonction f dans chacun des cas suivants

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

TERMINALE S Chapitre: LIMITES DE FONCTIONS

TERMINALE S Chapitre: LIMITES DE FONCTIONS 1. Limites à l infini Limite réelle ( ou finie) en + et - Dire qu une fonction f a pour limite le nombre l en + signifie que tout intervalle ouvert de centre l contient toutes les valeurs f() prises pour

Plus en détail

Chapitre 2 CONTINUITE - CONVEXITE TES

Chapitre 2 CONTINUITE - CONVEXITE TES Chapitre 2 CONTINUITE - CONVEXITE TES I Quelques rappels Définition Soit a et (a + h) appartenant à I. Dire que f est dérivable en a signifie que le taux d'accroissement entre a et a + h, τ a,h, tend vers

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Dérivées et continuité T.S.

Dérivées et continuité T.S. Dérivées et continuité T.S. Exercice. [Côté exercices. Réactivation de notions de la classe de Première? ] QCM p 90 Déclic I. Rappels sur les dérivées A. Les principale idées vues en Première. Les dérivées,

Plus en détail

TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS

TERMINALE S Chapitre 2 : LIMITES DE FONCTIONS SOMMAIRE LIMITES DE FONCTIONS *. 1. LIMITES D UNE FONCTION... 2 LIMITES A L INFINI... 2 LIMITE REELLE ( OU FINIE) EN + ET -... 2 LIMITE INFINIE EN + ET -... 2 LIMITES EN UN REEL A... 3 LIMITE INFINIE EN

Plus en détail

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires Université Paris Est Créteil DAEU TD : Fonctions Continues et le Théorème des Valeurs Intermédiaires Dans cette fiche on définie une propriété très importante qui est vérifiée par un très grand nombre

Plus en détail

Sommaire. Prérequis. Généralités sur les fonctions

Sommaire. Prérequis. Généralités sur les fonctions Généralités sur les fonctions Stépane PASQUET, 4 octobre 06 C Sommaire Limites aux infinis....................................... Limite en un nombre fini, ite à droite, ite à gauce d un nombre fini........

Plus en détail

Chapitre 2 - Continuité et convexité

Chapitre 2 - Continuité et convexité Chapitre 2 - Continuité et convexité I Rappels : sens de variation et dérivée Soit f une fonction définie et dérivable sur un intervalle I. Si la dérivée est strictement positive sur l intervalle I, alors

Plus en détail

Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-2015/2016

Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-2015/2016 Cours sur les limites de fonctions et la continuité M. HARCHY TS 2 -Lycée Agora-205/206 Limite d une fonction. Limite à l infini.. Limite finie d une fonction à l infini Définition Soit f une fonction

Plus en détail

Chapitre 2 : Dérivation et continuité T-ES2,

Chapitre 2 : Dérivation et continuité T-ES2, Chapitre 2 : Dérivation et continuité T-ES2, 206-207.Rappel sur la dérivation.. Règles de dérivation.. Dérivées des fonctions usuelles Fonction f f Fonction dérivée Domaine de validité f() = k (k R) f

Plus en détail

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2018

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2018 Mathématiques Pascal CHAUVIN T le ES 8 janvier 2018 cbed Paternité Pas d utilisation commerciale Partage des conditions initiales à l identique Licence Creative Commons 2.0 France 2 Table des matières

Plus en détail

Dérivées et applications

Dérivées et applications Dérivées et applications I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de la tangente

Plus en détail

Documents pour l étudiant : Chapitre III : continuité

Documents pour l étudiant : Chapitre III : continuité 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Gestion MATH101 : Pratique des Fonctions numériques Documents pour l étudiant : Chapitre III : continuité Notations

Plus en détail

Fonctions puissances Croissances comparées

Fonctions puissances Croissances comparées Fonctions puissances Croissances comparées Christophe ROSSIGNOL Année scolaire 200/20 Table des matières Puissances réelles 2. Définition Premières propriétés.................................... 2.2 Propriétés

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

CONTINUITE ET CONVEXITE

CONTINUITE ET CONVEXITE CONTINUITE ET CONVEXITE I. Continuité et théorème des valeurs intermédiaires Le mathématicien allemand Karl Weierstrass (1815 ; 1897) apporte les premières définitions rigoureuses au concept de limite

Plus en détail

Généralités sur les fonctions

Généralités sur les fonctions Généralités sur les fonctions Limite d une fonction à l infini. Limite finie à l infini Définition : Dire qu une fonction f a pour ite le nombre réel l en + signifie que tout intervalle ouvert contenant

Plus en détail

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M "pour x assez grand"

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M pour x assez grand Terminale S Capitre «Fonctions : ites, continuité et dérivabilité» Page I) Limites ) Limites à l infini a) Limite finie Définition : Etant donnée une fonction f et un réel α, on dira quelle tend vers α

Plus en détail

Étude de fonctions Limites et continuité

Étude de fonctions Limites et continuité Chapitre 3 Term.S Étude de fonctions Limites et continuité Ce que dit le programme : CONTENUS Limites de fonctions Limite finie ou infinie d une fonction à l infini. Limite infinie d une fonction en un

Plus en détail

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2017

T le ES. Mathématiques. Pascal CHAUVIN. 8 janvier 2017 Mathématiques Pascal CHAUVIN T le ES 8 janvier 2017 cbed Paternité Pas d utilisation commerciale Partage des conditions initiales à l identique Licence Creative Commons 2.0 France 2 Table des matières

Plus en détail

Fonctions Exponentielles

Fonctions Exponentielles Fonctions Exponentielles Christophe ROSSIGNOL Année scolaire 2011/2012 Table des matières 1 Définition Premières propriétés 2 1.1 Définition................................................. 2 1.2 Premières

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

Compléments sur la dérivation et continuité, cours, terminale S

Compléments sur la dérivation et continuité, cours, terminale S Compléments sur la dérivation et continuité, cours, terminale S F.Gaudon er septembre 206 Table des matières Fonction dérivée, tangente 2 2 Dérivation de fonctions 3 2. Fonctions dérivées usuelles (rappel)..............................

Plus en détail

Limites de fonctions. I) Limite et opérations. 1) Limite d une somme. 2) Limite d un produit. 3) Limite d un quotient. Si g a pour limite: l + +

Limites de fonctions. I) Limite et opérations. 1) Limite d une somme. 2) Limite d un produit. 3) Limite d un quotient. Si g a pour limite: l + + Limites de fonctions I) Limite et opérations ) Limite d une somme Si f a pour l l + + Si g a pour l + + Alors f(x) + g(x) a pour l + l + + 2) Limite d un produit Si f a pour l l > 0 l < 0 ± 0 Si g a pour

Plus en détail

FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES

FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES 1 FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES Ci-après figure le tableau de variations d une fonction définie sur R 1) Déterminer le nombre de solutions de l équation = 2) Déterminer le nombre

Plus en détail

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini

Notes de cours : Chapitre II : Limites. 1 Limite d une fonction en + ou. 1.1 Limite infinie en l infini 1 UNIVERSITÉ DE CERGY Année 2013-2014 U.F.R. Économie & Gestion Licence d Économie Finance et Gestion L1-S1 : MATH101 : Pratique des Fonctions numériques Notes de cours : Chapitre II : Limites Notations

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

Progression terminale S

Progression terminale S Progression terminale S Chapitre 1 : Suites (3 semaines) I. Rappels sur les suites A. Mode de génération d une suite B. Représentations graphiques C. Suites arithmétiques et géométriques II. III. IV. Raisonnement

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

Rechercher des conditions pour une monotonie stricte. A. Conditions de monotonie sur un intervalle pour une fonction dérivable

Rechercher des conditions pour une monotonie stricte. A. Conditions de monotonie sur un intervalle pour une fonction dérivable ZÉRS DE LA DÉRIVÉE bjectif utils Rechercher des conditions pour une monotonie stricte Nombre dérivé À quelles conditions une fonction f, dérivable sur un intervalle I, est-elle strictement monotone sur

Plus en détail

La fonction Logarithme Népérien

La fonction Logarithme Népérien Terminale S, Logarithme népérien 1 La fonction Logarithme Népérien Existence Théorème: (admis) Soit f une fonction dérivable sur un intervalle I de R, strictement monotone sur I à valeurs dans J. Alors

Plus en détail

La continuité. signifie lim x a

La continuité. signifie lim x a La continuité I Définitions et exemples. 1 Continuité en a D f Définition La fonction f est continue en a D f signifie x a f x = f a D'après la définition de la ite en TS, il ne peut y avoir que deux cas,

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS LIMITES DE FONCTIONS I- Limites à l infini. Limites infinies Définition Soit f une fonction définie sur un intervalle ]A; + [. On dit que f a pour ite + quand x tend vers + lorsque pour tout réel M, fx)

Plus en détail

I. Limites d une fonction à l infini

I. Limites d une fonction à l infini T STI SIN Limites de fonctions 6//202 Lycée Don Bosco 202-203 I. Limites d une fonction à l infini Activité a. Limites infinies On considère la fonction f définie sur ]0 ; + [ par : f(x) = x 2 x +, et

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

Équations de droites

Équations de droites Équations de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Équations de droites 2 1.1 Rappels sur les fonctions affines..................................... 2 1.2 Équations

Plus en détail

Limites et comportement asymptotique

Limites et comportement asymptotique Limites et comportement asymptotique T.S. Introduction : Notion intuitive de ites (finies et infinies, en un point et à l infini) sur des exemples. Étudier la ite de f (x) [qui se lit comme toujours sur

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Chapitre 2 Fonctions, continuité et dérivées. Table des matières. Chapitre 2 Fonctions, continuité et dérivées TABLE DES MATIÈRES page -1

Chapitre 2 Fonctions, continuité et dérivées. Table des matières. Chapitre 2 Fonctions, continuité et dérivées TABLE DES MATIÈRES page -1 Chapitre Fonctions, continuité et dérivées TABLE DES MATIÈRES page -1 Chapitre Fonctions, continuité et dérivées Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Dérivées et continuité

Dérivées et continuité Dérivées et continuité TS Exercice 1 [Côté exercices Réactivation de notions de la classe de Première? ] QCM p 90 Déclic I Rappels sur les dérivées A Les principale idées vues en Première 1 Les dérivées,

Plus en détail

1 ère S 2004/2005. Ch.12. Applications de la dérivation. A P P L I C A T I O N S D E L A D É R I V A T I O N.

1 ère S 2004/2005. Ch.12. Applications de la dérivation. A P P L I C A T I O N S D E L A D É R I V A T I O N. 1 ère S 4/5 Ch1 Applications de la dérivation J TAUZIEDE A P P L I C A T I O N S D E L A D É R I V A T I O N I- DERIVEE ET SENS DE VARIATION D UNE FONCTION 1 ) Sens de variation et dérivées Théorème liant

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie.

TS Limites de suites Cours. Exemples : Ex 3 page 45 ; suite (2n²)+algo dépassement. I. Définitions 1. Limite infinie. 2. Limite finie. TS Limites de suites Cours I. Définitions 1. Limite infinie Définition Dire qu une suite (u n ) a pour limite + signifie que tout intervalle ouvert de la forme [A ; + [ contient tous les termes de la suite

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

CONTINUITÉ. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaop_sqt3bq3q6otr6qxodut

CONTINUITÉ. Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaop_sqt3bq3q6otr6qxodut 1 CONTINUITÉ I. Rappels sur la dérivation Vidéos https://www.youtube.com/playlist?list=plvudmbpupcaop_sqt3bq3q6otr6qxodut Fonction f Ensemble de définition de f Dérivée f ' Ensemble de définition de f

Plus en détail

Corrigé du bac blanc TS 2008

Corrigé du bac blanc TS 2008 Corrigé du bac blanc TS 008 Exercice Conjectures D après la figure donnée sur le sujet, il semble que : f est strictement croissante sur [ 3; ], la courbe représentative de f est en dessous de l axe x

Plus en détail

Chapitre 2 Continuité. Table des matières. Chapitre 2 Continuité TABLE DES MATIÈRES page -1

Chapitre 2 Continuité. Table des matières. Chapitre 2 Continuité TABLE DES MATIÈRES page -1 Chapitre Continuité TABLE DES MATIÈRES page -1 Chapitre Continuité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Formule de Taylor-Lagrange

Formule de Taylor-Lagrange Formule de Taylor-Lagrange Exercice. Soit x un réel strictement positif et f une fonction sur [0, x].. Quelles sont les hypothèses qui permettent d écrire la formule de Taylor-Lagrange pour f sur [0, x]

Plus en détail

Cours informel sur la fonction réciproque.

Cours informel sur la fonction réciproque. Cours informel sur la fonction réciproque. Ce cours aborde de nombreuses parties du programme de terminale scientifique. Les parties qui n'appartiennent pas au programme seront signalées par le sigle hp,

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

et f(x) = Interprétation graphique : Une fonction est continue sur un intervalle, si on peut la dessiner d un seul trait sans lever le crayon.

et f(x) = Interprétation graphique : Une fonction est continue sur un intervalle, si on peut la dessiner d un seul trait sans lever le crayon. Continuité 1 Généralités 1.1 Continuité en un point Soit f une fonction d une variale réelle définie sur un intervalle I et x 0 I. En particulier, f est définie en x 0. Définition (Rappel) 1. Onditquef

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Ph DEPRESLE septembre 05 Table des matières Limites à l infini. Limites infinies............................................ Limites finies-asymptotes horizontales.............................

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

maîtriser le cours (page 48)

maîtriser le cours (page 48) e) > donc la première inégalité équivaut à - sin N cos et sont strictement positis donc la seconde inégalité équivaut à cos N - sin et donc pour tout de sin cos N - N b) Le téorème d encadrement et le

Plus en détail

Devoir Surveillé /Evaluation

Devoir Surveillé /Evaluation Lycée Pierre-Gilles de Gennes BCPST Mathématiques 4-5 Devoir Surveillé /Evaluation Le 4 septembre 4 Documents écrits, électroniques, calculatrices et téléphones portables interdits La plus grande attention

Plus en détail

Fonction continue sur un intervalle Continuité Exercices corrigés

Fonction continue sur un intervalle Continuité Exercices corrigés Fonction continue sur un intervalle Continuité Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : montrer qu une fonction est continue en un point

Plus en détail