TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

Dimension: px
Commencer à balayer dès la page:

Download "TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α."

Transcription

1 Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur l intervalle [1 ; + [. b. On admet que ϕ() = ; Démontrer que l équation ϕ() = 0 admet sur [1 ; + [ une unique solution α, appartenant à l intervalle [1 ; e]. Déterminer un encadrement de α d amplitude c. Déterminer le signe de ϕ() suivant les valeurs de. 2. Soit f la fonction définie sur l intervalle [1 ; + [ par f () = ln() On note f la fonction dérivée de f. ϕ() a. Calculer f () et montrer que pour tout 1 on a : f () = (1+ 2 ) 2. b. Déduire de la question 1. le sens de variation de la fonction f sur l intervalle [1 ; + [. c. Démontrer que pour tout appartenant à l intervalle [1 ; + [ on a : 0 f () d. En déduire f () ln() 2. Eercice 2 : (7 points) Polynésie juin On considère la fonction g définie sur [1 ; + [ [par g () = ln(2) + 1 a. Cette question demande le développement d une certaine démarche comportant plusieurs étapes. La clarté du plan d étude, la rigueur des raisonnements ainsi que la qualité de la rédaction seront prises en compte dans la rédaction. Démontrer que l équation g () = 0 admet sur [1 ; + [ une unique solution notée α. b. Démontrer que ln(2α) + 1 = α. 2. Soit la suite (u n ) définie par u 0 = 1 et pour tout entier naturel n, par u n+1 = ln(2u n ) + 1. a. Démontrer que pour tout entier naturel n, 1 u n u n+1 3. b. Démontrer que la suite (u n ) converge vers α. Eercice 3 : (6 points) Antilles-Guyane 2010 Partie A Soit g la fonction définie pour tout nombre réel de l intervalle ]0 ; + [ par g ()= ln(). 1. Déterminer les ites de la fonction g en 0 et Montrer que g est dérivable sur l intervalle ] 0 ; + [ et que g () = ln(). 3. Dresser le tableau de variations de la fonction g. Partie B Soit (u n ) la suite définie pour tout n IN * par u n = en n n. 1. Conjecturer, à l aide de la calculatrice : a. le sens de variation de la suite (u n ) ; b. la ite éventuelle de la suite (u n ). 2. Soit (v n ) la suite définie pour tout n IN * par v n = ln (u n ). a. Montrer que v n = n n ln(n). b. En utilisant la Partie A, déterminer le sens de variation de la suite (v n ). c. En déduire le sens de variation de la suite (u n ). 3. Montrer que la suite (u n ) est bornée.(bonus) 4. Montrer que la suite (u n ) est convergente et déterminer sa ite.(bonus)

2 TS4 DS5 CORRIGE Eercice 1 : 1)a) Sur l intervalle [1 ; + [ on a ϕ() = ln() ; est dérivable et () =2 4ln() 2² 1 = 2 4ln() 2 = 4ln() Pour tout > 1 on a 4 > 0 donc () est du signe de ln() ; or, pour tout > 1,on a ln () > 0 d où ln() < 0. Ainsi la fonction est strictement décroissante sur [1 ; + [ ϕ() = ln()=1+²(1 2ln()) (permet de déterminer la ite e ) b) (e) = 1 +e² 2e²(ln(e)) = 1 e² < 0 On applique le TVI sur [1 ; + [ : est continue et strictement décroissante sur cet intervalle ; Elle prend ses valeurs dans ] ; 2] ; or 0 ] ;2] ; donc l équation () = 0 admet une unique solution sur [1 ; + [. De plus (e) < 0 < (1) donc 1< < e. Ainsi [1 ;e]. c) D après le tableau des variations,( complété par les deu valeurs et 0) on a : 1 + () )a) Sur l intervalle [1 ; + [, f () = ln() (1 + ²) 2ln() 1+ 2 donc f () = (1 + ²) 2 = b)or pour tout 1, > 0 et (1 + ²)² > 0 donc f () est du signe de (). (1 + ² 2²ln() ) = (1 + ²)² ϕ() (1+ 2 ) f () + 0 c)pour tout appartenant à l intervalle [1 ; + [ on a : ln() 0 et 1 + ² > 0 donc 0 f () (quotient de nombres positifs ou nuls) Et on a également, 1 + ² ² donc 1 + ² ² (la fonction inverse est décroissante sur [1 ; + [ )donc, en multipliant chacun des deu membres par ln(), positif ou nul, on obtient f () ln() 2. Ainsi,pour tout 1, on a 0 f () ln() 2. d)on sait que Eercice 2 : ln() 2 = 0 (croissances comparées) et 0 = 0 donc, d après le théorème des gendarmes, f () = a. La fonction ln(2) est dérivable sur [1 ; + [ car,pour tout 1 on a 2 2 > 0 et 2 est dérivable sur [1 ; + [. La fonction g est dérivable sur cet intervalle et g () = = 1 1 = 1 Comme > 0, cette dérivée est du signe du numérateur g () 0 2 0

3 D autre part g (1) = ln = ln2. En écrivant g () = ln(2) + 1 = ln(2) + ln() + 1 = 1 + ln(2) + ( ln() On sait que ( ln() ln() = 0 (croissances comparées) donc, par somme, 1) = ; puis On applique le TVI sur l intervalle [1 ; + [ : 1) ( ln() 1 + ln(2) = 1 + ln(2) donc, par somme 1) = 1, puis par produit, g() = La fonction g est donc dérivable donc continue [ et strictement décroissante sur cet intervalle ; elle prend ses valeurs dans l intervalle ] ; ln2 ] ; 0 ] ; ln2 ] donc l équation g () = 0 admet une unique solution [1 ; + [. b. D après la question précédente g ( ) = 0 ln (2 ) + 1 = 0 ln(2 ) + 1 =. 2)a) Par récurrence :on pose P n : «1 u n u n+1 3» Initialisation : comme u 0 = 1 et u 1 = ln(2) + 1 = 1+ 1,69 < 3, on a bien :1 u 0 u 1 3 et P 0 est vraie. Hérédité :Supposons P n vraie pour un entier n donné, alors 1 u n u n+1 3 donc 2 2u n 2u n+1 6 puis, comme la fonction ln est strictement croissante sur [2 ; + [, ln(2) ln( 2u n ) ln(2u n+1 ) ln(6) donc 1+ln(2) u n+1 u n+2 ln(6) +1 Or ln(2) et 1 + ln(6) 3 donc P n+1 est vérifiée. Conclusion : P n est vraie pour tout n IN. b. On vient de démontrer que la suite (u n ) est croissante et majorée par 3 : elle est donc convergente vers une ite finie L et on a 1 L 3 (puisque 1 u n 3 pour tout n) De plus, u n+1 = ln(2u n ) + 1pour tout n IN et la fonction ln(2)+1 est continue sur [1 ; 3 ]donc on peut affirmer que la ite L vérifie L= ln(2l) + 1. Or on a vu à la question 1. b. que était la seule solution de cette équation sur [1 ; + [.Donc L =. Eercice 3 : (5 points) Partie A : 1) g ()= ln(). a)en 0 + (car l intervalle de définition est ]0 ;+ [ ) : ln() = 0 (croissances comparées) donc 0 0 ln() = 0 puis = 0 et par somme g() = E : g ()= ln() = ( 1 ln()) (si on ne met pas en facteur, on tombe sur une FI) 1= 1 et ln () = par somme, b)g () = 1 (1 ln() + 1 ) = ln() ln() > 0 ln() < 0 < e 0 < 1 ln() = 0 ln() = 0 = e 0 = 1 1 ln() = ; ensuite Partie B : 1)Conjecture : u n = en n n ( n 1) a)la suite u semble décroissante. b)la suite u semble tendre vers 0. = g () et par produit g() =. 2) Pour tout n IN * par v n = ln (u n ). a)v n = ln( en n n ) = ln( e n ) ln( n n ) = n nln(n) pour tout n IN * b)v n = g(n) or la fonction g est décroissante sur l intervalle [1 ; + [ donc la suite v, définie à partir de n = 1, est décroissante. c) v n = ln (u n ) u n = ep(v n )pour tout n 1. On sait que, pour tout n 1, v n+1 < v n ; or la fonction eponentielle est strictement croissante sur IR donc elle conserve l ordre et ep(v n+1 ) < ep(v n ) donc la suite u est décroissante. 3) Pour tout n 1 u n 0 (quotient de nombres strictement positifs) Et pour tout n 1 on a v n 1(d après le tableau des variations de la fonction g) donc ep(v n ) e (croissance de ep sur IR), c est-à-dire, u n e. Ainsi,pour tout n 1 0 u n e.(le suite u est bornée)

4 4) La suite u est décroissante et minorée par 0 donc elle converge vers un réel L. Mais on sait que u n = 0. (d après la partie A) et e = 0 donc ep(v n ) = 0 or ep(v n ) = u n. Ainsi v n = g(n) =

5 On considère la fonction f définie sur IR par f () = ln(1 + e ) La courbe (C ) représentative de la fonction f dans le plan muni d un repère orthogonal est donnée ci-dessous. Partie A 1. a. Déterminer la ite de la fonction f e. b. Montrer que la droite (D) d équation y = 1 est asymptote à la courbe (C ). 3 c. Étudier la position relative de (D) et de (C ). d. Montrer que pour tout réel, f () = ln(e 1) 2 3. e. En déduire la ite de f en. e 2 2. a. On note f la fonction dérivée de la fonction f. Montrer que pour tout réel, f () = 3(e 1) b. En déduire les variations de la fonction f. Partie C On note (T) la tangente à la courbe (C ) au point d abscisse Calculer le coefficient directeur de (T) puis construire (T) sur le graphique. 2. Dans cette question, toute trace de recherche même complète sera prise en compte dans la notation : Soient M et N deu points de la courbe (C ) d abscisses non nulles et opposées. Montrer que la droite (MN) est parallèle à la droite (T). On considère la fonction f définie sur IR par f () = ln(1 + e ) La courbe (C ) représentative de la fonction f dans le plan muni d un repère orthogonal est donnée ci-dessous. Partie A 1. a. Déterminer la ite de la fonction f e. b. Montrer que la droite (D) d équation y = 1 est asymptote à la courbe (C ). 3 c. Étudier la position relative de (D) et de (C ). d. Montrer que pour tout réel, f () = ln(e 1) 2 3. e. En déduire la ite de f en. e 2 2. a. On note f la fonction dérivée de la fonction f. Montrer que pour tout réel, f () = 3(e 1) b. En déduire les variations de la fonction f. Partie C On note (T) la tangente à la courbe (C ) au point d abscisse Calculer le coefficient directeur de (T) puis construire (T) sur le graphique. 2. Dans cette question, toute trace de recherche même complète sera prise en compte dans la notation : Soient M et N deu points de la courbe (C ) d abscisses non nulles et opposées. Montrer que la droite (MN) est parallèle à la droite (T).

6 Eercice 1 : (12 points) Partie A Liban juin 2010 Soit u la fonction définie sur ]0 ; + [ par u() = ln. 1. Étudier les variations de u sur ]0 ; + [ et préciser ses ites en 0 et e. 2. a. Montrer que l équation u() = 0 admet une solution unique sur ]0 ; + [. On note α cette solution. b. À l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 de α. 3. Déterminer le signe de u() suivant les valeurs de. 4. Montrer l égalité : lnα = 2 α 2. Partie B On considère la fonction f définie et dérivable sur ]0 ; + [ par f () = 2 + (2 ln) 2. On note f la fonction dérivée de f sur ]0 ; + [. 1. Eprimer, pour tout de ]0 ; + [, f () en fonction de u(). 2. En déduire les variations de f sur ]0 ; + [.On déterminera les ites de f au bornes. Partie C Dans le plan rapporté à un repère orthonormé (O ; i, j ) on note : C la courbe représentative de la fonction ln (logarithme népérien) ; A le point de coordonnées (0 ; 2) ; M le point de C d abscisse appartenant à ]0 ; + [. 1. Montrer que la distance AM est donnée par AM = f () 2. Soit g la fonction définie sur ]0 ; + [ par g () = f () a. Montrer que les fonctions f et g ont les mêmes variations sur ]0 ; + [. b. Montrer que la distance AM est minimale en un point de C, noté P, dont on précisera les coordonnées. c. Montrer que AP = α 1+α Pour cette question, toute trace de recherche, même incomplète, ou d initiative, même non fructueuse, sera prise en compte dans l évaluation. La droite (AP) est-elle perpendiculaire à la tangente à C en P? Eercice 1 : (12 points) 1. La fonction u est dérivable sur ]0 ; + [ comme somme de fonctions dérivables et pour tout réel strictement positif, u () = 2 1 Pour tout réel strictement positif, 2 > 0 et 1 > 0 donc u () > 0 ; la fonction u est donc strictement croissante. ln() = + donc, par somme u() = = + et = 2 et 0 + ln() = donc 0 u() =. 2. a. On applique le TVI (théorème des valeurs intermédiaires)sur]0 ; + [ : La fonction u est continue et strictement croissante sur ]0 ; + [ ; 0 ] ; + [,intervalle des images par f ;donc l équation u() = 0 admet une et une seule solution sur ]0 ; + [. On note α cette solution. b. À l aide de la calculatrice on remarque que u(1,31) < 0 < u(1,32) donc 1,31 < α < 1,32 3. La fonction u est croissante sur ]0 ; + [et u(α) = 0 donc 4. u(α) = 0 α 2 2+ ln(α) = 0 ln(α) = 2 α u() 0 +

7 Partie B On considère la fonction f définie et dérivable sur ]0 ; + [ par f () = 2 + (2 ln) 2. On note f la fonction dérivée de f sur ]0 ; + [. 1. Pour tout de ]0 ; + [, f () = 2+2 (2 ln ) ( 1 )= 2 (2 2 + ln) = 2 u() 2. 2 étant toujours positif sur ]0 ; + [, f () est du signe de u(), donc est strictement négative sur ]0 ; α[, et strictement positive sur ]α ; + [ et s annule en α. la fonction f est strictement décroissante sur ]0 ; α] et strictement croissante sur [α ; + [ et atteint un minimum en α. 2 = + et (2 ln) = or X² = + donc X + (2 ln)2 = + et par somme f () = = 0 et (2 ln) = + or X² = + donc (2 0 X + 0 ln)2 = + et par somme f () = +. 0 Partie C 1. Le point A a pour coordonnées (0 ; 2) et le point M( ; ln), donc AM = ( 0) 2 + (ln 2) 2 = f () 2. Soit g la fonction définie sur ]0 ; + [ par g () = f (). a. La fonction racine étant strictement croissante sur IR + et la fonction f prenant des valeurs toujours positives, les fonctions f et g = f ont même sens de variation. b. La fonction g atteint donc son minimum en α. La distance AM est donc minimale pour = α soit au point P(α ; lnα). Or lnα = 2 α 2 donc P a pour coordonnées (α ; 2 α 2 ). c. AP = (α 0) 2 + (2 α 2 2) 2 = α 2 +α 4 = α 1+α 2 (car α > 0). 3. La tangente à Γ en P a pour coefficient directeur 1/α et la droite (AP) a pour coefficient directeur y P y A P A = 2 α2 2α 0 = α. Le produit des deu coefficients directeurs donne 1 ;ainsi, la tangente Γ en P et la droite (AP) sont perpendiculaires. Eercice 1 TS5 DS5 CORRIGE Eercice 2 : Eercice 3 : Eercice4 :

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 Liban Juin 010 Série S Exercice Partie A Soit u la fonction définie sur 0; + par : ux ( ) = x + lnx 1 Etudier les variations de u sur 0; + et préciser ses limites en 0 et en + a Montrer que l équation

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

Fonctions logarithmes

Fonctions logarithmes La fonction logarithme népérien. Définition et propriétés Fonctions logarithmes La fonction eponentielle est continue et strictement croissante sur R. Le corollaire du théorème des valeurs intermédiaires

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Fonction exponentielle Bac Série S

Fonction exponentielle Bac Série S Fonction exponentielle Bac Série S - 3 EXERCICE N Pondichéry 6 avril Partie On s intéresse à l évolution de la hauteur d un plant de maïs en fonction du temps. Le graphique ci-après représente cette évolution.,,8,6,4,,,8,6,4,

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée.

Terminales S BAC BLANC Mathématiques Corrigé. Durée 4 heures. La calculatrice graphique est autorisée. Terminales S BAC BLANC Mathématiques Corrigé Durée 4 heures. La calculatrice graphique est autorisée. Eercice (commun) A. Etude de f en ) On a : lim = et lim e = e =. Par composition, il vient alors :

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Devoir surveillé n 5 19 janvier 2011

Devoir surveillé n 5 19 janvier 2011 Devoir surveillé n 5 19 janvier 2011 Term ES Eercice 1 : (4 points) Soit f une fonction définie et dérivable sur R. On a tracé ci-contre sa courbe représentative C dans un repère orthonormal. On note f

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n =

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n = La maison Ecole d ' Devoir de type bac n o 4 Classe de terminale ES Variations, limites, continuité, asymptotes, fonction logarithme, suites... Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence

Plus en détail

FONCTION LOGARITHME NÉPÉRIEN

FONCTION LOGARITHME NÉPÉRIEN FONCTION LOGARITHME NÉPÉRIEN Table des matières La fonction réciproque de la fonction eponentielle 2. Définition......................................................... 2.2 Propriété.........................................................

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Intégrale et aire On considère la fonction affine f dont la courbe ci-contre passe par les points A et B. ) Déterminer l epression de f(). ) En déduire une primitive F de f. ) a) Déterminer l intégrale

Plus en détail

EXERCICE 3 (7 points )

EXERCICE 3 (7 points ) EXERCICE 3 (7 points ) Commun à tous les candidats La page annexe sera à compléter et à remettre avec la copie à la fin de l épreuve. PARTIE A On considère la fonction f définie sur l intervalle ]0; +

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Chapitre 5 - Fonction logarithme népérien

Chapitre 5 - Fonction logarithme népérien Chapitre 5 - Fonction logarithme népérien I La fonction logarithme népérien TD1 : Fonction exponentielle et réciproque 1. Soit f la fonction définie sur R par f(x) = e x. On note C f sa courbe représentative.

Plus en détail

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x.

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x. T ES Mathématiques DS 5 le 18/01/01 Exercice 1 (5,5 POINTS ) On considère une fonction f définie et dérivable sur l intervalle [- ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f, tracée

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane Septembre 2015

Corrigé du baccalauréat S Antilles-Guyane Septembre 2015 Corrigé du baccalauréat S Antilles-Guyane Septembre 5 EXERCICE Commun à tous les candidats 6 points Soit n un entier naturel non nul. On considère la fonction f n définie et dérivable sur l ensemble R

Plus en détail

( e ) x 2 e x 1 = 1. CORRIGÉ PARTIEL Fonction exponentielle. Ch 5. = donc lim x. Exercice 2. e x e2 =. = +. Par produit lim ( 3 x)e x =.

( e ) x 2 e x 1 = 1. CORRIGÉ PARTIEL Fonction exponentielle. Ch 5. = donc lim x. Exercice 2. e x e2 =. = +. Par produit lim ( 3 x)e x =. C 5 CORRIGÉ PARTIEL Fonction eponentielle Eercice e + = e e = e e. En + : + e = 0 (ite de référence), donc + e e = 0. En : e 0 + = donc e =. e > 0, donc e e =. En + : 3 = et e = +. Par produit ( 3 )e =.

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES

BACCALAUREAT GENERAL MATHEMATIQUES GAN AMI Session Janvier 2014 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire et spécialité Durée de l épreuve : 4 heures Coefficient : 7 ou 9 Ce sujet comporte 4 pages. L utilisation

Plus en détail

Exercices supplémentaires : ln

Exercices supplémentaires : ln Exercices supplémentaires : ln Partie A : Propriétés algébriques Exprimer en fonction de ln2 : Exercice 2 Simplifier les expressions suivantes ln 1 2 ; ln8 ; ln64 ; ln2 ; ln64 ; ln 32 ; ln 2 ; ln 32 ln

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln

( ) Corrigé variations de la fonction logarithme népérien. Exercice 1. ; f (x) = = = x ; f (x) = 4 ( ln x) 3. ; f (x) = x x 1 = = ; f (x) = x x = 1 ln Eercice ) f ( ) = ln ; f () = ln + ) ln ln ln f ( ) = ; f () = = ² ² ) f ( ) = ( ln ) 4 ; f () = 4 ( ln ) 4) f ( ) = ; f () = = ln ln ² ln ² ) ( ln + ) ( ln ) ln f ( ) = ; f () = = ln + (ln + )² ( ln +

Plus en détail

Exercices sur la fonction exponentielle

Exercices sur la fonction exponentielle Exercices sur la fonction exponentielle Exercice : Simplifier les écritures suivantes : A = (e x ) e x ; B = (ex + e x ) (e x e x ) ; C = e x Exercice : Résoudre les équations et inéquations suivantes.

Plus en détail

Continuité, dérivabilité et convexité

Continuité, dérivabilité et convexité Continuité, dérivabilité et conveité A) Fonction dérivée et sens de variation 1 Fonction dérivée Déinition : Soit une onction déinie sur un intervalle I et telle que, en toute valeur dérivée '( eiste La

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

Polynésie Enseignement spécifique

Polynésie Enseignement spécifique Polynésie 00. Enseignement spécifique EXERCICE 4 7 points) commun à tous les candidats) L annexe sera complétée et remise avec la copie à la fin de l épreuve. Partie A ) On considère la fonction g définie

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives Amerinsa - Ecole d été Limites : Eercices Eercice : Notions intuitives Dans la figure ci-contre, vers quoi tend f() lorsque tend vers : a) - b) + c) 0 d) -4 e) 4 Eercice : Notions intuitives Vers quelle

Plus en détail

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S

Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S Sujet Spécialité MATHÉMATIQUES ANTILLES - GUYANE BAC S - 2016 Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite

SUITES I. GENERALITES. a. Définition et notations. b. Différentes façons de définir une suite SUITES I. GENERALITES a. Définition et notations On appelle suite numérique, toute application de IN dans IR Une suite se note (u n ) n IN, (u n ) n 0 ou (u n ) On dit que u n est le terme général de la

Plus en détail

Chapitre 9. Logarithmes. Exercices. Définition de la fonction ln et conséquences

Chapitre 9. Logarithmes. Exercices. Définition de la fonction ln et conséquences Chapitre 9 Logarithmes I Eercices Définition de la fonction ln et conséquences 9.1 Le logarithme népérien d un nombre réel est le nombre y tel que e y, autrement dit : lnpq y ðñ e y 1. Faisons un premier

Plus en détail

Fonction logarithme - Correction

Fonction logarithme - Correction Eercice 1 Fonction logarithme - Correction Déterminer l ensemble de définition des fonctions suivantes : 1. f() = ln + ln(2 ) On sait, d après le cours que la fonction ln est définie sur R +. Autrement

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

mod 11 ou encore mod 11 car 3 5 = 243 = = 1 [11].

mod 11 ou encore mod 11 car 3 5 = 243 = = 1 [11]. Terminale S Bac blanc. Mathématiques Février Exercice 5 points Pour les candidats ayant choisi la spécialité mathématiques. (a) Quel est le reste de la division euclidienne de 6 0 par? Justifier. On a

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

DÉRIVÉES FONCTIONS CONVEXES

DÉRIVÉES FONCTIONS CONVEXES DÉRIVÉES FONCTIONS CONVEXES I Dérivées - Rappels Définition ( voir animation ) Soit f une fonction définie sur un intervalle I, soit a I et soit h non nul tel que a + h I. On appelle tau d'accroissement

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation :

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation : Nom : Prénom : Terminale S T08 Appréciation : Contrôle du 16 octobre (durée : 2h ) Sujet A /20 Evaluation des compétences : Lecture graphique Limites Lecture graphique Dérivée Tracer une courbe, ses tangentes

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako Eercice 1 : Intégrer les équations différentielles suivantes y 1) y 5y = 0 ; y = ; 3y + 5y = 0 ; 9y =(y

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

I Exercices I I I I I I I I I I I I I-4

I Exercices I I I I I I I I I I I I I-4 Chapitre 6 Logarithme TABLE DES MATIÈRES page -1 Chapitre 6 Logarithme Table des matières I Exercices I-1 1................................................ I-1 2................................................

Plus en détail

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique TS - Maths - D.S. - Correction Spécialités : SVT - Physique Samedi 05 Décembre 05 - h Exercice ( points) Commun à tous les candidats Une usine produit de l eau minérale en bouteilles. Lorsque le taux de

Plus en détail

Fonction logarithme népérien.

Fonction logarithme népérien. 1. Généralités... p2 2. Propriété fondamentale de ln... p5 3. Étude et représentation graphique de la fonction logarithme népérien... p10 Copyright meilleurenmaths.com. Tous droits réservés 1. Généralités

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Terminale ES Contrôle de mathématiques (2 heures) Mardi 21 septembre 2004

Terminale ES Contrôle de mathématiques (2 heures) Mardi 21 septembre 2004 Terminale ES Contrôle de mathématiques ( heures) Mardi septembre 004 La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l appréciation des copies.

Plus en détail

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution.

[EXERCICES TS VERS BAC BANC] a. Démontrer que l équation g(x)=0 admet sur [0;+ [ une unique solution. On note α cette solution. Polynésie septembre 2010 Partie1 Soit g la fonction définie sur [0;+ [ par 1. Déterminer la limite de g en +. 2. Étudier les variations de la fonction g. 3. Donner le tableau de variations de g. 4. a.

Plus en détail

Easy-Maths. Théorème des accroissements finis et suites numériques

Easy-Maths. Théorème des accroissements finis et suites numériques Easy-Maths Njionou Patrick, S pnjionou@yahoofr Lycée de Japoma BP : 7297, Douala, Cameroun Théorème des accroissements finis et suites numériques EXERCICE 1 Soit h la fonction définie sur R par : h(x)

Plus en détail

Baccalauréat ES Antilles Guyane juin 1999

Baccalauréat ES Antilles Guyane juin 1999 Baccalauréat ES Antilles Guyane juin 1999 Candidats n ayant pas choisi l enseignement de spécialité 4points Le plan est rapporté à un repère orthonormal, dont les unités sont 1 cm sur chaque ae. Construire

Plus en détail

Page 1

Page 1 LSEl Riadh Eponentielles Mr Zribi Eercice : Partie I Soit g la fonction définie sur [ ; + [ par g() = e a) Montrer que, pour tout >, on a g () > En déduire le sens de variation de g sur [ ; + [ b) Calculez

Plus en détail

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel)

Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Chapitre 2 : Fonctions QCM Pour bien commencer (cf. p. 58 du manuel) Pour chaque question, il y a une ou plusieurs bonnes réponses. Exercice n 1 On considère la figure ci-dessous où cinq droites sont tracées.

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Eercices : Étude de fonctions Eercice : Calculer les limites suivantes : (. lim 3 2 +(ln) 3 ) 0 + 2. lim 3. lim ln(e +) ln 3 2 + 4. lim 5. lim 6. lim 7. lim e 2 3 2 e 3+ (ln) (e 4 3 ) + e2 ln+ ln+e 8.

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

4 e série Exercices sur les études de fonctions

4 e série Exercices sur les études de fonctions e série Eercices sur les études de fonctions Pour les courbes, on vérifiera sur calculatrice graphique On rappelle également que les tableau de variations (tableau récapitulatifs) doivent comporter les

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

Baccalauréat S Amérique du Sud 16 novembre 2011

Baccalauréat S Amérique du Sud 16 novembre 2011 Durée : 4 heures Baccalauréat S Amérique du Sud 6 novembre 20 Exercice Soit f la fonction définie sur l intervalle ] ; + [ par : On considère la suite définie pour tout n N par : f x)=3 4 x+. { u0 = 4

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

ln(u) et exp(u) Chapitre ln(u) 8.2 exp(u) Sommaire

ln(u) et exp(u) Chapitre ln(u) 8.2 exp(u) Sommaire Chapitre 8 ln(u) et ep(u) Sommaire 8. ln(u)............................................................ 8. ep(u)........................................................... 8. Eercices.........................................................

Plus en détail

Baccalauréat S Polynésie, correction

Baccalauréat S Polynésie, correction Baccalauréat S Polynésie, correction 0 juin 00 Exercice 5 points Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct (O; u ; v). Partie A - Restitution organisée de

Plus en détail

En particulier : x, y R, e x+y = e x e y et e x = 1 e x.

En particulier : x, y R, e x+y = e x e y et e x = 1 e x. I. Propriétés algébriques La fonction logarithme néperien est dérivable et strictement croissante de R + sur R. Le théorème de la bijection, qu on abordera au chapitre 7, permet de prouver l existence

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

La fonction puissance

La fonction puissance La fonction puissance Table des matières Fonction puissance. Définition.................................. Propriétés.................................. Eercices.................................. Etude de

Plus en détail

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5

FONCTION LOGARITHME. 2 exemple 2. Soit f la fonction définie sur [0 ; 1 ] par : f(x) = 2 x + 1 signe de f 5 FONCTION LOGARITHME I FONCTION RECIPROQUE La fonction carrée La fonction carrée est dérivable et strictement monotone sur [ 0 ; 2 ] D'après le corollaire du théorème des valeurs intermédiaire pour tout

Plus en détail

EXERCICES : LA FONCTION EXPONENTIELLE

EXERCICES : LA FONCTION EXPONENTIELLE Chapitre 7 wicky-math.fr.nf La fonction eponentielle EXERCICES : LA FONCTION EXPONENTIELLE Eercice : En utilisant le résultat suivant e ) lim ; lim e 0 + e lim =, déterminer les limites suivantes : 0 et

Plus en détail

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005 Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S Mars 2005 1 Exercice 1 (4 points). A ne traiter que par les élèves ne suivant pas l enseignement de spécialité. 1. Résoudre dans C l équation

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

La fonction Logarithme Népérien

La fonction Logarithme Népérien Terminale S, Logarithme népérien 1 La fonction Logarithme Népérien Existence Théorème: (admis) Soit f une fonction dérivable sur un intervalle I de R, strictement monotone sur I à valeurs dans J. Alors

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011 Corrigé du baccalauréat S Métropole La Réunion 16 septembre 11 EXERCICE 1 Partie A 1 La loi suivie par la variable aléatoire X prenant pour valeur le nombre de moteurs tombant en panne est une loi binomiale

Plus en détail

La fonction exponentielle

La fonction exponentielle 1 et définition La fonction exponentielle Il existe une unique fonction f dérivable sur R telle que :.................. Définition Cette fonction est appelée............................ On note : Ainsi

Plus en détail

La fonction logarithme népérien, f(x) = ln(x).

La fonction logarithme népérien, f(x) = ln(x). La fonction logarithme népérien, f() = ln() L étude des fonctions est une notion fondamentale du programme de Terminale STG A l heure actuelle, les fonctions rencontrées sont celles connues depuis la seconde

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n,

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n, Correction DC1 Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : 00. Pour tout entier naturel n, 10 100 15 100 90 100 15 100 00 3 4 330 3 4 330 3. L algorithme ci-dessous permet

Plus en détail

Chapitre 6. Fonctions logarithmes

Chapitre 6. Fonctions logarithmes Chapitre 6 Fonctions logarithmes Les logarithmes (logos = rapport, arithmeticos = nombres sont apparus grâce au mathématicien Écossais John Napier (550-67 qui cherchait à simplifier les calculs astronomiques.

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

CORRECTION - FX 0. ab a b + 1 1

CORRECTION - FX 0. ab a b + 1 1 Lycée Thiers CORRECTION - FX 0 Exercice. Somme et produit... qui est le plus grand? On considère deux entiers a, b >. Comparer et ab. On constate que : ab a b + = a ) b ) > 0 Or, si p, q sont entiers,

Plus en détail