Les nombres complexes : forme algébrique

Dimension: px
Commencer à balayer dès la page:

Download "Les nombres complexes : forme algébrique"

Transcription

1 Isabelle orel-ts-cours complexes forme algébrique Les nombres complexes : forme algébrique Introduction. Le problème L histoire des nombres complexes commence en pleine Renaissance italienne avec les algébristes italiens, à propos de la résolution des équations de degré 3. Citons, entre autres, Cardan (50-576) et Tartaglia ( ). En 547, Cardanpublie dans Ars agna le résultat suivant : Une solution de l équation x 3 = px + q est 3 q q + 4 p q q 4 p3 7. Cette formule fonctionne parfaitement pour l équation x 3 = 36x+9 par exemple : une solution est 7. En factorisant alors, on obtient : x 3 36x 9 = (x 7)(x +7x+3). Le discriminant de x + 7x + 3 étant négatif, on en conclut que l équation x 3 = 36x + 9 a une unique solution réelle : 7. Considérons à présent l équation : x 3 = 5x + 4. Si on applique la formule précédente, q 4 p3 = 76, ce qui pose un problème puisque l on doit en prendre la 7 racine. Pourtant, cette équation a trois solutions réelles, dont qui est une solution évidente. Afin de contourner ce problème, Bombelli a l idée, en utilisant les règles de calcul usuelles, d introduire des nombres pouvant avoir un carré négatif : c est l introduction des nombres complexes. Il a cependant fallu attendre deux siècles pour avoir une construction correcte de l ensemble des nombres comples C, faite pas Euler. Il a encore fallu attendre pour une interprétation géométrique des nombres complexes (Gauss et Argand au début du 9ième siècle), interprétation qui jouera un rôle prépondérant dans notre étude des nombres complexes.. Un petit peu de géométrie La droite des réels est en bijection avec l ensemble des réels : à tout nombre réel x, on peut associer un unique point de la droite (O; i ) : le point d abscisse x; et réciproquement, à tout point de la droite des réels (O; i ), on peut associer un nombre : l abscisse x de. Nous avons cependant l habitude de travailler dans le plan (en dimension ) et non pas sur une droite (en dimension ). On convient alors que tout point du plan représente un nombre, que l on appellera nombre complexe : Les nombres i et j étant des nombres complexes particuliers, on notera ( et non pas O ; i, ) j le repère du plan. ( O ; u, ) v L axe des abscisses reste l axe des réels. Tout point de cet axe rerpésente donc un nombre réel. Le point J(0; ) représente le nombre complexe noté i. Le point N(0; y) représente le nombre complexe y i. Placer alors les points N (3 i), N (0 i), N 3 ( i). Quels nombres complexes les nombres suivants représentent-ils : N 4 (0; 3); N 5 (0; 5)? Le point (a; b) représente le nombre complexe a+ib, puisque O = a OI+b OJ. Quels sont les nombres complexes représentés par les points (; ); ( ; 4); 3 (3; )? Déterminer les coordonnées des points du plan représentant les nombres complexes z = + 3i, z = + i et z 3 = 4 + ( 3)i. Tout point (a; b) représente donc le nombre complexe a + ib. Tout nombre complexe a + ib est représenté par le point (a; b). 3 b N J(i) (iy) (a + ib) a On peut remarquer que pour passer du point A () au point A (i), on effectue une rotation de centre O et d angle π. Par conséquent, on peut conjecturer que pour passer du point A (i) au point A 3 (i = i i) on effectue encore une rotation de centre O et d angle π. Il semblerait donc que i =.

2 Isabelle orel-ts-cours complexes forme algébrique.3 Le corps des complexes On admet le théorème suivant : Théorème sur l existence de C Il existe un ensemble C contenant R et vérifiant : C est muni d une addition et d une multiplication qui prolongent celles de R et suivent les mêmes règles de calcul; Il existe un élément i de C tel que i = ; Tout élément z de C s écrit de manière unique : z = a + ib avec a et b réels. C est l ensemble des nombres complexes. Vocabulaire et définitions L écriture z = a + ib avec a et b réels est appelée forme algébrique du nombre complexe z. Dans ce cas, a est appelé la partie réelle de z et noté Rez et b la partie imaginaire de z et noté Imz. Si b = Imz = 0 alors on dit que z est réel. Si a = Rez = 0 alors on dit que z est un imaginaire pur. On écrit : z ir. Remarques :. Rez et Imz sont des réels.. Pour tout nombre réel x, on a : x = x + i 0 C. On a donc bien R C. 3. Si Rez = Imz = 0, alors z = 0 : z est le complexe nul. Exemples :. +4i est le nombre complexe ayant pour partie réelle et 4 pour partie imaginaire.. Le nombre complexe 5 est réel. 3. Le nombre complexe i est imaginaire pur..4 Représentation géométrique d un nombre complexe ( On considère le plan muni d un repère orthonormal direct O ; u, ) v. Soit z = x + iy un nombre complexe, x et y étant des réels. Le point du plan, de coordonnées (x; y) est l image de z ou point associé à z. Il est noté. Au point du plan de coordonnées (x; y) est associé le complexe z = x + iy, appelé affixe de et noté z. L axe des abscisses représente l ensemble R des réels. L axe des ordonnées représente l ensemble ir des imaginaires purs. La distance O est appelée module de z, notée O = z. Par conséquent (application directe du théorème de Pythagore, le repère étant orthonormé), z = x + y. Le vecteur w = x u + y v est l image vectorielle du complexe z. z = x + iy est appelé l affixe du vecteur w. En particulier, AB a pour affixe zb z A et AB = AB = zb z A Im Applications : axe imaginaire pur O = z axe réel 3 4Re Déterminer le module des nombres complexes suivants : z = + i z = i z 3 = i z 4 = 7 z 5 = cos 7π + i sin7π z 6 = cos π 3 + i sin π 4. On considère les points A( + 3i) et B( i). Déterminer AB.

3 Isabelle orel-ts-cours complexes forme algébrique 3 3. On considère les points A, B, C et D d affixes respectives z A = +3i, z B = i, z C = 5i et z D = 4 i. Quelle est la nature du quadrilatère ABCD? 4. Déterminer l ensemble des points du plan tels que z + 3 = z i. 5. On considère deux points A(z A ) et B(z B ). Quelle est l affixe du milieu I de [AB]? 6. Soient A(z A ), B(z B ) et C(z C ) trois points du plan et soient α, β et γ trois réels tels que α + β + γ 0. Quelle est l affixe du barycentre du système {(A; α); (B, β); (C, γ)}?.5 Egalité de deux complexes Théorème sur l égalité de deux complexes. Deux nombres complexes sont égaux si et seulement si ils ont même partie imaginaire et même partie réelle. C est-à-dire : soient a, b, a et b des réels. a+ib = a +ib a = a et b = b.. Soient a et b des réels. a + ib = 0 a = b = 0.. C est une reformulation du troisième point du théorème sur l existence de C.. Soient a et b réels, tels que a + ib = 0. Alors, a + ib = 0 + i 0. Donc, d après le point précédent, a = 0 et b = 0. Applications :. Résoudre dans C l équation z = Le nombre i est solution de l équation i =. Soit z une autre solution. Alors z i = 0 = (z i)(z + i). Donc z = i ou z = i.. Soit le nombre complexe z = x y + ixy, avec x et y réels. Soit le point de coordonnées (x; y). Les points tels que z est réel sont les points dont les coordonnées vérifient xy = 0, c est-à-dire x = 0 ou y = 0. Donc l ensemble des points tels que z est réel est la réunion de l axe réel et de l axe imaginaire. Calculs avec la forme algébrique. Les quatre opérations Ce paragraphe explique les quatre opérations avec des nombres complexes. Ces opérations prolongeant celles dans l ensemble des réels, les formules ne sont pas à apprendre : vous devez simplement savoir additionner, soustraire, multiplier et diviser deux nombres complexes donnés. Soient z = a + ib et z = a + ib deux nombres complexes. D après le théorème, pour additionner ou multiplier deux complexes, on suit les mêmes règles de calcul que dans R. On a alors : z + z = a + ib + a + ib z + z = (a + a ) + i(b + b ) et : zz = (a + ib) (a + ib ) zz = aa bb ) + iab + iba zz = (aa bb ) + i(ab + ba ) Par conséquent, en prenant z =, z = ib. On en déduit alors, z z = (a a ) + i(b b ). Si z = a + ib 0, alors a 0 et b 0. On a alors : (a + ib)(a ib) = a + b 0. D où : a (a + ib) ( a + b i b (a + ib)(a ib) a ) = + b a + b = a + b a + b = Donc tout nombre complexe z non nul admet un inverse, noté z. Ceci permet de définir le quotient z z = z z avec z 0. Exemple : Ecrire sous forme algébrique le complexe 3i. Formules à savoir retrouver et utiliser mais à ne pas apprendre par coeur (a + ib) + (a + ib ) = (a + a ) + i(b + b ) (a + ib) (a + ib ) = (aa bb ) + i(ab + ba ) (a + ib)(a ib) = a + b. Interprétation géométrique On se place dans le plan complexe (O; u ; v ). Soient et (z ) deux points du plan. L écriture algébrique de z est z = a + ib et celle de z est z = a + ib.. Soit S le point défini par OS = O + O. On a alors : OS = (a + a ) u + (b + b ) v. L affixe du point S est donc : Donc : z S = (a + a ) + i(b + b ) = z + z

4 Isabelle orel-ts-cours complexes forme algébrique 4 z = O+ O z +z O O. Soit k un réel et soit P le point défini par OP = ko. Alors OP = ka u + kb v. L affixe de P est donc ka + ikb = kz. Donc : ( z) z ko = kz O = O + O = O + O. Donc l affixe de est z z. On a donc z = z z 3 Conjugué d un nombre complexe 3. Définition Définition du conjugué Soit z = a + ib un nombre complexe (a et b réels). Le complexe z = a ib est appelé le conjugué de z. Exemples :. =. (-z) On a donc : Re = Re et Im = Im. O = O, par conséquent, z = z. 3.3 Propriétés Opérations avec le conjugué. z = z z = z.. z = z. 3. z + z = z + z. 4. z = z. 5. zz = z z. 6. z n = z n pour tout entier n.. i = i i = 5 6i. 4. 7i = + 7i. 3. Interprétation géométrique Dans le plan complexe, le point est le symétrique du point par rapport à l axe des réels. 7. ( z ) = pour tout z 0. z 8. ( z ) = z pour tout z 0. z z 9. pour tout z = a + ib, zz = a + b. On pose z = a + ib et z = a + ib.. z = z a + ib = a + ib a = a et b = b a = a et b = b z = z.. z = a ib = a + ib = z.

5 Isabelle orel-ts-cours complexes forme algébrique 5 3. Faire la suite pour s entraîner cela fonctionne de la même manière! 3.4 Propriétés Théorème liant partie réelle, partie imaginaire, complexe et conjugué Soit z = a + ib avec a et b réels. On a alors :. z + z = Re.. z z = iim. 3. Re = z + z. 4. Im = z z. i Soit z = a + ib l écriture algébrique du complexe z.. z + z = a + ib + a ib = a = Re.. z z = a + ib (a ib) = ib = iim. Condition nécessaire et suffisante pour avoir un réel ou un imaginaire pur z R z = z et z ir z = z.. z R z = z Im = 0 z z i. z ir z = z Re = 0 z + z 3.5 Applications. Déterminer le conjugué de 4 5i 3 + i. = 0 z z = 0. = 0 z + z = 0.. Pour tout nombre complexe z 5, déterminer le conjugué de z i 5z Ecrire le complexe z = i sous forme algébrique i 4. Soit z un nombre complexe. Parmi les nombres suivants, lesquels sont réels? imaginaires purs? + zz; z z ; (z + iz)(z iz). 5. Résoudre l équation z + i = iz Calculer ( + i 3) 3 ( i) ontrer que pour tout nombre complexe z i, iz + z i ir. 4 odule d un nombre complexe Propriétés du module : Soient z et z deux nombres complexes. Alors :. zz = z z.. Pour tout entier naturel n, z n = z n. 3. Pour tout z 0, z = z. 4. Si z 0, z z = z z.. On écrit z et z sous forme algébrique : z = a + ib et z = a + ib. Alors : zz = (aa bb ) + i(ab + ba ) zz = (aa bb ) + (ab + ba ) zz = (aa ) + (bb ) aa bb + (ab ) + (ba ) + ab ba zz = a a + bb + a b + ba zz = a (a + b ) + b (a + b ) zz = (a + b )(a + b ) zz = z z Tout étant positif, on en conclut que zz = z z.. On montre alors par récurrence que pour tout entier naturel n, z n = z n (à faire). 3. Soit z 0. Alors :

6 Isabelle orel-ts-cours complexes forme algébrique 6 z = a ib a + b z = z = z = a + b (a + b ) a + b z 4 3 z + z (z ) z z (z + z ) 4. Pour tout nombre complexe z 0, on a alors : z = z = z = z z z z z = z z. Remarque : On a montré aussi (point 3) que pour tout z 0, z + z correspond au chemin O puis puis z +z correspond au chemin direct de O à Inégalité triangulaire z = z z et zz = a + b = z 3 4. Pour tous nombres complexes z et z, on a : z + z z + z. et étant deux points d affixes z et z, on a : z z =.. Soient et (z ). Soit S le point tel que OS = O + O. Donc OS a pour affixe z + z et par conséquent, OS = z + z. De plus, O = z et S = O = z. On applique alors l inégalité triangulaire dans le triangle OS : OS O + S. Soit, z + z z + z.. On a : z = z z. Donc = z = z z. Remarque : L inégalité triangulaire dit simplement que le plus court chemin pour joindre deux points est la ligne droite :

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique]

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique] SOMMAIRE * 1. NOTION DE NOMBRE COMPLEXE... 2 DEFINITIONS ET PROPRIETES.... 2 * 2. INTERPRETATION GEOMETRIQUE.... 3 * 3. AFFIXE D UN VECTEUR, D UN BARYCENTRE... 3 * 4. NOMBRES COMPLEXES CONJUGUES... 4 *

Plus en détail

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) =

Chapitre 10 Nombres complexes NOMBRES COMPLEXES. et Im(z) = Chapitre 0 Nombres complexes NOMBRES COMPLEXES I- - Forme algébrique d un nombre complexe Définition : On note C l ensemble des nombres de la forme z = x + iy, où x et y sont deux nombres réels et ii un

Plus en détail

Les nombres complexes

Les nombres complexes Lycée Paul Doumer 2013-2014 TS1 Cours Les nombres complexes Contents 1 Introduction - Une extension des ensembles de nombres 2 2 Forme algébrique d un nombre complexe 3 2.1 Définitions et vocabulaire..............................

Plus en détail

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire :

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire : Nombres complexes 1 Ensemble des nombres complexes 1.1 Forme algébrique d un nombre complexe Théorème Admis 1. Il existe un ensemble, noté C, d éléments appelés nombres complexes, tel que : C contient

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

Chapitre VI : Complexes (1) Forme algébrique

Chapitre VI : Complexes (1) Forme algébrique Forme algébrique. Ensemble des nombres complexes. Notion de nombres complexes Théorème l existe un ensemble, noté, appelé ensemble de nombres complexes qui possède les propriétés suivantes : R l addition

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 25 mars 2014 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

Nombres complexes, cours, première STI2D

Nombres complexes, cours, première STI2D Nombres complexes, cours, première STID F.Gaudon 9 juin 015 Table des matières 1 Notion de nombre complexe Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes 3 4

Plus en détail

Nombres complexes. Lycée du parc. Année

Nombres complexes. Lycée du parc. Année Nombres complexes Lycée du parc Année 2014-2015 Introduction historique Au début du XVI ème siècle en Italie, Scipione del Ferro, découvre une formule permettant de résoudre les équations du type x 3 +

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombres complexes

BTS Mécanique et Automatismes Industriels. Nombres complexes BTS Mécanique et Automatismes Industriels, Année scolaire 006 007 Table des matières. Les différentes écritures. - Forme algébrique d un nombre complexe. - Représentation géométrique d un nombre complexe.3

Plus en détail

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS Terminale S (3-4) I GÉNÉRALITÉS I. Présentation des nombres complexes Définition - Théorème : (admis) Il existe un ensemble noté C, contenant R, vérifiant les conditions suivantes : C est muni d une addition

Plus en détail

Cours de terminale S Les nombres complexes

Cours de terminale S Les nombres complexes Cours de terminale S Les nombres complexes V. B. et S. B. Lycée des EK 20 décembre 2014 Définition Vocabulaire Conséquences Définition Il existe un ensemble, noté C, d éléments appelés nombres complexes,

Plus en détail

Ecritures des nombres complexes

Ecritures des nombres complexes Ecritures des nombres complexes I. Rappel sur les nombres complexes Le nombre i est un nombre dont le carré vaut 1. Donc : i² = 1 De plus, son opposé i a aussi pour carré 1. ( i)² = i² = 1 Les deux racines

Plus en détail

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71 NMBRES CMPLEXES I - Représentation géométrique Rappel Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k n a par

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 18 décembre 2013 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

I. Nombres complexes. 1 Corps C des nombres complexes

I. Nombres complexes. 1 Corps C des nombres complexes 1 Corps C des nombres complexes Théorème 1. Il existe un ensemble C des nombres complexes qui possède les propriétés suivantes : C contient R. C est muni d une addition et d une multiplication qui suivent

Plus en détail

Nombres complexes Forme algébrique

Nombres complexes Forme algébrique Nombres complexes Forme algébrique I) Forme algébrique d un nombre complexe 1) Définitions On admet l existence d un nombre, noté dont le carré est égal à On appelle alors nombre complexe tout nombre de

Plus en détail

Nombres complexes. s'écrit alors i

Nombres complexes. s'écrit alors i Nombres complexes préambule : En 1545, dans son ouvrage Artis magnae sive regulis algebraicus, le mathématicien italien Cardan veut résoudre l'équation : x(10 x) 40. Il est confronté à une opération impossible

Plus en détail

CHAPITRE 4 : Les nombres complexes

CHAPITRE 4 : Les nombres complexes CHAPITRE 4 : Les nombres complexes 1 Définition... 1.1 Théorème... 1. Définitions... 1.3 Théorème... Nombre complexe conjugué... 3.1 Définition... 3. Théorème 1... 3.3 Théorème... 3.4 Théorème 3... 5 3

Plus en détail

NOMBRES COMPLEXES. 2 + q 2

NOMBRES COMPLEXES. 2 + q 2 NMBRES CMPLEXES I - Représentation géométrique f(x) = x 3 Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k 3. k

Plus en détail

1.1 Nombres complexes

1.1 Nombres complexes Université de Provence 011 01 Mathématiques Générales I Parcours PEIP Cours : Nombres complexes 1 Définitions 11 Nombres complexes Définition 1 On appelle nombre complexe tout élément z de la forme z a

Plus en détail

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i.

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i. Chap 5 : Ensemble C 1 Arthur LANNUZEL le 1 Octobre 005 L ensemble C 1 Définition de C 11 Rappels Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + ib, a, b R} où i =

Plus en détail

Les nombres complexes

Les nombres complexes Chapitre 6 Terminale S Ce que dit le programme : Les nombres complexes CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

Les nombres complexes

Les nombres complexes DERNIÈRE IMPRESSION LE 17 février 016 à 15:35 Les nombres complexes Table des matières 1 Introduction 1.1 Un problème historique......................... 1. Création d un nouvel ensemble.....................

Plus en détail

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER D Poquillon, C Mijoule et P Floquet SEPTEMBRE 005 Cours semaine 1 :Introduction, définitions, résolution d équations 1-1 Introduction

Plus en détail

Cours d analyse L1S1P. Analyse L1S1 P

Cours d analyse L1S1P. Analyse L1S1 P Cours d analyse L1S1P 017 Objectifs : 1 Apprendre à calculer avec des formules : domaines de définition, dérivées primitives développements limités Se désinhiber face auxdites formules. À la fin de ce

Plus en détail

Nombres et plan complexes Les exercices fondamentaux à connaître

Nombres et plan complexes Les exercices fondamentaux à connaître Nombres et plan complexes Les exercices fondamentaux à connaître Y. Morel Version en ligne et interactive : http://xymaths.free.fr/lycee/ts/exercices-corriges-complexes.php Table des matières 1 Formes

Plus en détail

Nombres complexes. Les Nombres Complexes

Nombres complexes. Les Nombres Complexes Introduction : Historique : Les Nombres Complexes Au début du XVI ème siècle, le mathématicien Scipione dal Ferro, propose une formule donnant une solution de l'équation du 3 ème degré : A la fin du XVI

Plus en détail

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009 CH 1 Géométrie : Complexes 4 ème Sciences Septembre 009 A. LAATAOUI I. INTRODUCTION ET DEFINITION Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et 3 et a pour racine et

Plus en détail

Chapitre 4 Les nombres complexes : 1ère Partie

Chapitre 4 Les nombres complexes : 1ère Partie Chapitre 4 Les nombres complexes : 1ère Partie A) Définition et propriétés de base 1) Historique Les nombre complexes ont été inventés au départ en 1545 par le mathématicien italien Jérôme Cardan (Girolamo

Plus en détail

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique :

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique : Définition Nombres complexes L'ensemble des nombres complexes noté est l'ensemble des nombres de la forme z = a + biou a et b sont des réels quelconques et i un nouveau nombre tel que i²= -1. Le nombre

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES LES NMBRES CMPLEXES Table des matières Écriture algébrique d un nombre complee Définitions Propriétés 3 Somme, produit et inverse 4 Équation dans C Représentation géométrique d un nombre complee 4 Définitions

Plus en détail

NOMBRES COMPLEXES (Partie 1)

NOMBRES COMPLEXES (Partie 1) NOMBRES COMPLEXES (Partie 1) 1 Les nombres complexes prennent naissance au XVIème siècle lorsqu un italien Gerolamo Cardano (1501 ; 1576), ci-contre, au nom francisé de Jérôme Cardan, introduit 15 pour

Plus en détail

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calculs dans l ensemble des nombres complexes (addition, soustraction, multiplication,

Plus en détail

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque...

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque... Le corps C des nombres complexes Table des matières 1 Définitions algébrique et géométrique de C 1 1.1 Définition de C............................................. 1 1. Structure algébrique de C.......................................

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

cours de mathématiques en terminale

cours de mathématiques en terminale cours de mathématiques en terminale Les nombres complexes (partie 1) I. Notion de nombre complexe : 1. Théorème : théorème :. Il existe un ensemble noté propriétés suivantes :, appellé ensemble des nombres

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe Module et Argument d un nombre complexe Introduction : Les nombres complexes forment une extension de l'ensemble des nombres réels. Ils permettent notamment de définir des solutions à toutes les équations

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 01-014 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Complexes 1 Le Plan complexe 1.1 Introduction Dans tout ce chapitre,

Plus en détail

NOMBRES COMPLEXES. Jean Chanzy. Université de Paris-Sud. u 3 + v 3 = q. = q = p3 27. u 3 + v 3 u 3 v p3. q v 3 = q p3.

NOMBRES COMPLEXES. Jean Chanzy. Université de Paris-Sud. u 3 + v 3 = q. = q = p3 27. u 3 + v 3 u 3 v p3. q v 3 = q p3. NMBRES CMPLEXES Jean Chanz Université de Paris-Sud Nécessité d introduire l ensemble C : Considérons l équation 3 5 4 = 0. Elle a pour solution évidente = 4. Le trinôme 3 5 4 se factorise en ( 4)( + b

Plus en détail

TRANSFORMATIONS ET NOMBRES COMPLEXES

TRANSFORMATIONS ET NOMBRES COMPLEXES TRANSFORATIONS ET NOBRES COPLEXES Table des matières Applications géométriques des nombres complexes. Arguments d un nombre complexe........................................... Ensemble de points du plan.

Plus en détail

Nombres complexes. Chapitre 1

Nombres complexes. Chapitre 1 Chapitre 1 Nombres complexes Les nombres complexes sont apparus en Italie au XVI e siècle. Niccolo Tartaglia le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme Cardan qui

Plus en détail

Nombres complexes. I.2 Représentation géométrique des nombres complexes

Nombres complexes. I.2 Représentation géométrique des nombres complexes MTA - ch3 Page 1/11 Nombres complexes I L'ensemble C des nombres complexes I.1 Écriture des nombres complexes Il existe un ensemble noté C de nombres dits complexes vériant : R C C contient le nombre i

Plus en détail

Terminale S - Nombres Complexes

Terminale S - Nombres Complexes Exercice - 1 Terminale S - Nombres Complexes Ecrire le nombre complexe z = 1 + i 3 sous sa forme exponentielle En déduire la forme algébrique de z 5 Exercice - 2 2iπ On pose ω = e 5 1 Calculer ω 5 et prouver

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Nombres complexes et application à la géométrie

Nombres complexes et application à la géométrie Nombres complexes et application à la géométrie I) Représentation graphique d un nombre complexe Le plan est muni d un repère orthonormé (O,u,v). 1) Affixe d un point a) Définition Si M est le point de

Plus en détail

C1 Nombres complexes : forme algébrique. Le plan complexe.

C1 Nombres complexes : forme algébrique. Le plan complexe. C Nombres complexes : forme algébrique. Le plan complexe. OBJECTIFS DU CHAPITRE C- Mettre en œuvre les règles de calcul sur les nombres complexes C-2 Utiliser les nombres complexes pour résoudre un exercice

Plus en détail

Bac Mathématiques. Série S Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 20/20. alainpiller. fr

Bac Mathématiques. Série S Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 20/20. alainpiller. fr Bac Mathématiques Série S - 017 Nombres complexes UNIQUEMENT LE COURS POUR AVOIR 0/0 alainpiller fr SAVOIR I A Définition de l ensemble des nombres complexes : L ensemble des nombres complexes est un

Plus en détail

Chapitre X : Nombres Complexes

Chapitre X : Nombres Complexes Chapitre X : Nombres Complexes I : L ensemble des complexes Il existe un ensemble appelé ensemble des nombres complexes, qu on note C et qui possède les propriétés suivantes : 1. C contient R (on note

Plus en détail

Cours de Terminale S /Nombres complexes. E. Dostal

Cours de Terminale S /Nombres complexes. E. Dostal Cours de Terminale S /Nombres complexes E. Dostal aout 01 Table des matières 8 Nombres complexes 8.1 Introduction............................................ 8. Le plan complexe.........................................

Plus en détail

Les transformations du plan

Les transformations du plan Les transformations du plan 6. Nombres complexes et transformations du plan... 6. Equations analytiques... 6. Les translations... 64. Les homothéties... 4 65. Les rotations... 5 66. Similitudes... 6 67.

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES S.A.Q LES NOMBRES COMPLEXES Aperçu historique Définition Module d'un nombre complexe Argument d'un nombre complexe Nombre complexe et géométrie Ensemble des points M dont l'affixe z vérifie une propriété

Plus en détail

Les nombres complexes

Les nombres complexes Exercices 9 novembre 014 Les nombres complexes Aspect géométrique Exercice 1 1) D est le point de coordonnées ( 3; 3). Quel est son affixe? ) On donne les points A, B, C d affixes respectives : z A = 3+i,

Plus en détail

Chapitre 1 Les nombres complexes

Chapitre 1 Les nombres complexes Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels

Plus en détail

Terminale STI-GE

Terminale STI-GE Le programme : Les premiers éléments de l'étude des nombres complexes ont été mis en place en première. L'objectif est de compléter cet acquis pour fournir des outils utilisés en algèbre, en trigonométrie

Plus en détail

Nombres complexes I C H A P I T R E

Nombres complexes I C H A P I T R E 4 C H A P I T R E Nombres complexes I Jérôme CARDAN mathématicien, philosophe et astrologue se passionne pour les équations du troisième et quatrième degré. Il fait venir chez lui TARTAGLIA et lui arrache

Plus en détail

1 Forme cartésienne, forme polaire

1 Forme cartésienne, forme polaire AMU 015-016 Licence MI 1ère année-s1 GÉOMÉTRIE ET ARITHMÉTIQUE Planche : Nombres complexes 1 Forme cartésienne, forme polaire EXERCICE 1 ( 3+6i Mettre sous la forme a+ib (a,b R) les nombres : 3 4i, 1+i

Plus en détail

Fiche d exercices 8 : Nombres complexes

Fiche d exercices 8 : Nombres complexes Fiche d exercices 8 : Nombres complexes Ecriture algébrique Exercice 1 1. Donner l écriture algébrique des nombres complexes ci-dessous : i a. z = 1+ 1 + i 1 b. z = c. z3 = i 1 i + i. On considère les

Plus en détail

Fiche n o 1. Nombres complexes. Exercice 2. Mettre sous forme algébrique, puis trigonométrique le nombre complexe Z = Calculer Z 3.

Fiche n o 1. Nombres complexes. Exercice 2. Mettre sous forme algébrique, puis trigonométrique le nombre complexe Z = Calculer Z 3. BCPST. Année 00-0 Lycée Pierre de Fermat Toulouse Fiche n o Nombres complexes Exercice. On considère les nombres complexes a = + i et b = 3 i. a Déterminer la forme trigonométrique de a, b, et de ab. b

Plus en détail

Corps des complexes. 1 Calculs dans C Le corps C Module, conjugaison Interprétation géométrique... 2

Corps des complexes. 1 Calculs dans C Le corps C Module, conjugaison Interprétation géométrique... 2 Maths PCSI Cours Table des matières Corps des complexes 1 Calculs dans C 1.1 Le corps C............................................... 1. Module, conjugaison......................................... 1.3

Plus en détail

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths

Géométrie. δmaths BAC MATHS. M. Ezeddine ABDA DeltaMaths Géométrie BAC MATHS δmaths M. Ezeddine ABDA DeltaMaths Nombres complexes * +. Si, alors il existe un unique couple tel que. est la forme algébrique du nombre complexe. : la partie réelle de. : la partie

Plus en détail

Module : Algèbre 1 (S1)

Module : Algèbre 1 (S1) Université Mohammed V Faculté des Sciences-Rabat Département de Mathématiques ---------------------------------------------------------------------------------------------------------------------- Module

Plus en détail

Chapitre F : Nombres complexes

Chapitre F : Nombres complexes Chapitre F : Nombres complexes Thomas Rey thomas.rey83@free.fr 14 décembre 2008 Table des matières 1 Objectifs 4 1.1 Objectifs en terminale S............................... 4 1.2 Objectifs en MPSI..................................

Plus en détail

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0.

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0. PTSI2 2016/2017 Maths Lycée La Martinière-Monplaisir Lyon Ch 4. Complexes. 1 L ensemble C des nombres complexes 1.a Introduction Pour résoudre une équation de la forme ax 2 + bx + c = 0, avec a, b, c réels

Plus en détail

Cours Chapitre 1 : Nombres complexes

Cours Chapitre 1 : Nombres complexes Mr Arfaoui.O Tél : 563334 4 éme année sc & tech Cours Chapitre : Nombres complexes Forme cartésienne (algébrique) : Définition : La forme algébrique d un nombre complexe zεc est : z = a + ib avec a et

Plus en détail

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B

et z B alors le vecteur AB a pour affixe le iy B. Alors par définition les coordonnées = x B, z B, z C et z D, z C = z B Chapitre 9 Nombres complexes et géométrie Dans tout ce chapitre on se place dans un repère orthonormal direct du plan complexe O ; i ; j. 1. Affixe d un vecteur Définitions et conséquences Définition :

Plus en détail

Inversion complexe et cocyclicité

Inversion complexe et cocyclicité Inversion complexe et cocyclicité Jean-Marie Lion Université de Rennes Brève introduction aux nombres complexes L addition et la multiplication dans C sont définies de la façon suivante : si z = x + iy

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Nombres complexes. 1 Le corps commutatif (C, +, )

Nombres complexes. 1 Le corps commutatif (C, +, ) Nombres complexes La construction du corps des réels a permis de gagner, par rapport au corps des rationnels, des propriétés topologiques importantes : complétude, théorème de la borne supérieure... À

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

Nombres complexes. Chapitre 2 ÉCRITURE ALGÉBRIQUE. Sommaire. 1) L ensemble des complexes

Nombres complexes. Chapitre 2 ÉCRITURE ALGÉBRIQUE. Sommaire. 1) L ensemble des complexes Chapitre Nombres complexes Sommaire I Écriture algébrique........................................... 11 1) L ensemble des complexes................................... 11 ) Partie réelle, partie imaginaire.................................

Plus en détail

Nombres complexes (1ère partie)

Nombres complexes (1ère partie) Fiche BAC 06 Nombres complexes (1ère partie) Exercice n 1. Bac Asie, Juin 00 (modifié) 1 ) Dans le plan complexe rapporté au repère orthonormé direct (O, u, v), on considère les quatre points A, B, C et

Plus en détail

Nombres complexes - Partie 2

Nombres complexes - Partie 2 Chapitre F Nombres complexes - Partie 2 Contenus Capacités attendues Commentaires Forme trigonométrique : module et argument, interprétation géométrique dans un repère orthonormé direct ; notation exponentielle.

Plus en détail

I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE

I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE I- FORME EXPONENTIELLE D UN NOMBRE COMPLEXE Définition 1 : soit θ un nombre réel. On pose : cossin Théorème 1 (admis) : soit et deux nombres réels. Alors : Définition : soit r un nombre réel strictement

Plus en détail

Exercices 2. Trigonométrie et nombres complexes... Rappels de trigonométrie et de géométrie, nombres complexes et équations algébriques.

Exercices 2. Trigonométrie et nombres complexes... Rappels de trigonométrie et de géométrie, nombres complexes et équations algébriques. Exercices Trigonométrie et nombres complexes Rappels de trigonométrie et de géométrie, nombres complexes et équations algébriques. Trigonométrie et nombres complexes....................................................

Plus en détail

Fondamentaux d'algèbre et de trigonométrie

Fondamentaux d'algèbre et de trigonométrie Fondamentaux d'algèbre et de trigonométrie I Fonctions trigonométriques ) cercle trigonométrique Définition On considère un repère orthonormé (O ; I, J) Un cercle trigonométrique est un cercle de rayon,

Plus en détail

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats Fiche BAC 09 Terminale S Nombres complexes (ème partie) Exercice 1 ( Ex n Antilles-Guyane juin 000 adapté) Commun à tous les candidats 1 ) Pour tout nombre complexe z, on pose P (z)=z 3 3 z +3 z+7. a)

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe I Module et Argument d un nombre complexe Tout point M du plan peut être repéré par un couple de coordonnées polaires (r, θ) (r > 0, θ réel) M r est la distance OM ; θ est une mesure de l angle ( u, OM).

Plus en détail

NOMBRES COMPLEXES. 1. Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i, z 2 = 1 i, z 3 = 1 + i 3, z 4 = 1 + i 3 1 i

NOMBRES COMPLEXES. 1. Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i, z 2 = 1 i, z 3 = 1 + i 3, z 4 = 1 + i 3 1 i NOMBRES COMPLEXES 1 Calculer le module et l argument des nombres complexes suivants : z 1 = 1 + i z = 1 i z = 1 + i z 4 = 1 + i 1 i Calculer les nombres complexes suivants : w 1 = (1 + i) 1 w = ( 1 + i

Plus en détail

Série Maths. Nombres complexes. . Exercice n 1 : On considère l'équation : 2 Z² - 4 i Z 3- i 3 = 0

Série Maths. Nombres complexes. . Exercice n 1 : On considère l'équation : 2 Z² - 4 i Z 3- i 3 = 0 . Exercice n 1 : On considère l'équation : Z² - 4 i Z 3- i 3 = 0 1- Montrer que cette équation possède deux solutions complexes distinctes Z 1 et Z. - On désigne par M 1 et M les points du plan complexes

Plus en détail

La règle et le compas. 1 Motivation historique. 1.1 La trissection des angles. 1.2 La duplication du cube. Éléments de géométrie

La règle et le compas. 1 Motivation historique. 1.1 La trissection des angles. 1.2 La duplication du cube. Éléments de géométrie Éléments de géométrie rnaud odin, avril 2012 La règle et le compas 1 Motivation historique 1.1 La trissection des angles Considérons un angle α, c est-à-dire la donnée d un point et de deux demi-droite

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

Cours : SIMILITUDES PLANES.

Cours : SIMILITUDES PLANES. A la fin de ce chapitre vous devez être capable de : définir une similitude plane à partir de la conservation des rapports des distances. en déduire la définition du rapport de similitude. faire le lien

Plus en détail

LES COMPLEXES. Il existe plusieurs formes pour écrire un nombre complexe z. Selon le contexte, une est plus appropriée qu'une autre.

LES COMPLEXES. Il existe plusieurs formes pour écrire un nombre complexe z. Selon le contexte, une est plus appropriée qu'une autre. 1A 010-011 LES COMPLEXES Objectifs Connaître les diérentes formes d'un nombre complexe. Savoir résoudre une équation complexe. Savoir linéariser un sinus ou un cosinus. Dénition 1. On note C l'ensemble

Plus en détail

Corrigé du baccalauréat S Centres étrangers 16 juin 2011

Corrigé du baccalauréat S Centres étrangers 16 juin 2011 Corrigé du baccalauréat S Centres étrangers 6 juin EXERCICE Commun à tous les candidats 4 points. a. A O A A 4 A 6 A 5 A A On a a a a,5, puis a,75, a 4,65 a 5,6875 et a 6,6565 b. c. Puisque le point A

Plus en détail

() Compléments de géométrie 1 / 33

() Compléments de géométrie 1 / 33 Compléments de géométrie () Compléments de géométrie 1 / 33 1 Compléments de géométrie dans le plan complexe 2 Calcul barycentrique 3 Transformations du plan complexe () Compléments de géométrie 2 / 33

Plus en détail

On considère l'application T dans le plan qui, à un point M(x ; y), associe le point M ' (x' ; y') définie par le { ( 2)+1=3 , M 3 1 2= 1.

On considère l'application T dans le plan qui, à un point M(x ; y), associe le point M ' (x' ; y') définie par le { ( 2)+1=3 , M 3 1 2= 1. Classe: TS spé Maths Bac blanc spécialité jeudi 7 février 04 Partie I- Matrices et systèmes. Le plan est muni d'un repère orthonormal (O; u, v. On considère l'application T dans le plan qui, à un point

Plus en détail

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit

( ) ( ) Terminale S Chapitre 10 «Nombres complexes 2 ème partie» Page 1 sur 9. I) Forme exponentielle. 1) Argument du produit Terminale S Chapitre 0 «Nombres complexes ème partie» Page sur 9 I) Forme exponentielle ) Argument du produit Propriété : Soient deux nombres complexes et d'arguments respectifs θ et θ. A B A B Alors un

Plus en détail

I) Angle orienté formé par deux vecteurs du plan

I) Angle orienté formé par deux vecteurs du plan CHAPITRE Angles orientés, trigonométrie Capacités au programme : Utiliser le cercle trigonométrique, notamment pour : déterminer les cosinus et sinus d angles associés ; résoudre dans R les équations d

Plus en détail

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR.

Exercice I.1 Montrer que la somme de vecteurs et le produit d un vecteur par un nombre réel donnent à IR 3 une structure d espace vectoriel sur IR. Exercices avec corrigé succinct du chapitre 1 (Remarque : les références ne sont pas gérées dans ce document, par contre les quelques?? qui apparaissent dans ce texte sont bien définis dans la version

Plus en détail

cosinus - mathématiques. 1 PRÉSENTATION

cosinus - mathématiques. 1 PRÉSENTATION cosinus - mathématiques. 1 PRÉSENTATION cosinus, fonction trigonométrique, complémentaire de la fonction sinus, introduites toutes deux dans la définition de la mesure d un angle en géométrie euclidienne.

Plus en détail

Exercices Corrigés Corps des nombres complexes

Exercices Corrigés Corps des nombres complexes Exercices Corrigés Corps des nombres complexes Exercice 1 1) Qu est ce que le conjugué d un nombre complexe? ) Déterminer les nombres complexes z vérifiant : (1 + i)z 1 + i = 0 ) Préciser le complexe :

Plus en détail

Exercices : Nombres complexes

Exercices : Nombres complexes Exercices : Nombres complexes Exercice Calculer le module et un argument des nombres complexes suivants: z = i, z = e iθ + e iθ, z = i ( + i) Exercice Soit z le complexe défini par. Mettre z sous forme

Plus en détail