Nombres rationnels. maths-cfm.fr
|
|
|
- Benjamin Bonnet
- il y a 8 ans
- Total affichages :
Transcription
1 5e
2 Table des matières I. Fractions égales 1 I. Fractions égales 2 3 a. Comparaison de fractions ayant le même dénominateur b. Comparaison de fractions ayant le même numérateur c. Comparaison avec 1 d. Comparaison de fractions de dénominateurs multiples e. En calculant les quotients 4 a. Avec les mêmes dénominateurs b. Avec des dénominateurs différents 5
3 I. Fractions égales Définition Un nombre rationnel est un nombre qui peut s exprimer sous la forme d une fraction : a b, où a et b sont deux entiers relatifs (avec b non nul). On appelle a le numérateur et b le dénominateur.
4 I. Fractions égales 1 À partir d une fraction, on obtient une fraction égale en multipliant le numérateur et le dénominateur par un même nombre. Exemples 2 3 = = 4 6 ; 7 13 = a b = a k b k
5 I. Fractions égales 2 À partir d une fraction, on obtient une fraction égale en divisant le numérateur et le dénominateur par un même nombre. Exemple = = 2 5. a b = a k b k
6 I. Fractions égales À partir d une fraction, on cherche une fraction qui lui est égale, avec le numérateur et le dénominateur le plus petit possible. Exemple = = 12 5.
7 a. Comparaison de fractions ayant le même dénominateur b. Comparaison de fractions ayant le même numérateur c. Comparaison avec 1 d. Comparaison de fractions de dénominateurs multiples e. En calculant les quotients a. Comparaison de fractions ayant le même dénominateur Pour comparer deux fractions ayant le même dénominateur, il suffit de comparer les numérateurs : la fraction ayant le plus grand numérateur est la plus grande. Exemples 3 5 < < 4 peut s interpréter en disant que 4 parts d un gâteau coupé 5 en cinq parts égales valent plus que 3 parts de ce même gâteau.
8 a. Comparaison de fractions ayant le même dénominateur b. Comparaison de fractions ayant le même numérateur c. Comparaison avec 1 d. Comparaison de fractions de dénominateurs multiples e. En calculant les quotients b. Comparaison de fractions ayant le même numérateur Pour comparer deux fractions ayant le même numérateur, il suffit de comparer les dénominateurs : la fraction ayant le plus grand dénominateur est la plus petite. Exemples 4 5 > > 4 peut s interpréter en disant que 4 parts d un gâteau coupé 6 en cinq parts égales valent plus que 4 parts d un gâteau coupé en six qui aura des parts plus petites.
9 c. Comparaison avec 1 a. Comparaison de fractions ayant le même dénominateur b. Comparaison de fractions ayant le même numérateur c. Comparaison avec 1 d. Comparaison de fractions de dénominateurs multiples e. En calculant les quotients Une fraction dont le numérateur est plus petit que le dénominateur est une fraction inférieure à 1. Exemples 4 5 < 1 ; 8 7 > 1. Cela permet de comparer des fractions comme 4 5 et 8 7 : 4 5 < 8 7.
10 a. Comparaison de fractions ayant le même dénominateur b. Comparaison de fractions ayant le même numérateur c. Comparaison avec 1 d. Comparaison de fractions de dénominateurs multiples e. En calculant les quotients d. Comparaison de fractions de dénominateurs multiples Pour comparer deux fractions n ayant pas le même dénominateur, on modifie l écriture des fractions pour qu elles aient le même dénominateur. Exemple Comparer 2 3 et On remarque que 2 3 = = Comme 8 12 > 7 12, on obtient alors que 2 3 > 7 12.
11 e. En calculant les quotients a. Comparaison de fractions ayant le même dénominateur b. Comparaison de fractions ayant le même numérateur c. Comparaison avec 1 d. Comparaison de fractions de dénominateurs multiples e. En calculant les quotients On peut comparer deux fractions en calculant les quotients de chacune des fractions et en comparant les quotients. Exemple 5 En calculant les quotients, comparer 13 et = , = , ,411 est plus grand que 0,384 donc 7 17 > 5 13.
12 a. Avec les mêmes dénominateurs a. Avec les mêmes dénominateurs b. Avec des dénominateurs différents Pour additionner deux fractions ayant le même dénominateur, on prend le dénominateur commun, et on additionne les numérateurs, c est à dire : a c + b c = a + b c Exemple = =
13 a. Avec les mêmes dénominateurs a. Avec les mêmes dénominateurs b. Avec des dénominateurs différents Pour soustraire deux fractions ayant le même dénominateur, on prend le dénominateur commun, et on soustrait les numérateurs, c est à dire : a c b c = a b c Exemple = 11 6 =
14 b. Avec des dénominateurs différents a. Avec les mêmes dénominateurs b. Avec des dénominateurs différents Pour additionner ou soustraire deux fractions ayant des dénominateurs différents, on transforme l écriture des fractions pour qu elles aient le même dénominateur. Exemple = = = =
15 Pour multiplier une fraction par un nombre, on compose une fraction en multipliant ce nombre par le numérateur et en prenant le même dénominateur. C est à dire : Exemples = = k a b = k a b 15 7 = (15 5) 7 = 3 7 = = 4 2 = 8.
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
avec des nombres entiers
Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007
Petit lexique de calcul à l usage des élèves de sixième et de cinquième par M. PARCABE, professeur au collège Alain FOURNIER de BORDEAUX, mars 2007 page 1 / 10 abscisse addition additionner ajouter appliquer
FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines
FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html
Glossaire des nombres
Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
OPÉRATIONS SUR LES FRACTIONS
OPÉRATIONS SUR LES FRACTIONS Sommaire 1. Composantes d'une fraction... 1. Fractions équivalentes... 1. Simplification d'une fraction... 4. Règle d'addition et soustraction de fractions... 5. Règle de multiplication
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Fonction inverse Fonctions homographiques
Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................
Chapitre 1 : Évolution COURS
Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir
Le chiffre est le signe, le nombre est la valeur.
Extrait de cours de maths de 6e Chapitre 1 : Les nombres et les opérations I) Chiffre et nombre 1.1 La numération décimale En mathématique, un chiffre est un signe utilisé pour l'écriture des nombres.
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Dérivation : Résumé de cours et méthodes
Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Raisonnement par récurrence Suites numériques
Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.
Codage d information. Codage d information : -Définition-
Introduction Plan Systèmes de numération et Représentation des nombres Systèmes de numération Système de numération décimale Représentation dans une base b Représentation binaire, Octale et Hexadécimale
Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau
i Présentation du cours de mathématiques de D.A.E.U. B, remise à niveau Bonjour, bienvenue dans votre début d étude du cours de mathématiques de l année de remise à niveau en vue du D.A.E.U. B Au cours
Diviser un nombre décimal par 10 ; 100 ; 1 000
Diviser un nombre décimal par 10 ; 100 ; 1 000 Diviser un nombre décimal par 10 ; 100 ; 1 000. 23 1 et 2 Pauline collectionne les cartes «Tokéron» depuis plusieurs mois. Elle en possède 364 et veut les
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique
SOCLE COMMUN - La Compétence 3 Les principaux éléments de mathématiques et la culture scientifique et technologique DOMAINE P3.C3.D1. Pratiquer une démarche scientifique et technologique, résoudre des
Représentation d un entier en base b
Représentation d un entier en base b 13 octobre 2012 1 Prérequis Les bases de la programmation en langage sont supposées avoir été travaillées L écriture en base b d un entier est ainsi défini à partir
CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de
HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera
B = A = B = A = B = A = B = A = Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution
Q.C.M. Recopier sur la copie chaque expression numérique et la réponse exacte. Réponse A Réponse B Réponse C Solution Exercice 1 On considère les trois nombres A, B et C : 2 x (60 5 x 4 ²) (8 15) Calculer
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
V- Manipulations de nombres en binaire
1 V- Manipulations de nombres en binaire L ordinateur est constitué de milliards de transistors qui travaillent comme des interrupteurs électriques, soit ouverts soit fermés. Soit la ligne est activée,
Les nombres entiers. Durée suggérée: 3 semaines
Les nombres entiers Durée suggérée: 3 semaines Aperçu du module Orientation et contexte Pourquoi est-ce important? Dans le présent module, les élèves multiplieront et diviseront des nombres entiers concrètement,
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Complément d information concernant la fiche de concordance
Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours
Définition : On obtient les nombres entiers en ajoutant ou retranchant des unités à zéro.
Chapitre : Les nombres rationnels Programme officiel BO du 8/08/08 Connaissances : Diviseurs communs à deux entiers, PGCD. Fractions irréductibles. Opérations sur les nombres relatifs en écriture fractionnaire.
Constitution d une Commission d Appel d Offres
Constitution d une Commission d Appel d Offres ATTENTION : * Pour les collectivités territoriales et les établissements publics locaux, sont constituées une ou plusieurs commissions d appel d offres à
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Licence Sciences et Technologies Examen janvier 2010
Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.
LES NOMBRES DECIMAUX. I. Les programmes
LES NOMBRES DECIMAUX I. Les programmes Au cycle des approfondissements (Cours Moyen), une toute première approche des fractions est entreprise, dans le but d aider à la compréhension des nombres décimaux.
Continuité en un point
DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à
L emprunt indivis - généralités
L emprunt indivis - généralités Les modalités de calcul d un échéancier de remboursement d un emprunt indivis forment un thème d étude des outils de gestion en BTS HR (partie mathématiques financières)
Fractions. Pour s y remettre. 66 5 Division 67. Dans ce chapitre, on apprendra à :
Dans ce chapitre, on apprendra à : Fractions Repérer des fractions sur une demi-droite graduée. Identifier une fraction comme le quotient de deux nombres entiers. Reconnaître que deux fractions peuvent
Eté 2015. LIVRET de RÉVISIONS en MATHÉMATIQUES
Eté 2015 LIVRET de RÉVISIONS en MATHÉMATIQUES Destiné aux élèves entrant en Seconde au Lycée Honoré d Estienne d Orves Elaboré par les professeurs de mathématiques des collèges et lycées du secteur Une
THEME : CLES DE CONTROLE. Division euclidienne
THEME : CLES DE CONTROLE Division euclidienne Soit à diviser 12 par 3. Nous pouvons écrire : 12 12 : 3 = 4 ou 12 3 = 4 ou = 4 3 Si par contre, il est demandé de calculer le quotient de 12 par 7, la division
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
Le compte financier 2009
Le compte financier 2009 Référence : - Message Rconseil n 2009-436 - La lettre aux recteurs DAFA3/08-104 du 18 novembre 2008 Un certain nombre de contrôle bloquant ont été introduit dans GFC 2009 confer
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Exercices - Polynômes : corrigé. Opérations sur les polynômes
Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)
Technique opératoire de la division (1)
Unité 17 Technique opératoire de la division (1) Effectuer un calcul posé : division euclidienne de deux entiers. 1 Trois camarades jouent aux cartes. Manu fait la distribution en donnant à chaque joueur
Algorithme. Table des matières
1 Algorithme Table des matières 1 Codage 2 1.1 Système binaire.............................. 2 1.2 La numérotation de position en base décimale............ 2 1.3 La numérotation de position en base binaire..............
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
Logiciel de Base. I. Représentation des nombres
Logiciel de Base (A1-06/07) Léon Mugwaneza ESIL/Dépt. Informatique (bureau A118) [email protected] I. Représentation des nombres Codage et représentation de l'information Information externe formats
Rappels sur les suites - Algorithme
DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................
RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES
RÉSOLUTION DE SYSTÈMES À DEUX INCONNUES Sommaire 1 Méthodes de résolution... 3 1.1. Méthode de Substitution... 3 1.2. Méthode des combinaisons linéaires... 6 La rubrique d'aide qui suit s'attardera aux
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
a)390 + 520 + 150 b)702 + 159 +100
Ex 1 : Calcule un ordre de grandeur du résultat et indique s il sera supérieur à 1 000 L addition est une opération qui permet de calculer la somme de plusieurs nombres. On peut changer l ordre de ses
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.
Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée
1/5 Compétence 2 : Comparer, ranger, encadrer des nombres, les placer sur une droite graduée Étape 1 : associer la droite graduée à deux objets du quotidien : la règle graduée ici, celle de l'enseignant
Factorisation Factoriser en utilisant un facteur commun Fiche méthode
Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
Puissances d un nombre relatif
Puissances d un nombre relatif Activités 1. Puissances d un entier relatif 1. Diffusion d information (Activité avec un tableur) Stéphane vient d apprendre à 10h, la sortie d une nouvelle console de jeu.
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE
COURS EULER: PROGRAMME DE LA PREMIÈRE ANNÉE Le cours de la première année concerne les sujets de 9ème et 10ème années scolaires. Il y a bien sûr des différences puisque nous commençons par exemple par
Par combien de zéros se termine N!?
La recherche à l'école page 79 Par combien de zéros se termine N!? par d es co llèg es An dré Do ucet de Nanterre et Victor Hugo de Noisy le Grand en seignants : Danielle Buteau, Martine Brunstein, Marie-Christine
TP, première séquence d exercices.
TP, première séquence d exercices. Benoît Valiron [email protected] 7 novembre 2010 Introduction Vous écrirez les réponses aux questions courtes sur une feuille à rendre à la fin de la
Indications pour une progression au CM1 et au CM2
Indications pour une progression au CM1 et au CM2 Objectif 1 Construire et utiliser de nouveaux nombres, plus précis que les entiers naturels pour mesurer les grandeurs continues. Introduction : Découvrir
U102 Devoir sur les suites (TST2S)
LES SUITES - DEVOIR 1 EXERCICE 1 L'objectif de cet exercice est de comparer l'évolution des économies de deux personnes au cours d'une année. Pierre possède 500 euros d'économies le 1 er janvier. Il décide
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Correction du Baccalauréat S Amérique du Nord mai 2007
Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n
FONCTION EXPONENTIELLE ( ) 2 = 0.
FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
PRINCIPES DE LA CONSOLIDATION. CHAPITRE 4 : Méthodes de consolidation. Maître de conférences en Sciences de Gestion Diplômé d expertise comptable
PRINCIPES DE LA CONSOLIDATION CHAPITRE 4 : Méthodes de consolidation David Carassus Maître de conférences en Sciences de Gestion Diplômé d expertise comptable SOMMAIRE CHAPITRE I Les fondements de la consolidation
Fiche PanaMaths Calculs avec les fonctions sous Xcas
Fiche PanaMaths Calculs avec les fonctions sous Xcas Cette fiche destinée aux élèves des classes de Terminale requiert un premier niveau de connaissance du logiciel Xcas. Définition d une fonction Fonctions
IFT2880 Organisation des ordinateurs et systèmes
Représentation des nombres flottants Notation exponentielle Représentations équivalentes dans la base 10 de 1,234 1 2 3, 4 0 0. 0 x 1 0-2 1 2, 3 4 0. 0 x 1 0-1 1, 2 3 4. 0 x 1 0 1 2 3. 4 x 1 0 1 2. 3 4
La question est : dans 450 combien de fois 23. L opération est donc la division. Le diviseur. Le quotient
par un nombre entier I La division euclidienne : le quotient est entier Faire l activité division. Exemple Sur une étagère de 4mm de large, combien peut on ranger de livres de mm d épaisseur? La question
Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M
Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Exercices sur les équations du premier degré
1 Exercices sur les équations du premier degré Application des règles 1 et Résoudre dans R les équations suivantes en essayant d appliquer une méthode systématique : 1 x + = x + 9 x + = x x 1 = x + x +
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Chapitre 1 I:\ Soyez courageux!
Chapitre 1 I:\ Soyez courageux! Pour ne rien vous cacher, le langage d'assembleur (souvent désigné sous le terme "Assembleur", bien que ce soit un abus de langage, puisque "Assembleur" désigne le logiciel
Polynômes à plusieurs variables. Résultant
Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \
OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES
OLYMPIADES ACADÉMIQUES DE MATHÉMATIQUES ACADÉMIE DE RENNES SESSION 2006 CLASSE DE PREMIERE DURÉE : 4 heures Ce sujet s adresse à tous les élèves de première quelle que soit leur série. Il comporte cinq
LECON 2 : PROPRIETES DE L'AFFICHAGE Version aout 2011
LECON 2 : PROPRIETES DE L'AFFICHAGE Version aout 2011 COPIER LE FICHIER LECON 1_02 DU DISQUE D : VERS LA CLE USB Cliquez gauche deux fois sur l'icône POSTE DE TRAVAIL Cliquez gauche deux fois sur DONNEES
DOCUMENT POUR REMPLIR LA DÉCLARATION DES REVENUS DE 2013
N 2041 GH N 50149 #18 DOCUMENT POUR REMPLIR LA DÉCLARATION DES REVENUS DE 2013 Ce document n'a qu'une valeur indicative. Il ne se substitue pas à la documentation officielle de l'administration. REVENUS
Taux d évolution moyen.
Chapitre 1 Indice Taux d'évolution moyen Terminale STMG Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Indice simple en base 100. Passer de l indice au taux d évolution, et réciproquement.
La persistance des nombres
regards logique & calcul La persistance des nombres Quand on multiplie les chiffres d un nombre entier, on trouve un autre nombre entier, et l on peut recommencer. Combien de fois? Onze fois au plus...
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R
2. RAPPEL DES TECHNIQUES DE CALCUL DANS R Dans la mesure où les résultats de ce chapitre devraient normalement être bien connus, il n'est rappelé que les formules les plus intéressantes; les justications
Projet de loi n o 4. Présentation. Présenté par M. Laurent Lessard Ministre des Affaires municipales, des Régions et de l Occupation du territoire
DEUXIÈME SESSION TRENTE-NEUVIÈME LéGISLATURE Projet de loi n o 4 Loi permettant aux municipalités d octroyer un crédit de taxes à certains propriétaires d immeubles résidentiels touchés par une hausse
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction
Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses
Les suites numériques
Chapitre 3 Term. STMG Les suites numériques Ce que dit le programme : Suites arithmétiques et géométriques CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Suites arithmétiques et géométriques Expression du terme
CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!»
Corrigé Cours de Mr JULES v3.3 Classe de Quatrième Contrat 1 Page 1 sur 13 CORRIGE LES NOMBRES DECIMAUX RELATIFS. «Réfléchir avant d agir!» «Correction en rouge et italique.» I. Les nombres décimaux relatifs.
Vecteurs. I Translation. 1. Définition :
Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même
108y= 1 où x et y sont des entiers
Polynésie Juin 202 Série S Exercice Partie A On considère l équation ( ) relatifs E :x y= où x et y sont des entiers Vérifier que le couple ( ;3 ) est solution de cette équation 2 Déterminer l ensemble
La dépréciation d'un élément d'actif représente la différence entre sa valeur brute et sa valeur nette comptable.
I - DÉFINITION ET RÔLE DE L'AMORTISSEMENT 1 - Définition de l'amortissement et du plan d'amortissement : L'amortissement est défini comme étant la constatation comptable de la perte subie par la valeur
Feuille TD n 1 Exercices d algorithmique éléments de correction
Master Sciences, Technologies, Santé Mention Mathématiques, spécialité Enseignement des mathématiques Algorithmique et graphes, thèmes du second degré Feuille TD n 1 Exercices d algorithmique éléments
Exercice 6 Associer chaque expression de gauche à sa forme réduite (à droite) :
Eercice a Développer les epressions suivantes : A-(-) - + B-0(3 ²+3-0) -0 3²+-0 3+00 B -30²-30+00 C-3(-) -3 + 3-3²+6 D-(-) + ² Eerciceb Parmi les epressions suivantes, lesquelles sont sous forme réduite?
Fidélité Type 3 Carte de points et cartes cadeaux avec
Fidélité Type 3 Carte de points et cartes cadeaux avec Le but de cette fonction est de permettre à un commerçant d offrir à ses clients des cartes de points, leur permettant d accumuler des points et de
