Oral 1 : Leçon 63 Transformée de Laplace. CAPES externe
|
|
|
- Rémy Rochette
- il y a 10 ans
- Total affichages :
Transcription
1 Oral : Leçon 63 Transformée de Lalace. CAPES externe. Subi Nicolas Année 2 Plan Définition. Définition Transformées usuelles Proriétés 3 2. Linéarité Théorème du retard Dérivation Intégration Utilisation des transformées de Lalace 6 3. Des équations différentielles ordinaires L étude d un circuit RLC Pour cette leçon, on se lace au niveau BTS. Le rogramme se borne à la transformation de Lalace des fonctions causales. Module : Analyse sectrale : Transformation de Lalace. Pré-requis : Intégrations : intégrales et rimitives. Notions sur les intégrales imrores. Définition. Définition Définition.. Une fonction f définie sur R est causale si our tout t strictement négatif, f(t est nulle. Définition.2. On aelle fonction échelon unité la fonction U définie sur R ar : { U(t = si t < U(t = si t
2 2 DÉFINITION Remarque Pour transformer une fonction g définie sur R en une fonction causale f renant les même valeurs sur R +, on la multilie ar la fonction échelon unité : f(t = U(tg(t our tout t R. exemles au tableau. Définition.3. Soit : f : R + R. t f(t une fonction causale. On aelle transformée de Lalace de f la fonction F de la variable comlexe définie ar : F ( = L(f(t = e t f(t F est la transformée de f tandis que f est aelée l original de F. Remarque On utilise généralement la transformée de Lalace our simlifier les calculs des équations différentielles. En effet, comme nous allons le voir dans la artie suivante, dériver une transformée revient à multilier ar, et intégrer revient à diviser ar, ce qui simlifie en effet significativement les calculs. La transformée de Lalace de f n existe que si l intégrale imrore e t f(t est convergente. En classe de BTS on se limite à R. Les conditions sur our que la transformée de Lalace existe ne sont as discutées..2 Transformées usuelles Les élèves n utilisent as en général la définition formelle de la transformée de Lalace, mais des tables de conversion utilisables directement our les calculs. Voici une table regrouant les rinciales transformées utiles our les calculs des BTS : fonction de t transformee (fonction de t 2 t n n! n+ e at t n e a at n! ( a n+ ( 2 +a 2 a ( 2 +a 2 cos(at sin(at Démonstration :. Par abus de notation, on notera les bornes d intégrations qui sont les limites à l infini ar +. Soit f(t =. On a : Soit f(t = t. On a, ar intégration ar arties : Ainsi, d arès le calcul récédent : Et donc, ar croissance comarée : F ( = F ( = [ e t e t = [ te t te t = F ( = [ te t ] + F ( = 2 ] + t= ] + t= t= + 2 = + e t Leçon 63 : Transformée de Lalace
3 3 2 PROPRIÉTÉS Soit f(t = t n. Effectuons une récurrence sur n. P n = f(t = t n, e t t n = n! n=. n+. d arès le calcul du oint récédent. Donc P vrai. Suosons que P n est vrai. Alors : f(t = t donc F ( = 2 f(t = t n+ donc F ( = Effectuons une intégration ar arties, on a : [ F ( = e t t n+ Ainsi, ar hyothèse de récurrence : La roriété est donc vraie our tout n N. Soit f(t = e kt. F ( = Soit f(t = cos(at. Utilisons la formule d Euler : On a donc ar linéarité : D où : Et on a donc : F ( = + n + e t e kt = ] t= + n + n! (n +! = n+ n+2 [ e ( kt e ( kt = ( k cos(at = eiat + e iat L(f( = 2 L(eiat ( + 2 L(e iat ( L(f( = 2 ia ia L(f( = 2 2 ( ia( + ia L(f( = 2 ( 2 + a 2 Si f(t = sin(at, le même tye de calcul que récédemment donne : L(f( = a ( 2 + a 2 e t t n+ e t t n ] + t= = ( k 2 Proriétés 2. Linéarité Proriété 2. La transformée de Lalace ossède la roriété de linéarité : Soit a, b R, et f, g fonctions réelles définies sur R +. L(af + bg = al(f + bl(g Démonstration : ar linéarité de l intégrale. On a donc bien : L(af + bg = e t (af + bg(t. = a e t f(t + b e t g(t L(af + bg = al(f + bl(g Leçon 63 : Transformée de Lalace
4 4 2 PROPRIÉTÉS 2.2 Théorème du retard Si l on considère un signal, ce théorème ermet de regarder le cas où le signal ne commence as à l instant t= mais à l instant t=k, k >. La fonction causale f est translatée. Théorème 2. (du retard. Soit k R. L(f(t k( = e k L(f( Démonstration : L(f(t k( = Avec le changement de variable t t k, on a : L(f(t k( = lim Et f fonction causale translatée de k, nulle sur [, k]. e t f(t k = lim ( k R R + ke (t+k f(t e t f(t k Donc : L(f(t k( = e t e k f(t = e k e t f(t L(f(t k( = e k L(f( Un théorème semblable est le théorème de changement d échelle qui lui fait intervenir une multilication. Théorème 2.2 (de changement d échelle. Soit k ], + [. L(f(kt( = k L(f ( k Démonstration : On utilise là aussi un changement de variable. L(f(kt( = e t f(tk = lim R e t f(tk y = kt, dy = k. On a : L(f(kt( Et donc : = lim L(f(kt( = k kr e y k f(y k dy e y ( k f(ydy = k L(f k 2.3 Dérivation Proriété 2.2 Soit f fonction réelle définie sur R +. Alors on a : où f( + = lim t,t> f(t. Plus généralement on a : L(f = L(f f( + L(f = 2 L(f f( + f ( + L(f (n = n L(f( n f( n 2 f (... f (n 2 f (n Leçon 63 : Transformée de Lalace
5 5 2 PROPRIÉTÉS Démonstration : La remière formule se démontre ar une intégration ar artie. En effet : On a donc bien : En aliquant cette formule à f on a : Et donc : L(f = e t f (t ( L(f = lim [e t f(t] R + L(f = f( + + R L(f = L(f f( + L(f = L(f f ( + e t f(t e t f(t L(f = ( L(f f( + f ( + = 2 L(f f( + f ( + Ces formules se généralisent aisément à f (3, f (3,, f (n. 2.4 Intégration Proriété 2.3 Soit f fonction réelle définie sur R +. Alors on a : L( t f(xdx = L(f( Démonstration : On a d arès la roriété de dérivation : L(f = L(f f( + Considérons F la rimitive de f nulle en, F (t = t f(xdx. On a F (t = f(t. Aliquons la formule récédent à F, on a : L(F = L(F F ( + = L(F et donc L(F = L(f. L(f = L(F Exercice. Trouver l original de : L(y = On a : Ainsi, d arès les tables : = ( + 2( + 3 = y(t = 2e 2t + e 3t Leçon 63 : Transformée de Lalace
6 6 3 UTILISATION DES TRANSFORMÉES DE LAPLACE 3 Utilisation des transformées de Lalace 3. Des équations différentielles ordinaires Exercice. Résoudre l équation différentielle suivante : y = 3y 2y + e t avec y( =, y ( = Aliquons la transformée de Lalace à l équation. On a : D autre art : Ainsi l équation devient : En factorisant ar L(y on a : L(e t ( = L(y 3y + 2y = 2 L(y( y( y ( 3(L(y( y( + 2L(y( Il faut trouver L(y, on l isole donc et on a : Et donc : Finalement : 2 L(y( 3L(y( L(y( = L(y( = ( L(y( + 3 = L(y( = L(y( = ( ( 3( ( ( = ( 2 2 ( 2( ( L(y( = ( 2 ( 2 = ( 2 La transformée de Lalace de ces fractions s obtient simlement grâce aux tableaux de référence : 3.2 L étude d un circuit RLC On considère un circuit RLC série, comme suit : y(t = e t te t = e t ( t Leçon 63 : Transformée de Lalace
7 7 3 UTILISATION DES TRANSFORMÉES DE LAPLACE On a que : i = C du. L équation de maille établit que la somme des différences de tension avant et arès chaque aareil du système est égale à la tension totale. Il y a une seule branche en série ici. L équation des mailles du circuit s écrit : E(t = u c + L di + R i où Ri corresond à la résistance, L di à la bobine, u c est la tension aux bornes du condensateur, E la force électromotrice du générateur en volt. On a donc : de(t Finalement on a : de(t Effectuons un exercice concernant ce circuit. Remarque = du + L d2 i 2 + R di = C i + L d2 i 2 + R di Pour cet exercice on va avoir besoin de la décroissance exonentielle d une onde sinusoidale, t e at cos(ωt dont la transformée est : + a ( + a 2 + ω 2 Cela vient de la roriété suivante : Proriété 3. L(e at f(t( = L(f( a Démonstration :? Et donc : L(e at f(t( = L(e at f(t( = e t e at f(t e ( at f(t = L(f( a Exercice. Dans un laboratoire, un technicien étudie l établissement d un courant d intensité i dans un circuit de tye RLC. i est une fonction à valeur réelle de la variable t définie comme suit : Si t < alors i(t = Si t alors 2 i (t + i (t + i(t = (t + U(t i( + = i ( + = U est la fonction échelon unité, définie ar : { U(t = si t < U(t = si t. Déterminer, à l aide de la variable réelle, la transformée de Lalace de la fonction t (t + U(t. 2. Exrimer, à l aide de la variable réelle et de la transformée de Lalace L(i de i, la transformée de Lalace de la fonction t 2 i (t + i (t + i(t. 3. En déduire, our >, L(i( en fonction de. 4. Monter que, our >, L(i s écrit sous la forme : L(i( = ( Déduire de ce qui récède l exression de i(t en fonction de t.. L(( + tu(t( = e t (t + = e t t + L(( + tu(t( = L(t( + L(( = 2 + e t Leçon 63 : Transformée de Lalace
8 8 3 UTILISATION DES TRANSFORMÉES DE LAPLACE 2. Par linéarité : L( 2 i (t + i (t + i(t( = 2 L(i ( + L(i ( + L(i( En utilisant les roriétés de dérivation de la transformée de Lalace, et en considérant les conditions initiales du système, on obtient : On a donc : L( 2 i (t + i (t + i(t( = 2 ( 2 L(i( i( + i ( + + L(i( i( + + L(i( L( ( 2 i (t + i 2 ( (t + i(t( = L(i( D arès l équation et les deux questions récédentes on a : ( 2 ( L(i( = Donc : ( 2 L(i( = L(i( = et car >. Simlifions finalement en multiliant en haut et en bas ar 22, cela donne : En déveloant : 5. On a donc : L(i( = ( = ( ( (( ( = = L(i( L(i( = ( En utilisant les tables des transformées de Lalace on en déduit donc que : Remarque i(t = t + e t cos(t Plus difficile mais envisageable, signal sinusoïdal : E(t = U o cos(ωt. Leçon 63 : Transformée de Lalace
Module : réponse d un système linéaire
BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée
L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).
CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur
Chapitre 1 Régime transitoire dans les systèmes physiques
Chapitre 1 Régime transitoire dans les systèmes physiques Savoir-faire théoriques (T) : Écrire l équation différentielle associée à un système physique ; Faire apparaître la constante de temps ; Tracer
dénombrement, loi binomiale
dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................
Partie 1 - Séquence 3 Original d une fonction
Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
S2I 1. quartz circuit de commande. Figure 1. Engrenage
TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Cours d électricité. Circuits électriques en courant constant. Mathieu Bardoux. 1 re année
Cours d électricité Circuits électriques en courant constant Mathieu Bardoux [email protected] IUT Saint-Omer / Dunkerque Département Génie Thermique et Énergie 1 re année Objectifs du chapitre
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
VOIP. Pr MOUGHIT Mohamed [email protected]. Cours VOIP Pr MOUGHIT Mohamed 1
VOIP Pr MOUGHIT Mohamed [email protected] Cours VOIP Pr MOUGHIT Mohamed 1 Connexion fixe, rédictible Connexion établie avant la numérotation user Centre de commutation La Radio est le suort imrédictible
CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.
XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes
Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires
Chapitre 3 Les régimes de fonctionnement de quelques circuits linéaires 25 Lechapitreprécédent avait pour objet l étude decircuitsrésistifsalimentéspar dessourcesde tension ou de courant continues. Par
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Accès optiques : la nouvelle montée en débit
Internet FTR&D Dossier du mois d'octobre 2005 Accès otiques : la nouvelle montée en débit Dans le domaine du haut débit, les accès en France sont our le moment très majoritairement basés sur les technologies
CORRECTION TP Multimètres - Mesures de résistances - I. Mesure directe de résistors avec ohmmètre - comparaison de deux instruments de mesure
Introduction CORRECTION TP Multimètres - Mesures de résistances - La mesure d une résistance s effectue à l aide d un multimètre. Utilisé en mode ohmmètre, il permet une mesure directe de résistances hors
Un modèle de composition automatique et distribuée de services web par planification
Un modèle de comosition automatique et distribuée de services web ar lanification Damien Pellier * Humbert Fiorino ** * Centre de Recherche en Informatique de Paris 5 Université Paris Descartes 45, rue
Circuits RL et RC. Chapitre 5. 5.1 Inductance
Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite
1.1.1 Signaux à variation temporelle continue-discrète
Chapitre Base des Signaux. Classi cation des signaux.. Signaux à variation temporelle continue-discrète Les signaux à variation temporelle continue sont des fonctions d une ou plusieurs variables continues
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
TP : Outils de simulation. March 13, 2015
TP : Outils de simulation March 13, 2015 Chater 1 Initialisation Scilab Calculatrice matricielle Exercice 1. Système Unix Créer sous Unix un réertoire de travail outil_simulation dans votre home réertoire.
Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.
Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement
Charges électriques - Courant électrique
Courant électrique Charges électriques - Courant électrique Exercice 6 : Dans la chambre à vide d un microscope électronique, un faisceau continu d électrons transporte 3,0 µc de charges négatives pendant
NFE107 Urbanisation et architecture des systèmes d information. Juin 2009. «La virtualisation» CNAM Lille. Auditeur BAULE.L 1
Juin 2009 NFE107 Urbanisation et architecture des systèmes d information CNAM Lille «La virtualisation» Auditeur BAULE.L 1 Plan INTRODUCTION I. PRINCIPES DE LA VIRTUALISATION II. DIFFÉRENTES TECHNIQUES
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
Cours 9. Régimes du transistor MOS
Cours 9. Régimes du transistor MOS Par Dimitri galayko Unité d enseignement Élec-info pour master ACSI à l UPMC Octobre-décembre 005 Dans ce document le transistor MOS est traité comme un composant électronique.
Introduction. Mathématiques Quantiques Discrètes
Mathématiques Quantiques Discrètes Didier Robert Facultés des Sciences et Techniques Laboratoire de Mathématiques Jean Leray, Université de Nantes email: v-nantes.fr Commençons par expliquer le titre.
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Automatique (AU3): Précision. Département GEII, IUT de Brest contact: [email protected]
Automatique (AU3): Précision des systèmes bouclés Département GEII, IUT de Brest contact: [email protected] Plan de la présentation Introduction 2 Écart statique Définition Expression Entrée
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques
SUJET ZÉRO Epreuve d'informatique et modélisation de systèmes physiques Durée 4 h Si, au cours de l épreuve, un candidat repère ce qui lui semble être une erreur d énoncé, d une part il le signale au chef
PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS
PRODUIRE DES SIGNAUX 1 : LES ONDES ELECTROMAGNETIQUES, SUPPORT DE CHOIX POUR TRANSMETTRE DES INFORMATIONS Matériel : Un GBF Un haut-parleur Un microphone avec adaptateur fiche banane Une DEL Une résistance
sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati
sciences sup Cours et exercices corrigés IUT Licence électricité générale Analyse et synthèse des circuits 2 e édition Tahar Neffati ÉLECTRICITÉ GÉNÉRALE Analyse et synthèse des circuits ÉLECTRICITÉ GÉNÉRALE
Des familles de deux enfants
Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article
ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.
L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.
TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options
Université de Lorraine Modélisation Stochastique Master 2 IMOI 2014-2015 TP1 Méthodes de Monte Carlo et techniques de réduction de variance, application au pricing d options 1 Les options Le but de ce
CH IV) Courant alternatif Oscilloscope.
CH IV) Courant alternatif Oscilloscope. Il existe deux types de courant, le courant continu et le courant alternatif. I) Courant alternatif : Observons une coupe transversale d une «dynamo» de vélo. Galet
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Erreur statique. Chapitre 6. 6.1 Définition
Chapitre 6 Erreur statique On considère ici le troisième paramètre de design, soit l erreur statique. L erreur statique est la différence entre l entrée et la sortie d un système lorsque t pour une entrée
Suites numériques 3. 1 Convergence et limite d une suite
Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n
.NET remoting. Plan. Principes de.net Remoting
Plan.NET remoting Clémentine Nebut LIRMM / Université de Montellier 2 de.net Remoting côté serveur côté client.net Remoting en ratique Les canaux de communication L'activation L'invocation Les aramètres
PRODUCTION DE L ENERGIE ELECTRIQUE
PRODUCTION DE L ENERGIE ELECTRIQUE Fiche Élève i Objectifs Connaître le principe de production de l électricité par une génératrice de vélo. Savoir quelle est la partie commune à toutes les centrales électriques.
MATHÉMATIQUES FINANCIÈRES
MATHÉMATIQUES FINANCIÈRES Table des matières Version 2012 Lang Fred 1 Intérêts et taux 2 1.1 Définitions et notations................................ 2 1.2 Intérêt simple......................................
1 Systèmes triphasés symétriques
1 Systèmes triphasés symétriques 1.1 Introduction Un système triphasé est un ensemble de grandeurs (tensions ou courants) sinusoïdales de même fréquence, déphasées les unes par rapport aux autres. Le système
Propriétés des options sur actions
Propriétés des options sur actions Bornes supérieure et inférieure du premium / Parité call put 1 / 1 Taux d intérêt, capitalisation, actualisation Taux d intéret composés Du point de vue de l investisseur,
Théorème du point fixe - Théorème de l inversion locale
Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion
Energie et conversions d énergie
Chapitre 6 et conversions d énergie I) NOTIONS GENERALES Les différentes formes d énergie : électrique (liée aux courants et tensions) lumineuse (liée à un mouvement ou à l altitude) thermique (liée à
prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1
3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on
Les Mesures Électriques
Les Mesures Électriques Sommaire 1- La mesure de tension 2- La mesure de courant 3- La mesure de résistance 4- La mesure de puissance en monophasé 5- La mesure de puissance en triphasé 6- La mesure de
Université Mohammed Khidher Biskra A.U.: 2014/2015
Uniersité Mohammed Khidher Biskra A.U.: 204/205 Faculté des sciences et de la technologie nseignant: Bekhouche Khaled Matière: lectronique Fondamentale hapitre 4 : Le Transistor Bipolaire à Jonction 4..
Manuel de l'utilisateur
0 Manuel de l'utilisateur Mise en route... 4 Votre Rider 0... 4 Réinitialiser le Rider 0... 5 Accessoires... 5 Icônes d'état... 5 Connexion, synchro et chargement... 6 Allumer/éteindre le Rider 0... 6
Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3
8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant
Le transistor bipolaire
IUT Louis Pasteur Mesures Physiques Electronique Analogique 2ème semestre 3ème partie Damien JACOB 08-09 Le transistor bipolaire I. Description et symboles Effet transistor : effet physique découvert en
Une forme générale de la conjecture abc
Une forme générale de la conjecture abc Nicolas Billerey avec l aide de Manuel Pégourié-Gonnard 6 août 2009 Dans [Lan99a], M Langevin montre que la conjecture abc est équivalente à la conjecture suivante
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Précision d un résultat et calculs d incertitudes
Précision d un résultat et calculs d incertitudes PSI* 2012-2013 Lycée Chaptal 3 Table des matières Table des matières 1. Présentation d un résultat numérique................................ 4 1.1 Notations.........................................................
MESURE DE LA PUISSANCE
Chapitre 9 I- INTRODUCTION : MESURE DE L PUISSNCE La mesure de la puissance fait appel à un appareil de type électrodynamique, qui est le wattmètre. Sur le cadran d un wattmètre, on trouve : la classe
Dérivation : cours. Dérivation dans R
TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition
Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M
Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition
Introduction à l étude des Corps Finis
Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur
ELEC2753 Electrotechnique examen du 11/06/2012
ELEC2753 Electrotechnique examen du 11/06/2012 Pour faciliter la correction et la surveillance, merci de répondre aux 3 questions sur des feuilles différentes et d'écrire immédiatement votre nom sur toutes
En vue de l'obtention du. Présentée et soutenue par Philippe NERISSON Le 5 février 2009
THÈSE En vue de l'obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délivré ar l Institut National Polytechnique de Toulouse Disciline ou sécialité : Dynamique des Fluides Présentée et soutenue ar Philie
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
La compensation de l énergie réactive
S N 16 - Novembre 2006 p.1 Présentation p.2 L énergie réactive : définitions et rappels essentiels p.4 La compensation de l énergie réactive p.5 L approche fonctionnelle p.6 La problématique de l énergie
Découvrez les bâtiments* modulaires démontables
Découvrez les bâtiments* modulaires démontables w Industrie w Distribution * le terme «bâtiment» est utilisé our la bonne comréhension de l activité de Locabri. Il s agit de structures modulaires démontables
Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen
Une réponse (très) partielle à la deuxième question : Calcul des exposants critiques en champ moyen Manière heuristique d'introduire l'approximation de champ moyen : on néglige les termes de fluctuations
rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse
page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Exercice 1. Exercice n 1 : Déséquilibre mécanique
Exercice 1 1. a) Un mobile peut-il avoir une accélération non nulle à un instant où sa vitesse est nulle? donner un exemple illustrant la réponse. b) Un mobile peut-il avoir une accélération de direction
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
ANNEXE I TRANSFORMEE DE LAPLACE
ANNEE I TRANSFORMEE DE LAPLACE Perre-Smon Lalace, mahémacen franças 749-87. Lalace enra à l unversé de Caen a 6 ans. Très ve l s néressa aux mahémaques e fu remarqué ar d Alember. En analyse, l nrodus
DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS
Ecole Nationale des Ponts et Chaussées Laboratoire Paris-Jourdan Sciences Economiques DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
Image d un intervalle par une fonction continue
DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction
Représentation des Nombres
Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...
Intérêts. Administration Économique et Sociale. Mathématiques XA100M
Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique
NOTICE DOUBLE DIPLÔME
NOTICE DOUBLE DIPLÔME MINES ParisTech / HEC MINES ParisTech/ AgroParisTech Diplômes obtenus : Diplôme d ingénieur de l Ecole des Mines de Paris Diplôme de HEC Paris Ou Diplôme d ingénieur de l Ecole des
MATIE RE DU COURS DE PHYSIQUE
MATIE RE DU COURS DE PHYSIQUE Titulaire : A. Rauw 5h/semaine 1) MÉCANIQUE a) Cinématique ii) Référentiel Relativité des notions de repos et mouvement Relativité de la notion de trajectoire Référentiel
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA
Tests d indépendance en analyse multivariée et tests de normalité dans les modèles ARMA Soutenance de doctorat, sous la direction de Pr. Bilodeau, M. et Pr. Ducharme, G. Université de Montréal et Université
Méthodes de Caractérisation des Matériaux. Cours, annales http://www.u-picardie.fr/~dellis/
Méthodes de Caractérisation des Matériaux Cours, annales http://www.u-picardie.fr/~dellis/ 1. Symboles standards et grandeurs électriques 3 2. Le courant électrique 4 3. La résistance électrique 4 4. Le
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette [email protected] Université
Notions d asservissements et de Régulations
I. Introduction I. Notions d asservissements et de Régulations Le professeur de Génie Electrique doit faire passer des notions de régulation à travers ses enseignements. Les notions principales qu'il a
La fonction exponentielle
DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction
Introduction à l électronique de puissance Synthèse des convertisseurs statiques. Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER
Introduction à l électronique de puissance Synthèse des convertisseurs statiques Lycée Richelieu TSI 1 Année scolaire 2006-2007 Sébastien GERGADIER 28 janvier 2007 Table des matières 1 Synthèse des convertisseurs
Introduction. aux équations différentielles. et aux dérivées partielles
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet [email protected]
Chapitre 7. Circuits Magnétiques et Inductance. 7.1 Introduction. 7.1.1 Production d un champ magnétique
Chapitre 7 Circuits Magnétiques et Inductance 7.1 Introduction 7.1.1 Production d un champ magnétique Si on considère un conducteur cylindrique droit dans lequel circule un courant I (figure 7.1). Ce courant
Catalogue 3 Chaine sur Mesure
Catalogue 3 Chaine sur Mesure SUBAKI Les Chaines 2009 CAALGUE 3 Classification chaine sur mesure sériés de chaîne ye de chaîne subaki Caractéristiques RUNNER BS Performance suérieure Général Chaînes à
LYCEE TECHNIQUE PIERRE EMILE MARTIN - 18 026 BOURGES ETUDE D UN TRAITEMENT DE SURFACE
TP. TET LYCEE TECHNIQUE PIERRE EMILE MARTIN - 18 026 BOURGES GENIE ELECTROTECHNIQUE Durée : 3 heures Tp relais statique 10-11 RELAIS STATIQUE S.T.I. Pré-requis : Laboratoire des systèmes Cours sur les
- Automatique - Modélisation par fonction de transfert et Analyse des systèmes linéaires continus invariants
- Automatique - Modélisation par fonction de transfert et Analyse des systèmes linéaires continus invariants M1/UE CSy - module P2 (1ère partie) 214-215 2 Avant-propos 3 Avant-propos Le cours d automatique
Automatique Linéaire 1 Travaux Dirigés 1A ISMIN
Automatique Linéaire 1 Travaux Dirigés Travaux dirigés, Automatique linéaire 1 J.M. Dutertre 2014 TD 1 Introduction, modélisation, outils. Exercice 1.1 : Calcul de la réponse d un 2 nd ordre à une rampe
