ANNEXE I TRANSFORMEE DE LAPLACE

Dimension: px
Commencer à balayer dès la page:

Download "ANNEXE I TRANSFORMEE DE LAPLACE"

Transcription

1 ANNEE I TRANSFORMEE DE LAPLACE Perre-Smon Lalace, mahémacen franças Lalace enra à l unversé de Caen a 6 ans. Très ve l s néressa aux mahémaques e fu remarqué ar d Alember. En analyse, l nrodus la foncon oenelle e les coeffcens de Lalace. Il ravalla égalemen beaucou sur les équaons aux dfférences e sur les équaons dfférenelles. Conraremen aux aarences, l ulsaon de la ransformée de Lalace our la résoluon d équaons dfférenelles n es as due à Lalace, mas à Heavsde. Olver Heavsde, élecrcen anglas Largemen auoddace l qua l école à 6 ans, Heavsde devn élégrahse e s néressa à l élecrcé. Il éuda le raé sur l élecrcé e le magnésme de Maxwell, e en smlfa foremen les équaons. Enre 88 e 887 l déveloa le calcul oéraonnel, subsuan à d/d our la résoluon des équaons dfférenelles résulan de l analyse des crcus élecrques. Cee echnque causa une grande conroverse, en rason de son manque de rgueur mahémaque. Elle ne fu rouvée ar la ransformée de Lalace que ans lus ard. I. Défnon So f une foncon du ems. Sa ransformée de Lalace unlaérale F es défne ar : [ ] f F fex d I. où es la varable comlexe. On défn égalemen arfos la ransformée de Lalace blaérale ar : f ex d es en fa une noaon our lm f ex d. Ce chox arculer our la borne d négraon nféreure erme de rendre correcemen en come les foncons dsconnués en e les dsrbuons d, d, ec.. La foncon F n es as défne dans ou le lan comlexe : elle n exse que dans une régon de convergence. Nous ne nous en occuerons as ro c.

2 TRANSFORMEE DE LAPLACE [ ] I f fex d I. Dans ce cours de Théore des Crcus, nous ulserons sysémaquemen la remère. Elle nous ermera en effe de fare aaraîre, dans les ransformées, les condons nales de nos crcus grâce à I.4. Noons ceendan que, our les foncons causales, qu seron majoraremen ulsées dans ce cours, les deux ransformées son denques. Les roréés de ces deux ransformées son essenellemen les mêmes vor c-dessous. Pour nous raeler que les foncons éudées c son causales, nous les noerons sysémaquemen sous la forme fε, où ε es la foncon échelon Fg. I.. f fε a b Fg. I. a. foncon non-causale b. foncon causale. I. Les sgnaux usuels 4 e leurs ransformées La Table I. donne la ransformée de Lalace des sgnaux les lus courans. On les démonrera à re d exercce. Exemle I. [ δ ] L δ e d I [ ε ] e d e a a a ε a L I e e e d e a Une foncon es de causale s elle es denquemen nulle our <. 4 On ourra même les aeler «sgnaux naurels», usque, comme on le monre au chare consacré à l éude des sysèmes lnéares, l aaron de hénomènes oscllaores amors e σ es une roréé nrnsèque des sysèmes lnéares. La foncon e x ne s aelle as exonenelle naurelle our ren j e

3 TRANSFORMEE DE LAPLACE j j e e [ cos ε ] ε j j L I e L j j σ j σ j j avec σ j σ σj σ j σ e e sn ε I ε L allure de chaque sgnal es esqussée à la Table I.. Il es ar conre lus dffcle d esqusser les ransformées : F es défn sur le lan comlexe 5 e es elle même comlexe en général. Une «esqusse» de F corresond donc en rnce à deux grahes en D, our le module e l argumen de F resecvemen. On réfère donc en général esqusser F à ravers ses sngularés, qu son les endros du lan comlexe où F end vers ou vers l nfn. Ces ons son resecvemen aelés zéros e ôles de F vor l exemle c-dessous. Exemle I. On eu affcher faclemen le module e l argumen d une ransformée de Lalace, en ulsan Malab Fg. I.: x[-.:.:]; y[-:.:]; x'*onesszey'j*y'*onesszex; N[ ]; % zero en - D[.5]; % oles en.5±.5j modabsolyvaln,./olyvald,; argangleolyvaln,./olyvald,; meshx,y,*logmod fgure meshx,y,arg j - s - a c b Fg. I. Affchage d une ransformée de Lalace ayan un zéro en - e deux ôles comlexes conjugués en -.5±.5j. a : module ; b : argumen ; c : esqusse D des ôles e zéros 5 Plus récsémen, dans la régon du lan comlexe où elle converge.

4 4 TRANSFORMEE DE LAPLACE f F δ N ôle n zéro ε ε Im x Re ε Im ² Re x e a ε ex-aε -/a a -a Im Re e a ε a -a Im Re sn ε Im Re cosε cos ε π/ Im Re cos ε ² Im Re σ e sn ε snex-σε -/σ π/ σ σ< σ Im Re

5 TRANSFORMEE DE LAPLACE 5 σ e cos θ ε σ σ σ< θ arcan σ θ Im Re r σ e cos θ ε α σ θ arcan r e b a a α σ e b ε α σ σ< σ σ> a b a b Ke K e ε α α a σ K b a σ> α a b r θ σ α -b - α -b -a -a Im Re Im Re Im Re Table I. Transformée de Lalace des sgnaux usuels avec ab,, σ, θ,, R I. Proréés fondamenales Il es facle de démonrer les roréés suvanes : [ ] L af bg af bg lnéaré I. I df F f d dérvée I.4 F f d négrale I.5 [ τ ] τ f e F reard emorel I.6 σ L I e f F σ ranslaon de la ransformée I.7 [ ] L f* g F G convoluon I.8 I lm F lm f héorème de la valeur nale à condon que ces lmes exsen I.9

6 6 TRANSFORMEE DE LAPLACE lm F lm f héorème de la valeur fnale I. à condon que ces lmes exsen F f kt ε kt T k e érodfcaon I. Exemle I. ar ares df df e d f e f e d F d d f τ τ I [ f* g ] f τ g τ dτ e d f τ e dτ g τ e d τ F G NB : On consae que cee roréé n es vrae srco sensu que our la ransformée de Lalace blaérale L II, vu les bornes d négraon ulsées c-dessus. Elle rese donc égalemen vrae en ransformée de Lalace unlaérale à condon que les foncons soen causales.. df lm F f lm e d f f f f d. df lm F f lm e d f f f f d Ces deux roréés son rès moranes en raque : elle ermeen de vérfer, dans une cerane mesure, l exacude d une ransformée F arès calcul, s on connaî ar alleurs les valeurs lmes de f. kt T k F f kt ε kt e F F e e I.4 Transformée nverse La ransformée de Lalace nverse unlaérale f d une foncon F es défne ar : I [ ] L F f F ex d π j I. où le chemn d négraon eu êre chos quelconque dans le lan comlexe à condon de reser dans le domane de convergence de F. En raque, comme les ransformées F de la luar des sgnaux usuels son des fracons raonnelles N/D, l suff de les décomoser en fracons smles e d ulser la roréé de lnéaré de la ransformée de Lalace. Le déveloemen qu su es la base du calcul oéraonnel e ore le nom de déveloemen d Heavsde. I.4. Pôles smles T

7 TRANSFORMEE DE LAPLACE 7 On suose our commencer que d N<d D e que les ôles de F c es-à-dre les zéros de D son smles: N F... m avec j s j I. On eu alors oujours écrre : A A Am F... avec A F m I.4 Les coeffcens comlexes On en dédu : m P m A son aelés les résdus de leurs ôles resecfs. f Ae A e... A e ε I.5 Exemle I.4 Exemle I.5 F f e e ε F 4 j j A A j j j j j j4 4 * avec A A j * j ε j Ae ε f Ae A e R R Acos I Asn ε cos sn ε j Ce résula concorde ou à fa avec les ransformées de sn e cos de la Table. I.4. Pôles doubles Suosons manenan qu'on a oujours d N<d D, mas que F ossède des ôles doubles 6 : 6 Nous ne consdérerons as c le cas des ôles de mullcé suéreure à deux, eu ule à l ngéneur.

8 8 TRANSFORMEE DE LAPLACE N F I.6 On eu alors oujours écrre : n n A A F avec A F d F A d I.7 On en dédu que la conrbuon des fracons smles dues aux ôles doubles son : f A e A e ε I.8 Exemle I e e f F ε I.4. Fracon raonnelle quelconque Dans le cas le lus général, l se eu que l'on a non seulemen des ôles mulles, mas égalemen que le d N d D. Il suff alors de commencer ar rocéder à la dvson du olynôme N ar D : d R d avec D R Q D R D Q F < I.9 L'nverson de la fracon raonnelle en R se fa comme récédemmen, e l'nverson de Q donne : ' q q q f q q q F k k k k δ δ δ I. La résence du olynôme Q nfluence donc unquemen le comoremen de f auour de. Exemle I.7 ' 4 e e f F ε δ δ I.4.4 Concluson

9 TRANSFORMEE DE LAPLACE 9 On consae que le len enre une ransformée de Lalace e le sgnal corresondan es beaucou lus smle qu'l n'y araî à remère vue. En effe : Ms à ar les zéros en, qu fon aaraîre des mulsons de Drac e leurs dérvées, le ye des comosanes résenes dans le sgnal es déermné unquemen ar les ôles. Chaque ôle corresond en général à une exonenelle magnare amore de ulsaon égale à sa are magnare e d'amorssemen égal à sa are réelle qu do êre négave our corresonde à un amorssemen; dans le cas conrare, le sgnal es amlfé au cours du ems. En arculer : Pôle en : erme consan Pôles magnares urs oujours ar are : csoïde non amore, de ulsaon déermnée ar la oson des ôles sur l'axe magnare Pôles comlexes conjugués oujours ar are : csoïde amore, de ulsaon déermnée ar la are magnare des ôles, e d'amorssemen déermné ar leur are réelle Pôle réel : exonenelle décrossane d'amorssemen déermné ar la oson du ôle sur l'axe réel Un ôle double corresond à une mullcaon des foncons c-dessus ar. Les zéros dans le lan comlexe ne fon que modfer le résdu de ces ôles, e agssen donc unquemen sur l'amlude e la hase nale des comosanes lées aux ôles. Exercces Exercce I. On demande de calculer la ransformée de Lalace du sgnal suvan, e de vérfer les héorèmes de la valeur fnale e nale : f Soluon F Exercce I. On demande de calculer la ransformée de Lalace du sgnal suvan, e de vérfer les héorèmes de la valeur fnale e nale :

10 TRANSFORMEE DE LAPLACE f 8 Soluon F Exercce I. e 8 On demande de calculer la ransformée de Lalace de l'onde carrée érodque suvane, e de vérfer le héorème de la valeur nale : f Soluon f eu claremen êre obenu à arr d'une seule érode f, que l'on addonne à ellemême une nfné de fos, en la reardan à chaque fos de T. Il ven donc : F T e T e Exercce I.4 On demande de calculer la ransformée de Lalace du sgnal suvan, e de vérfer le héorème de la valeur nale :

11 TRANSFORMEE DE LAPLACE f Soluon f eu claremen êre obenu à arr d'une seule érode f, que l'on addonne à ellemême une nfné de fos, en la reardan à chaque fos de T5s. Il ven : F Exercce I e 5e e 4 5 On demande de calculer e d'esqusser la ransformée de Lalace nverse de la foncon suvane, e de vérfer les héorèmes des valeurs nales e fnales : F 5 e Soluon Exercce I.6 f e 5. 5 ε 5.9 ε 5.9 ε 5 On demande de calculer e d'esqusser la ransformée de Lalace nverse de la foncon suvane, e de vérfer les héorèmes des valeurs nales e fnales : F Soluon Exercce I f e e 4 δ ε 8 ε On demande de calculer e d esqusser la ransformée de Lalace nverse de la foncon suvane, e de vérfer les héorèmes des valeurs nales e fnales : F Soluon f δ. e.6 cos. ε NB : le héorème de la valeur fnale es nalcable c. Exercce I.8

12 TRANSFORMEE DE LAPLACE On demande de calculer e d esqusser la ransformée de Lalace nverse de la foncon suvane, e de vérfer les héorèmes des valeurs nales e fnales : F Soluon Exercce I π f e e 6 cos ε NB : le héorème de la valeur fnale es nalcable c. NB : F ossède des ôles à gauche de l axe magnare, donc f n es as bornée. Avec l ade de Malab foncons roos e resdue, rouver la ransformée de Lalace nverse de la foncon suvane : F Soluon 9.497E E E E E f 965.e cos5.5 7.e cos ε

République Algérienne Démocratique et Populaire Ministère de l Enseignement supérieur et de La Recherche Scientifique. Polycopie:

République Algérienne Démocratique et Populaire Ministère de l Enseignement supérieur et de La Recherche Scientifique. Polycopie: Réublque Algérenne Déocraque e Poulare Mnsère de l Ensegneen suéreur e de a Recherche Scenfque Unversé : Hassba BENBOUAI de CHEF Faculé : Scences Déareen : Physque Doane : ST-SM Polycoe: Vbraons e Ondes

Plus en détail

BILAN EN ELECTRICITE : RC, RL ET RLC

BILAN EN ELECTRICITE : RC, RL ET RLC IN N TIIT :, T I. INTNSIT : = dq d en couran varable I = Q en couran connu Méhode générale d éablssemen des équaons dfférenelles : lo d addvé des ensons pus relaons dq caracérsques :, lo d Ohm u = aux

Plus en détail

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté»

Chapitre IV Les oscillations couplées «Les oscillations libres d un système à plusieurs degrés de liberté» Chre IV, cours de vbrons, ondes _Phs, Pr. Bds Bennecer MD 8-9 Chre IV es oscllons coulées «es oscllons lbres d un ssèe à luseurs degrés de lberé» Dns ce chre, nous llons coencer r éuder les oscllons lbres

Plus en détail

ELECTRICITE. Chapitre 13 Régimes transitoires des circuits RC et RL. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 13 Régimes transitoires des circuits RC et RL. Analyse des signaux et des circuits électriques. Michel Piou LCTICIT Analys ds sgnaux ds crcus élcrqus Mchl Pou Chapr 13 égms ransors ds crcus C L don 14/3/214 Tabl ds maèrs 1 POUQUOI T COMMNT?...1 2 GIMS TANSITOIS DS CICUITS C T L....2 2.1 xponnll décrossan....2

Plus en détail

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE ours hème VIII.3 ONVSION SAIQU D'ÉNGI 3- Famlles de conversseurs saques Suvan le ype de machne à commander e suvan la naure de la source de pussance, on dsngue pluseurs famlles de conversseurs saques (schéma

Plus en détail

Valeur économique de dettes subordonnées pour des sociétés non-vie

Valeur économique de dettes subordonnées pour des sociétés non-vie Valeur économque de dees subordonnées our des socéés non-ve - Franços Bonnn (Hram Fnance) - Frédérc Planche (Unversé Lyon, Laboraore SAF) - Monassar Tammar (Prm Ac) - Amédée de Clermon-Tonnerre (Cohen

Plus en détail

Le «Scoring» LOGISTIQUE

Le «Scoring» LOGISTIQUE Le «Scorng» LOGISTIQUE Clre eler Acure ISFA 996 Le 7//009 _clre@yhoo.fr Dns leur qus olé, les nques e orgnsmes fnncers ulsen l nlyse our rédre s un emruneur fer défu ou non e rendre ensue l décson rorée

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET

VALORISATION D OPTIONS DIGITALES EN SITUATION DE MARCHE INCOMPLET VALORIAION D OPION DIGIALE EN IUAION DE MARCHE INCOMPLE Parck NAVAE Chrsophe VILLA CREREG, Insu de Geson de Rennes REUME L objecf prncpal poursuv dans ce arcle, es d éuder quelques applcaons e exensons

Plus en détail

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE

CHAPITRE 14 : RAISONNEMENT DES SYSTÈMES DE COMMANDE HAITRE 4 : RAISONNEMENT DES SYSTÈMES DE OMMANDE RAISONNEMENT DES SYSTÈMES DE OMMANDE... 2 INTRODUTION... 22 RAELS... 22 alcul de la valeur ntale de la répone à un échelon... 22 alcul du gan tatque... 22

Plus en détail

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale...

But... 2. I. Généralités sur la quantification des risques dans le SST... 2. I.1 Modèle analytique... 3. I.1.1 Version intégrale... GUIDE PRATIQUE sur le modèle sandard SST pour les rsques de marché Edon du 23 décembre 204 Table des maères Bu... 2 I. Généralés sur la quanfcaon des rsques dans le SST... 2 I. Modèle analyque... 3 I..

Plus en détail

Etude économétrique de l efficience informationnelle face aux anomalies sur les marchés boursiers

Etude économétrique de l efficience informationnelle face aux anomalies sur les marchés boursiers Eude économérque de l effcence nformaonnelle P P: 0-5 Eude économérque de l effcence nformaonnelle face aux anomales sur les marchés boursers Mohamed CHIKHI - Unversé de Ouargla- Membre assocé LAMETA -

Plus en détail

STATISTIQUE AVEC EXCEL

STATISTIQUE AVEC EXCEL STATISTIQUE AVEC EXCEL Excel offre d nnombrables possbltés de recuellr des données statstques, de les classer, de les analyser et de les représenter graphquement. Ce sont prncpalement les tros éléments

Plus en détail

Modèles de Risques et Solvabilité en assurance Vie. Kaltwasser Perrine Le Moine Pierre. Autorité de Contrôle des Assurances et des Mutuelles (ACAM)

Modèles de Risques et Solvabilité en assurance Vie. Kaltwasser Perrine Le Moine Pierre. Autorité de Contrôle des Assurances et des Mutuelles (ACAM) Modèles de Rsques e Solvablé en assurance Ve Kalwasser errne Le Mone erre Auoré de Conrôle des Assurances e des Muuelles (ACAM 6, rue abou 75436 ARIS CEDEX 9 él. : + 33 55 5 43 5 fax : + 33 55 5 4 5 perrne.kalwasser@acam-france.fr

Plus en détail

Cahier technique n 154

Cahier technique n 154 Collecon Technque... Caher echnque n 154 Technques de coupure des dsjonceurs BT R. Morel Les Cahers Technques consuen une collecon d une cenane de res édés à l nenon des ngéneurs e echncens qu recherchen

Plus en détail

Émissions d obligations rachetables :

Émissions d obligations rachetables : Émssons d oblgaons racheables : movaons e rendemens oblgaares mplqués Maxme DEBON Franck MORAUX Parck NAVATTE Unversé d Evry Unversé de Rennes Unversé de Rennes & LAREM & CREM & CREM Ocobre 2 Absrac Après

Plus en détail

Module : réponse d un système linéaire

Module : réponse d un système linéaire BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée

Plus en détail

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période)

Mathématiques Financières : l essentiel Les 10 formules incontournables (Fin de période) A-PDF OFFICE TO PDF DEMO: Purchase from www.a-pdf.com to remove the watermark Mathématques Facères : l essetel Les formules cotourables (F de érode) htt://www.ecogesam.ac-a-marselle.fr/esed/gesto/mathf/mathf.html#e5aels

Plus en détail

N o 12-001-XIF au catalogue. Techniques d'enquête

N o 12-001-XIF au catalogue. Techniques d'enquête N o -00-XIF au caalogue echnques d'enquêe 005 Commen obenr d aures rensegnemens oue demande de rensegnemens au suje du présen produ ou au suje de sasques ou de serces connexes do êre adressée à : Dson

Plus en détail

UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (1992) AU QUÉBEC * par. Georges Dionne 1,2 Charles Vanasse 2

UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (1992) AU QUÉBEC * par. Georges Dionne 1,2 Charles Vanasse 2 UNE ÉVALUATION EMPIRIQUE DE LA NOUVELLE TARIFICATION DE L'ASSURANCE AUTOMOBILE (992) AU QUÉBEC * par Georges Donne,2 Charles Vanasse 2 * Cee recherche a éé rendu possble grâce en pare au Fonds pour la

Plus en détail

Le théorème du viriel

Le théorème du viriel Le théorème du vrel On se propose de démontrer le théorème du vrel de deux manères dfférentes. La premère fat appel à deux "trcks" qu l faut vor. Cette preuve met en avant une quantté, notée S c, qu permet

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

«Modèle Bayésien de tarification de l assurance des flottes de véhicules»

«Modèle Bayésien de tarification de l assurance des flottes de véhicules» Arcle «Modèle Baésen de arcaon de l assurance des loes de véhcules» Jean-Franços Angers, Dense Desardns e Georges Donne L'Acualé économque, vol. 80, n -3, 004, p. 53-303. Pour cer ce arcle, ulser l'normaon

Plus en détail

Montage émetteur commun

Montage émetteur commun tour au menu ontage émetteur commun Polarsaton d un transstor. ôle de la polarsaton La polarsaton a pour rôle de placer le pont de fonctonnement du transstor dans une zone où ses caractérstques sont lnéares.

Plus en détail

Notice d information contractuelle Loi Madelin. Generali.fr

Notice d information contractuelle Loi Madelin. Generali.fr parculers PRFESSINNELS enreprses Noce d nformaon conracuelle Lo Madeln General.fr Noce d nformaon conracuelle Le présen documen es rems à re de proposon e de proje de conra. Naure de la Convenon : LA RETRAITE

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

CIFA 2004 Synthèse mixte H 2 /H par retour d état statique

CIFA 2004 Synthèse mixte H 2 /H par retour d état statique 4 Snhèse mxe H /H par reor d éa saqe SLH SLH, ENS RZELER Laboraore d nalse e commandes des ssèmes, LS-EN amps nversare, P 37 Le belvédère ns - nse Laboraore d nalse e rchecre des Ssèmes, LS-NRS 7 vene

Plus en détail

Des familles de deux enfants

Des familles de deux enfants Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Notice d information contractuelle Loi Madelin. Generali.fr

Notice d information contractuelle Loi Madelin. Generali.fr parculers PRFESSINNELS enreprses Noce d nformaon conracuelle Lo Madeln General.fr Noce d nformaon conracuelle Le présen documen es rems à re de proposon e de proje de conra. Naure de la Convenon : LA RETRAITE

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie

MTH 2301 Méthodes statistiques en ingénierie. MTH 2301 Méthodes statistiques en ingénierie VARIABLES ALÉATOIRES déo oco de réro vrble léore dscrèe moyee - vrce - écr ye esérce mhémque vrble léore coue oco d ue vrble léore : rsormo combso lére de vrbles léores Déo E : eérece léore S : esce échllol

Plus en détail

Notice d information contractuelle Entreprise article 83. Generali.fr

Notice d information contractuelle Entreprise article 83. Generali.fr parculers professonnels ENTREPRISES Noce d nformaon conracuelle Enreprse arcle 83 General.fr Noce d nformaon conracuelle Sommare Préambule... 3 Arcle 1 - Défnons... 3 Arcle 2 - bje... 4 Arcle 3 - Garanes...

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques

Optimisation du plan de gestion du stock d une entreprise de distribution des produits pharmaceutiques Revue es Scences e e la Technologe - RST- Volume 3 1 / janver 2012 Opmsaon u plan e geson u sock une enreprse e srbuon es prous pharmaceuques D. Bellala, M.S. oune, A. Abessme Laboraore 'Auomaque e e Proucque

Plus en détail

Regional Wind Speed Evolution Identification and Longterm Correlation Application

Regional Wind Speed Evolution Identification and Longterm Correlation Application Regonal Wnd Speed Evoluon Idenfcaon and Longerm Correlaon Applcaon Idenfcaon de l évoluon régonale de la vesse du ven e applcaon à la corrélaon long erme B. Buffard, Theola France, Monpeller Exernal Arcle

Plus en détail

Remboursement d un emprunt par annuités constantes

Remboursement d un emprunt par annuités constantes Sére STG Journées de formaton Janver 2006 Remboursement d un emprunt par annutés constantes Le prncpe Utlsaton du tableur Un emprunteur s adresse à un prêteur pour obtenr une somme d argent (la dette)

Plus en détail

Dares Analyses. La répartition des hommes et des femmes par métiers Une baisse de la ségrégation depuis 30 ans

Dares Analyses. La répartition des hommes et des femmes par métiers Une baisse de la ségrégation depuis 30 ans Dares Analyses décembre 13 N 79 publcaon de la drecon de l'anmaon de la recherche, des éudes e des sasques La réparon des hommes e des femmes par méers Une basse de la ségrégaon depus 3 ans Les femmes

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER

M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER M2 EFM TD MATHÉMATIQUES APPLIQUÉES : ARITHMÉTIQUE CHRISTOPHE RITZENTHALER 1. Euclide, relation de Bézout, gcd Exercice 1. [DKM94,.14] Montrer que 6 n 3 n our tout entier n ositif. Exercice 2. [DKM94,.15]

Plus en détail

Généralités sur les fonctions 1ES

Généralités sur les fonctions 1ES Généraltés sur les fonctons ES GENERALITES SUR LES FNCTINS I. RAPPELS a. Vocabulare Défnton Une foncton est un procédé qu permet d assocer à un nombre x appartenant à un ensemble D un nombre y n note :

Plus en détail

par Yazid Dissou** et Véronique Robichaud*** Document de travail 2003-18

par Yazid Dissou** et Véronique Robichaud*** Document de travail 2003-18 Deparmen of Fnance Mnsère des Fnances Workng Paper Documen de raval Conrôle des émssons de GES à l ade d un sysème de perms échangeables avec allocaon basée sur la producon Une analyse en équlbre général

Plus en détail

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).

L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques). CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique

Chapitre IV : Inductance propre, inductance mutuelle. Energie électromagnétique Spécale PSI - Cours "Electromagnétsme" 1 Inducton électromagnétque Chaptre IV : Inductance propre, nductance mutuelle. Energe électromagnétque Objectfs: Coecents d nductance propre L et mutuelle M Blan

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte :

La physiologie du cerveau montre que celui-ci est constitué de cellules (les neurones) interconnectées. Quelques étapes de cette découverte : Chaptre 3 Apprentssage automatque : les réseaux de neurones Introducton Le Perceptron Les réseaux mult-couches 3.1 Introducton Comment l'homme fat-l pour rasonner, parler, calculer, apprendre,...? Comment

Plus en détail

Mesure avec une règle

Mesure avec une règle Mesure avec une règle par Matheu ROUAUD Professeur de Scences Physques en prépa, Dplômé en Physque Théorque. Lycée Alan-Fourner 8000 Bourges ecrre@ncerttudes.fr RÉSUMÉ La mesure d'une grandeur par un système

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix?

Note méthodologique. Traitements hebdomadaires Quiestlemoinscher.com. Quelle méthode de collecte de prix? Qui a collecté les prix? Note méthodologque Tratements hebdomadares Questlemonscher.com Quelle méthode de collecte de prx? Les éléments méthodologques ont été défns par le cabnet FaE onsel, socété d études et d analyses statstques

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau

GEA I Mathématiques nancières Poly. de révision. Lionel Darondeau GEA I Mathématques nancères Poly de révson Lonel Darondeau Intérêts smples et composés Voc la lste des exercces à révser, corrgés en cours : Exercce 2 Exercce 3 Exercce 5 Exercce 6 Exercce 7 Exercce 8

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

PUBLICATIONS L OBSERVATOIRE D E L É C O N O M I E S O C I A L E E T S O L I D A I R E L Économie Sociale et Solidaire est multiforme,

PUBLICATIONS L OBSERVATOIRE D E L É C O N O M I E S O C I A L E E T S O L I D A I R E L Économie Sociale et Solidaire est multiforme, L Économie Sociale et Solidaire est multiforme, et rofondément ancrée dans son territoire. C est ourquoi le travail réalisé ar le laboratoire Carta, Unité mixte du CNRS et de l Université d Angers a retenu

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

L affirmation de soi Ni tyran, ni carpette

L affirmation de soi Ni tyran, ni carpette Raphaëlle GIORDaNO IzmI maei-cazali L affrma de N yra, carpee 3 ƒ Smmare p. 6 p. 8 p. 10 PrŽ face d dcer Clze Sade dõ Ž vl de lõ Hm aerv Le 10 cmmademe de lõ Hm aerv dée clef 1 : maëtriser le B.a.-Ba DE

Plus en détail

Lignes couplées en transitoire P.Poulichet

Lignes couplées en transitoire P.Poulichet igns coués n ransioir P.Pouich igns coués P.Pouich Ocobr 006 igns coués n ransioir P.Pouich Nous éudions dans c chair couag d un ign rs un aur ign. éud s fai n ransioir dans cas ou un su ign s aimné. s

Plus en détail

Méthodologie version 1, juillet 2006

Méthodologie version 1, juillet 2006 Méthodologe verson, ullet 2006 Tendances Carbone résente chaque mos sx groues d ndcateurs :. Synthèse du mos 2. Clmat 3. Actvté économque. Energe 5. Envronnement nsttutonnel 6. Tableau de bord Ce document

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2

Q x2 = 1 2. est dans l ensemble plus grand des rationnels Q. Continuons ainsi, l équation x 2 = 1 2 Exo7 Nombres complexes Vdéo parte. Les nombres complexes, défntons et opératons Vdéo parte. Racnes carrées, équaton du second degré Vdéo parte 3. Argument et trgonométre Vdéo parte 4. Nombres complexes

Plus en détail

Réponse temporelle des systèmes dynamiques continus LTI

Réponse temporelle des systèmes dynamiques continus LTI UV Cour Répoe emporelle de yème dyamique coiu LI ASI 3 Coeu! Iroducio! Eude de yème du premier ordre " Iégraeur " Syème du er ordre! Eude de yème du ème ordre " Syème du ème ordre avec répoe apériodique

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Intégration financière en Asie de l Est : l apport des tests de stationnarité et de cointégration en panel

Intégration financière en Asie de l Est : l apport des tests de stationnarité et de cointégration en panel Inégraon fnancère en Ase de l Es : l appor des ess de saonnaré e de conégraon en panel Cyrac GUILLAUMIN 1 Documen de raval CEPN 19/2008 Résumé : L objecf de ce paper es de mesurer le degré d négraon fnancère

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h.

1 Introduction. 2 Définitions des sources de tension et de courant : Cours. Date : A2 Analyser le système Conversion statique de l énergie. 2 h. A2 Analyser le système Converson statque de l énerge Date : Nom : Cours 2 h 1 Introducton Un ConVertsseur Statque d énerge (CVS) est un montage utlsant des nterrupteurs à semconducteurs permettant par

Plus en détail

habitation basse énergie ISOLATION NATURELLE VENTILATION CONTROLEE

habitation basse énergie ISOLATION NATURELLE VENTILATION CONTROLEE confor proje d habiaion maion paive habiaion privée Profeionalime immeuble collecif conrucion neuve maion à rénover Performance habiaion bae énergie Qualié ISOLATION NATURELLE e VENTILATION CONTROLEE Nou

Plus en détail

Définition des tâches

Définition des tâches Défnton des tâches Défnton des tâches Project 2010 Sasr les tâches d'un projet Les tâches représentent le traval à accomplr pour attendre l'objectf du projet. Elles représentent de ce fat, les éléments

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

Bouna FALL. To cite this version: HAL Id: tel-00973788 https://tel.archives-ouvertes.fr/tel-00973788

Bouna FALL. To cite this version: HAL Id: tel-00973788 https://tel.archives-ouvertes.fr/tel-00973788 Evaluaon des performances d un sysème de localsaon de véhcules de ranspors gudés fondé sur l assocaon d une echnque rado ULB e d une echnque de reournemen emporel. Bouna FALL To ce hs verson: Bouna FALL.

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage

Fiche n 7 : Vérification du débit et de la vitesse par la méthode de traçage Fche n 7 : Vérfcaton du débt et de la vtesse par la méthode de traçage 1. PRINCIPE La méthode de traçage permet de calculer le débt d un écoulement ndépendamment des mesurages de hauteur et de vtesse.

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Grandeur physique, chiffres significatifs

Grandeur physique, chiffres significatifs Grandeur physque, chffres sgnfcatfs I) Donner le résultat d une mesure en correspondance avec l nstrument utlsé : S avec un nstrument, ren n est ndqué sur l ncerttude absolue X d une mesure X, on consdère

Plus en détail

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x )

Séries de Fourier. T f (x) exp 2iπn x T dx, n Z. T/2 f (x) cos ( ) f (x) dx a n (f) = 2 T. f (x) cos 2πn x ) Séries de Fourier Les séries de Fourier constituent un outil fondamental de la théorie du signal. Il donne lieu à des prolongements et des extensions nombreux. Les séries de Fourier permettent à la fois

Plus en détail

TP : Outils de simulation. March 13, 2015

TP : Outils de simulation. March 13, 2015 TP : Outils de simulation March 13, 2015 Chater 1 Initialisation Scilab Calculatrice matricielle Exercice 1. Système Unix Créer sous Unix un réertoire de travail outil_simulation dans votre home réertoire.

Plus en détail

H + 0.5O H O + 286860 kj. CH + 2O CO + 2 H O + 892520 kj. 4 2 2 2 vap. 4 2 2 2 liq. CH + 5O 3CO + 4HO + 2224640 kj. 3 8 2 2 2 vap.

H + 0.5O H O + 286860 kj. CH + 2O CO + 2 H O + 892520 kj. 4 2 2 2 vap. 4 2 2 2 liq. CH + 5O 3CO + 4HO + 2224640 kj. 3 8 2 2 2 vap. CHAPIRE III : LES BILANS D'ENERGIE 1. Les chaleurs de réaction La combustion est la réaction exothermique des éléments constituant les combustibles avec de l'oxygène ris dans l'air, dans le but de roduire

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET MODELES DE LA COURBE DES AUX D INERE UNIVERSIE d EVRY Séance 4 Philippe PRIAULE Plan de la Séance Les modèles sochasiques de déformaion de la courbe des aux: Approche déaillée Le modèle de Black: référence

Plus en détail

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction -

EXAMEN FINAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSION 1 - Correction - EXAME FIAL DE STATISTIQUES DESCRIPTIVES L1 AES - SESSIO 1 - Correcton - Exercce 1 : 1) Consdérons une entreprse E comportant deux établssements : E1 et E2 qu emploent chacun 200 salarés. Au sen de l'établssement

Plus en détail

L'effet de l'allocation unique dégressive sur la reprise d'emploi

L'effet de l'allocation unique dégressive sur la reprise d'emploi EMPLOI L'effet de l'allocaton unque dégressve sur la rerse d'emlo Brgtte Dormont Dens Fougère et Ana Preto* Le rofl de l ndemnsaton du chômage nfluence-t-l la rerse d emlo? Cette queston est étudée en

Plus en détail

dénombrement, loi binomiale

dénombrement, loi binomiale dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................

Plus en détail

REGIE DES EAUX DU CANAL BELLETRUD. Demande d'installation ou de Réhabilitation d'un dispositif d'assainissement Non Collectif

REGIE DES EAUX DU CANAL BELLETRUD. Demande d'installation ou de Réhabilitation d'un dispositif d'assainissement Non Collectif Demande d'installation ou de Réhabilitation d'un disositif d'assainissement Non Collectif Les renseignements demandés dans ce document ermettront au Service Public d'assainissement Non Collectif de donner

Plus en détail

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE

LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE LE PRINCIPE DU RAISONNEMENT PAR RÉCURRENCE. Exemple troductf (Les élèves qu coasset déà be le prcpe peuvet sauter ce paragraphe) Cosdéros la sute (u ), défe pour tout, par : u u u 0 0 Cette sute est défe

Plus en détail

Les jeunes économistes

Les jeunes économistes Chaptre1 : les ntérêts smples 1. défnton et calcul pratque : Défnton : Dans le cas de l ntérêt smple, le captal reste nvarable pendant toute la durée du prêt. L emprunteur dot verser, à la fn de chaque

Plus en détail

Systèmes électroniques

Systèmes électroniques Sysèmes élecroques Capre 5 AMENTATONS À ÉCOPAGE À TANSFOMATE M. Correvo T A B E E S M A T E E S PAGE 5. AMENTATONS A ECOPAGE A TANSFOMATE... 5. E TANSFOMATE... 5.. elaos de base... 5.. Crcus magéques...6

Plus en détail

ANALYSE DES DETERMINANTS DE L EPARGNE NATIONALE DANS UN PAYS EN DEVELOPPEMENT : LE CAS DU RWANDA

ANALYSE DES DETERMINANTS DE L EPARGNE NATIONALE DANS UN PAYS EN DEVELOPPEMENT : LE CAS DU RWANDA Unvesé de Monéal Faculé des As e des Scences Dépaemen des Scences Economques ANALSE DES DETERMINANTS DE L EPARGNE NATIONALE DANS UN PAS EN DEVELOPPEMENT : LE CAS DU RWANDA Rappo de echeche pésené pa :

Plus en détail

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007 Bureau fédéral du Plan Avenue des Ars 47-49, 1000 Bruxelles hp://www.plan.be WORKING PAPER 18-10 Comparaison des composanes de la croissance de la producivié : Belgique, Allemagne, France e Pays-Bas 1996-2007

Plus en détail

Conseil de Développement Observatoire Economique et Social

Conseil de Développement Observatoire Economique et Social Conseil de Développement Observatoire Economique et Social Le diagnostic : méthode et contenu Diagnostic partagé réalisé annuellement depuis 8 ans par un groupe technique composé d une douzaine de structures

Plus en détail

Moyennes de fonctions arithmétiques de formes binaires

Moyennes de fonctions arithmétiques de formes binaires Mathematika 58 2012 290 304 Moyennes de fonctions arithmétiques de formes binaires R de la Bretèche & G Tenenbaum Abstract Extending classical results of Nair and Tenenbaum we rovide general shar uer bounds

Plus en détail

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes!

Accueil Events, l accueil personnalisé des touristes d affaires Informations, bonnes adresses, réservations et découvertes! Lyon City Card 1 jour 2 jours 3 jours Ta xis et M inibus - Tarifs forfaitaires Jour : 7h - 19h Nuit : 19h - 7h Lyon/ Villeurbanne - Aéroport St Exupéry 59 81 Lyon 5ème et 9ème excentrés - Aéroport St Exupéry

Plus en détail

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse

rf( 1 f(x)x dx = O. ) U concours externe de recrutement de professeurs agreg6s composition d analyse page 8 AGREGATIN de MATHEMATIQUES: 1991 1/5 externeanalyse concours externe de recrutement de professeurs agreg6s composition d analyse NTATINS ET DGFINITINS Dans tout le problème, R+ désigne l intervalle

Plus en détail

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état)

Liens entre fonction de transfert et représentations d'état d'un système (formes canoniques de la représentation d'état) oqe V oqe Cor e ere foco de rfer e repréeo dé d èe fore coqe de l repréeo dé SI Coe oqe! Irodco! e ere le dfféree decrpo d èe! Pge odèle dé " foco de rfer # C d èe oovrle # C d èe lvrle! Pge foco de rfer

Plus en détail

Centre d Analyse Théorique et de Traitement des données économiques

Centre d Analyse Théorique et de Traitement des données économiques Cenre d Analyse Théorique e de Traiemen des données économiques CATT WP No. 9. January 2011 L IMPACT DU TAUX DE CHANGE SUR LES EXPORTATIONS DE L ALLEMAGNE ET DE LA FRANCE HORS ZONE EURO Serge REY CATT-UPPA

Plus en détail

TD 1. Statistiques à une variable.

TD 1. Statistiques à une variable. Danel Abécasss. Année unverstare 2010/2011 Prépa-L1 TD de bostatstques. Exercce 1. On consdère la sére suvante : TD 1. Statstques à une varable. 1. Calculer la moyenne et l écart type. 2. Calculer la médane

Plus en détail

0707 70 70 Lot-sizing Résumé :

0707 70 70 Lot-sizing Résumé : 77 7 7 2 Lo-szng Résumé : L améloraon de la qualé des servces logsques es la garane essenelle pour la réalsaon de l avanage de ces servces, l augmenaon du nveau de sasfacon des clens e l améloraon de la

Plus en détail