Exemples de résolutions d équations différentielles

Dimension: px
Commencer à balayer dès la page:

Download "Exemples de résolutions d équations différentielles"

Transcription

1 Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple Avec second membre 3.1 Exemple Exemple Exemple Exemple Exemple Exemple Sans second membre, avec condiion iniiale Exemple Exemple Avec second membre e condiion iniiale Exemple Exemple Exemples de recollemens Exemple Exemple Exemple Exemple Exemple Fichier à uiliser : equ diffs. 1 Définiions Soien I un inervalle de R non rédui à un poin. Les foncions a (e, au bseoin, b) son coninues sur I, à valeurs réelles. Alors y () + a()y() = 0 une équaion différenielle linéaire, homogène, du premier ordre; e y ()+a()y() = b() es une équaion complèe. Noons A une primiive sur I de a ; les soluions de l équaion proposée son les foncions I λ exp ( A() ). Sans second membre.1 Exemple Résolvons l équaion différenielle y () + y() = 0 : ici, a() =, donc A() = udu =. La soluion générale de cee équaion es donc R λe. 1

2 3 Avec second membre 3.1 Exemple Résolvons l équaion différenielle y () + y() = + 3. Nous avons a() =, donc A() = udu =. Les soluions de l équaion homogène son les foncions R λe. Il nous rese à déerminer une soluion pariculière ; celle-ci es de la forme h() = a + b + c; donc h () = a + b. Il vien : h () + h() = a + b + a + b + c = a + (a + b) + b + c Ceci nous amène au sysème échelonné, formé des rois équaions a = 1, (a + b) = e b + c = 3. La résoluion nous donne a = 1/, b = 3/ e c = 9/4. La forme générale d une soluion es donc R λe Exemple Résolvons l équaion différenielle y + y =, avec la condiion iniiale y(0) =. Nous avons a() =, donc A() = udu =. La soluion générale de l équaion homogène y + y = 0 es donc la foncion R λe. Nous rouvons facilemen une soluion pariculière de l équaion complèe : il suffi de prendre R 1. La soluion de l équaion complèe es donc R 1 + λe. 3.3 Exemple Résolvons l équaion différenielle y () + y() = e. Ici, nous avons a() = 1, donc A() = 1d =. La soluion générale de l équaion homogène es visiblemen la foncion R λe. Il nous fau mainenan déerminer une soluion pariculière de l équaion complèe ; la méhode de variaion de la consane nous donne λ () = e 1 + e, donc λ() = ln(1 + e ). La soluion complèe es donc R λe + e ln(1 + e ). 3.4 Exemple Résolvons l équaion différenielle y () y() = ( 1)e. Ici, nous avons a() =, donc A() = du =. Les soluions de l équaion homogène son visiblemen de la forme R λe. Il rese à déerminer une soluion pariculière ; celle-ci sera de la forme e P(), avec P polynomiale, de degré. Noons P() = a + b + c e P () = a + b; alors : ( P () + ( 1)P() ) e = ( 1)e P () + ( 1)P() = 1 a + b + ( 1)(a + b + c) = 1 a + (b a) + a b = 1

3 Ceci nous mène à a = 1 e b = 1. Finalemen, la soluion générale de cee équaion es R λe + (1 + )e. 3.5 Exemple Nous résolvons l équaion différenielle y () + y() = e. La soluion générale de l équaion homogène es R λe. La méhode de variaion de la consane s applique, ici : y() = λ()e donne λ () = e + k, où k R. La soluion de l équaion complèe es donc λe + e, avec λ R. 3.6 Exemple Nous résolvons l équaion différenielle y () y() = sh() ch(). L équaion différenielle se rédui à y () y() = 0. Nous avons a() =, donc A() = udu =. La soluion générale de l équaion homogène es R λe. À FAIRE! Il rese à déerminer une soluion pariculière de l équaion complèe. 4 Sans second membre, avec condiion iniiale 4.1 Exemple Résolvons l équaion différenielle y () + 3y() = 0, avec la condiion iniiale y(0) =. Nous avons a() = 3, donc A() = 3d = 3. La forme générale des soluions es donc R λe 3. La condiion iniiale y(0) = impose y : R e Exemple Résolvons l équaion différenielle (1 + )y () y() = 0, avec la condiion iniiale y(1) = π. L équaion es mise sous la forme plus agréable y () 1 u 1 + u du = Les soluions son donc de la forme R λ Avec second membre e condiion iniiale 5.1 Exemple y() = 0 ; ici, a() =, donc A() = Résolvons l équaion différenielle y () + y() = + 1, avec la condiion iniiale y(0) = 3. Observons l équaion homogène y () + y() = 0 : ici, a() =, donc A() = udu =. Les soluions son les foncions R λe /. Si nous cherchons une soluion pariculière, nous obenons facilemen la soluion R. Sinon, la condiion iniiale y(0) = 3 impose comme soluion la foncion R λ exp( /). 3

4 5. Exemple Résolvons l équaion différenielle y () y() = sh() ch(), avec la condiion iniiale y(0) = 1. La soluion générale de l équaion homogène es R λe. Il rese à déerminer une soluion pariculière de I équaion complèe ; elle sera de la forme α sh() + β sh(). 6 Exemples de recollemens 6.1 Exemple Résolvons l équaion différenielle y () y() = 3. Nous nous ramenons à la résoluion des équaions y () y() =, avec < 0, puis avec > 0. La soluion de l équaion homogène nous donne a() =, donc A() = du = ln(). Nous disinguerons u désormais deux cas de figure. Si y ],+ [, alors y() = λ exp ( A() ) = λ exp ( ln() ) = λ. De la même façon, nous obenons pour ]0,+ [ la soluion y() = µexp ( A() ) = µexp ( ln() ) = µ. Nous consaons que y() 0, puis que y () 0. Donc la resricion de y à ]0,+ [ es prolongeable à droie de 0 ; nous obenons y(0) = 0 e y (0) = 0. La foncion, ainsi prolongée, es dérivable sur R +. Un argumen analogue nous monre que la resricion de y à ], 0[ es prolongeable par coninuié à gauche de 0. La foncion, ainsi prolongée, es dérivable à gauche de 0. Finalemen, y, ainsi prolongée, es coninue e dérivable sur R. Les soluions de l équaion proposée son de la forme suivane : < 0 µ, > 0 λ e 0 0. Il exise une double infinié de soluions obenues par recollemen. 6. Exemple Résolvons l équaion différenielle y () y() =. Observons que l équaion n es pas définie sur R ; en revanche, elle es définie sur R e sur R +. Si < 0, la soluion générale es y() = λ ; de même, si > 0, la soluion générale es y() = µ. Une soluion pariculière es obenue facilemen : c es la soluion y() =. Finalemen, la soluion générale de l équaion différenielle es définie comme sui : si < 0, alors y() = λ+ ; si > 0, alors y() = µ +. Voyons si les deux morceaux peuven êre raccordés. Les soluions que nous venons de définir son coninues, respecivemen à gauche e à droie de 0 ; donc nous pouvons prolonger y par coninuié, en posan y(0) = 0. Il rese à obenir la dérivabilié à gauche e à droie de 0 : or celle-ci es obenue en imposan λ = µ. Concluons : il exise des soluions sur R, de la forme y() = λ Exemple Résolvons l équaion différenielle y () y() =. Observons que l équaion es définie sur ]0,+ [. La condiion > 0 nous es imposée. L équaion homogène s écri y y = 0 ; sa soluion générale es > 0 λ. Pour obenir une soluion pariculière, il es raisonnable, au vu de l équaion, de prendre y() = α. Alors y () = α e y() = α ; donc α α = 1, soi α = 3. La soluion générale es λ 3. 4

5 Observons que la soluion proposée end vers 0 + avec, donc y es prolongeable par coninuié à droie de 0, y() y(0) en posan y(0) = 0. Mais = λ 0 3 end vers lorsque end vers 0+. Donc il n exise pas de soluion sur R Exemple Résolvons l équaion différenielle y ()sin() y()cos() = 1. Nous consaons que cee équaion ne peu êre résolue que sur chaque inervalle I n = ]nπ,(n + 1)π[. Limions-nous au cas où l inervalle es I p = ]pπ,(p + 1)π[. Ici, A() = co() = cos() ; donc A() = sin() cos(u) sin(u) du = ln( sin() ). La soluion générale de l équaion homogène es donc λ exp ( ln(sin() ) = λ sin(). Observons que la foncion y() 0 e y() 0 ; Il rese à rouver une soluion pariculière de pπ + (p+1)π l équaion complèe. Si nous avons l œil, la foncion 1 convien! Sinon, nous savons qu une soluion sera de la forme I n α sin() + β cos() ; le rese es une quesion d idenificaion. 6.5 Exemple Résolvons l équaion différenielle y + y = 1. Nous nous ramenons à l équaion y + y = 0. Les soluions son : si < 0, alors y() = λe 1/ ; si > 0, alors y() = µe 1/. Une soluion pariculière évidene es la foncion y() = 1. La soluion générale es donc : si < 0, alors y() = 1 + λe 1/ ; si > 0, alors y() = 1 + µe 1/. La coninuié de y à gauche e à droie de 0 es claire, donc nous pouvons prolonger y en imposan y(0) = 0. Monrons enfin que la dérivée peu à son our êre prolongée : si < 0, alors y() = λe 1/, avec λ R, y(0) = 1 e y (0) = 0 ; si > 0, alors y() = 1. 5

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Le modèle de Black Scholes

Le modèle de Black Scholes Le modèle de Black Scholes Philippe Briand, Mars 3 1. Présenaion du modèle Les mahémaiciens on depuis longemps essayé de résoudre les quesions soulevées par le monde de la finance. Une des caracérisiques

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

Solutions auto-semblables pour des modèles avec conductivité thermique

Solutions auto-semblables pour des modèles avec conductivité thermique Soluions auo-semblables pour des modèles avec conducivié hermique Séphane DELLACHERIE e Olivier LAFITTE CRM-327 5 décembre 25 Cenre de Recherches Mahémaiques, Universié de Monréal, Case posale 628, Succursale

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Equations différentielles et Cinétique chimique

Equations différentielles et Cinétique chimique Equaions différnills Cinéiqu chimiqu En Cinéiqu, l'éud ds visss lors ds réacions condui à ds équaions différnills don la plupar corrspondn au programm d Mahémaiqus ds classs d STS chimiss Ls sujs raiés

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET MODELES DE LA COURBE DES AUX D INERE UNIVERSIE d EVRY Séance 4 Philippe PRIAULE Plan de la Séance Les modèles sochasiques de déformaion de la courbe des aux: Approche déaillée Le modèle de Black: référence

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

Non-résonance entre les deux premières valeurs propres d un problème quasi-linéaire

Non-résonance entre les deux premières valeurs propres d un problème quasi-linéaire Non-résonance enre les deux premières valeurs propres d un problème quasi-linéaire AREl Amrouss MMoussaoui Absrac We consider he quasilinear Dirichle boundary value problem (φ p (u )) = f(u)+h(x),u(a)=u(b)=0,

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

Estimation des matrices de trafics

Estimation des matrices de trafics Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche 31077 TOULOUSE Cedex

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

Surface de Volatilité et Introduction au Risque de Crédit

Surface de Volatilité et Introduction au Risque de Crédit Modèles de Taux, Surface de Volailié e Inroducion au Risque de Crédi Alexis Fauh Universié Lille I Maser 2 Mahémaiques e Finance Spécialiés Mahémaiques du Risque & Finance Compuaionelle 214/215 spread

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine.

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine. Analyse par inervalles pour la localisaion e la carographie simulanées; Applicaion à la roboique sous-marine Fabrice LE BARS Analyse par inervalles pour la localisaion e la carographie simulanées; Thèse

Plus en détail

ÉTUDE D UN SYSTÈME PLURITECHNIQUE

ÉTUDE D UN SYSTÈME PLURITECHNIQUE DM SSI: AQUISITION DE l INFORMATION ÉTUDE D UN SYSTÈME PLURITECHNIQUE Pores Laérales Coulissanes de monospace PRÉSENTATION DE L ÉTUDE Mise en siuaion Les fabricans d'auomobiles, face à une concurrence

Plus en détail

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE INTRODUCTION L'oscilloscope es le plus polyvalen des appareils de mesures élecroniques. Il peu permere simulanémen de visualiser

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Séquence 2. Pourcentages. Sommaire

Séquence 2. Pourcentages. Sommaire Séquence 2 Pourcenages Sommaire Pré-requis Évoluions e pourcenages Évoluions successives, évoluion réciproque Complémen sur calcularices e ableur Synhèse du cours Exercices d approfondissemen 1 1 Pré-requis

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Stabilisation des systèmes bilinéaires fractionnaires

Stabilisation des systèmes bilinéaires fractionnaires Sbilision des sysèmes bilinéires frcionnires Ibrhim N Doye,, Michel Zsdzinski, Nour-Eddine Rdhy, Mohmed Drouch Cenre de Recherche en Auomique de Nncy, UMR 739 Nncy-Universié, CNRS IUT de Longwy, 86 rue

Plus en détail

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

DE L'ÉVALUATION DU RISQUE DE CRÉDIT DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd

Plus en détail

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD LA COUCHE PHYSIQUE 1 FONCTIONS GENERALES Cee couche es chargée de la conversion enre bis informaiques e signaux physiques Foncions principales de la couche physique : définiion des caracérisiques de la

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

FONCTIONS LOGIQUES I INTRODUCTION : II FONCTION LOGIQUE ET OPERATEUR BINAIRE : III DEFINITION ET REPRESENTATIONS D UN OPERATEUR BINAIRE :

FONCTIONS LOGIQUES I INTRODUCTION : II FONCTION LOGIQUE ET OPERATEUR BINAIRE : III DEFINITION ET REPRESENTATIONS D UN OPERATEUR BINAIRE : I INTRODUCTION : FONCTION LOGIQUE BT MI Variabl binair : L élcrochniqu, l élcroniqu, la mécaniqu éudin uilisn la variaion d grandurs physiqus lls qu la prssion, la forc, la nsion, c. Crains applicaions

Plus en détail

UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ

UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ Mémoire Emmanuel Hamel Maîrise en acuaria Maîres ès sciences (M.Sc.) Québec, Canada Emmanuel Hamel, 03 Résumé

Plus en détail

Sur les Obligations Convertibles à Option Retardée de Remboursement Anticipé au Gré de l Émetteur 1

Sur les Obligations Convertibles à Option Retardée de Remboursement Anticipé au Gré de l Émetteur 1 ur les Obligaions Converibles à Opion Reardée de Remboursemen Anicipé au Gré de l Émeeur F. ANDRE-LE POGAMP F. MORAUX florence.andre@univ-rennes.fr franck.moraux@univ-rennes.fr Universié de Rennes I-IGR

Plus en détail

Simulation : application au système bonus-malus en responsabilité civile automobile

Simulation : application au système bonus-malus en responsabilité civile automobile 4/5/98 Simulaion : applicaion au sysème bonus-malus Simulaion Simulaion : applicaion au sysème bonus-malus en responsabilié civile auomobile 4/5/98 Simulaion : applicaion au sysème bonus-malus Programme

Plus en détail

Etude de risque pour un portefeuille d assurance récolte

Etude de risque pour un portefeuille d assurance récolte Eude de risque pour un porefeuille d assurance récole Hervé ODJO GROUPAMA Direcion ACTUARIAT Groupe 2, Bd Malesherbes 75008 Paris Tél : 33 (0 44 56 72 46 herve.odjo@groupama.com Viviane RITZ GROUPAMA Direcion

Plus en détail

COMPÉTITIVITÉ ÉCONOMIQUE DU MAROC

COMPÉTITIVITÉ ÉCONOMIQUE DU MAROC COMPÉTITIVITÉ ÉCONOMIQUE DU MAROC CONCEPTS DE BASE DE LA MODELISATION HYDROLOGIQUE ET HYDRAULIQUE APPORTS ET PRINCIPES D UTILISATION DES OUTILS HEC, HEC-HMS ET HEC-RAS, PLATEFORME D INTEGRATION WMS ET

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa

No 1996 13 Décembre. La coordination interne et externe des politiques économiques : une analyse dynamique. Fabrice Capoën Pierre Villa No 996 3 Décembre La coordinaion inerne e exerne des poliiques économiques : une analyse dynamique Fabrice Capoën Pierre Villa CEPII, documen de ravail n 96-3 SOMMAIRE Résumé...5 Summary...7. La problémaique...9

Plus en détail

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE 009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or

Plus en détail

est proportionnel à B, lui même proportionnel au courant i. On a donc

est proportionnel à B, lui même proportionnel au courant i. On a donc INDUCTION ÉLCTROMGNÉTIQU DNS UN CIRCUIT FIX INDUCTION ÉLCTROMGNÉTIQU DNS UN CIRCUIT FIX : CS D NUMNN I Descipion des cicuis dans le cade de l RQS 1 ) Inducances popes e inducances muuelles de cicuis filifomes

Plus en détail

Facturation et Commerce Electroniques. Facturation et Commerce Electroniques Partie I. Plan. Introduction Capita Selecta

Facturation et Commerce Electroniques. Facturation et Commerce Electroniques Partie I. Plan. Introduction Capita Selecta Facuraion e Commerce Elecroniques Aspecs juridiques e fiscaux SPI + & Club liégeois des exporaeurs Liège, le 18 mars 2004 Plan Aspecs juridiques Eric Louis e Peer Verplancke Aspecs TVA Baudouin Thirion

Plus en détail

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie

Copules et dépendances : application pratique à la détermination du besoin en fonds propres d un assureur non vie Copules e dépendances : applicaion praique à la déerminaion du besoin en fonds propres d un assureur non vie David Cadoux Insiu des Acuaires (IA) GE Insurance Soluions 07 rue Sain-Lazare, 75009 Paris FRANCE

Plus en détail

Centre d Analyse Théorique et de Traitement des données économiques

Centre d Analyse Théorique et de Traitement des données économiques Cenre d Analyse Théorique e de Traiemen des données économiques CATT WP No. 9. January 2011 L IMPACT DU TAUX DE CHANGE SUR LES EXPORTATIONS DE L ALLEMAGNE ET DE LA FRANCE HORS ZONE EURO Serge REY CATT-UPPA

Plus en détail

La crise de liquidité a engendré une réponse réglementaire en cours d ajustement qui pousse

La crise de liquidité a engendré une réponse réglementaire en cours d ajustement qui pousse Crise de liquidié Piloage du LCR ou du risque de liquidié? Salwa Fariji / Vincen Boisbourdain Salwa Fariji es consulane chez Opus Finance. Diplômée de L ESEC de Barcelone en analyse financière e gesion

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, août 2003

GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, août 2003 GESTION DU RÉSULTAT : MESURE ET DÉMESURE 1 2 ème version révisée, aoû 2003 Thomas JEANJEAN 2 Cahier de recherche du CEREG n 2003-13 Résumé : Depuis une vingaine d années, la noion d accruals discréionnaires

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle

Article. «Les effets à long terme des fonds de pension» Pascal Belan, Philippe Michel et Bertrand Wigniolle Aricle «Les effes à long erme des fonds de pension» Pascal Belan, Philippe Michel e Berrand Wigniolle L'Acualié économique, vol 79, n 4, 003, p 457-480 Pour cier ce aricle, uiliser l'informaion suivane

Plus en détail

L évaluation du prix des actions par les fondamentaux : analyse du marché français

L évaluation du prix des actions par les fondamentaux : analyse du marché français L évaluaion du prix des acions par les fondamenaux : analyse du marché français Dominique epin To cie his version: Dominique epin. L évaluaion du prix des acions par les fondamenaux : analyse du marché

Plus en détail

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007 Bureau fédéral du Plan Avenue des Ars 47-49, 1000 Bruxelles hp://www.plan.be WORKING PAPER 18-10 Comparaison des composanes de la croissance de la producivié : Belgique, Allemagne, France e Pays-Bas 1996-2007

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

Interdépendance des marchés d actions : analyse de la relation entre les indices boursiers américain et européens

Interdépendance des marchés d actions : analyse de la relation entre les indices boursiers américain et européens Inerdépendance des marchés d acions : analyse de la relaion enre les indices boursiers américain e européens SANVI AVOUYI-DOVI, DAVID NETO Direcion générale des Éudes e des Relaions inernaionales Direcion

Plus en détail

Pricing des produits dérivés de crédit dans un modèle

Pricing des produits dérivés de crédit dans un modèle Pricing des produis dérivés de crédi dans un modèle à inensié Nordine Bennani & Cyril Sabbagh Table des maières 1 Présenaion générale des dérivés de crédi 3 1.1 Inroducion...................................

Plus en détail

par Colin Thirtle et Robert Townsend, Université de Reading et Université de Pretoria

par Colin Thirtle et Robert Townsend, Université de Reading et Université de Pretoria Jour 10 L'esimaion de la réacion dnamique de l'offre par Colin Thirle e Rober Townsend, Universié de Reading e Universié de Preoria Table des maières Inroducion 1. La héorie de base de la producion e de

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE CIENCE DE L'INGÉNIEU TP N 3 page 1 / 8 GÉNIE ÉLECTIQUE TEMINALE Durée : 2h OUVE POTAIL FAAC : EUE CODÉE Cenres d'inérê abordés : Thémaiques : CI11 ysèmes logiques e numériques I6 Les sysèmes logiques combinaoires

Plus en détail

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche e Oscilloscope objecif de ce TP es d apprendre à uiliser, ie. à régler, deux des appareils les plus courammen uilisés : le e l oscilloscope. Pour cela vous serez amené(e) à uiliser e à associer de nouveaux

Plus en détail

Documents de Travail du Centre d Economie de la Sorbonne

Documents de Travail du Centre d Economie de la Sorbonne Documens de Travail du Cenre d Economie de la Sorbonne D un muliple condiionnel en assurance de porefeuille : CAViaR pour les gesionnaires? Benjamin HAMIDI, Emmanuel JURCZENKO, Berrand MAILLET 2009.33

Plus en détail

Règle de Taylor dans le cadre du Ciblage d inflation: Cas de la Nouvelle Zélande

Règle de Taylor dans le cadre du Ciblage d inflation: Cas de la Nouvelle Zélande Règle de Taylor dans le cadre du Ciblage d inflaion: Cas de la Nouvelle Zélande Résumé : La nouvelle Zélande es le pays ayan la plus grande expérience en poliique du ciblage d inflaion. Cee poliique a

Plus en détail

DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers

DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers DESSd ingéniérie mahémaique Universié d Evry Val d Essone Evaluaions des produis nanciers Véronique Berger Cours Janvier-Mars 2003 version du 27 mars 2003 Conens I Présenaion du plan de cours 3 II Insrumens

Plus en détail

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

Cahier technique n 114

Cahier technique n 114 Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés

Plus en détail

CANAUX DE TRANSMISSION BRUITES

CANAUX DE TRANSMISSION BRUITES Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une

Plus en détail

Théorie de la politique monétaire : Esquisses d'une refondation. Jean-Paul Pollin*

Théorie de la politique monétaire : Esquisses d'une refondation. Jean-Paul Pollin* Théorie de la poliique monéaire : Esquisses d'une refondaion Jean-Paul Pollin* Résumé : Nous nous proposons de rendre compe du renouvellemen de la héorie de la poliique monéaire impulsé par les ravaux

Plus en détail

PARTIAL DIFFERENTIAL EQUATIONS. On global discontinuous solutions of Hamilton-Jacobi equations.

PARTIAL DIFFERENTIAL EQUATIONS. On global discontinuous solutions of Hamilton-Jacobi equations. EQUATIONS AUX DERIVEES PARTIELLES. Sur des soluions globales disconinues des équaions d Hamilon-Jacobi, par Gui-Qiang Chen e Bo Su Résumé. On éabli l unicié des soluions de viscosié semiconinues classiques

Plus en détail

FONCTIONS EXPONENTIELLES - FONCTIONS LOGARITHMES. lim e x = 0 et. x y

FONCTIONS EXPONENTIELLES - FONCTIONS LOGARITHMES. lim e x = 0 et. x y FONCTIONS EPONENTIELLES - FONCTIONS LOGARITHMES. D la foncion ponnill (d bas ) à la foncion logarihm népérin.. Théorèm La foncion ponnill (d bas ) s conin, sricmn croissan sr : = = + + Coninié La foncion

Plus en détail

Une mesure financière de l importance de la prime de risque de change dans la prime de risque boursière*

Une mesure financière de l importance de la prime de risque de change dans la prime de risque boursière* Une mesure financière de l imporance de la prime de risque de change dans la prime de risque boursière* Salem Boubakri Janvier 2009 Résumé Cee éude ese une exension inernaionale du Modèle d Evaluaion des

Plus en détail

LES MODÈLES DE TAUX DE CHANGE

LES MODÈLES DE TAUX DE CHANGE LES MODÈLES DE TAUX DE CHANGE Équilibre de long erme, dynamique e hysérèse Anoine Bouvere Docoran à l OFCE Henri Serdyniak Direceur du Déparemen économie de la mondialisaion de l OFCE Professeur associé

Plus en détail

Diagnostic à base de modèle : application à un moteur diesel suralimenté à injection directe

Diagnostic à base de modèle : application à un moteur diesel suralimenté à injection directe Insiu Naional olyechnique de Lorraine enre de Recherche en Auomaique de Nancy École docorale IAEM Lorraine Déparemen de Formaion Docorale en Auomaique Diagnosic à base de modèle : applicaion à un moeur

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

Le mécanisme du multiplicateur (dit multiplicateur keynésien) revisité Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par

Plus en détail

Crise Financière, Politique de Déflation, Politique D anticipations et Ciblage des Taux Longs au japon

Crise Financière, Politique de Déflation, Politique D anticipations et Ciblage des Taux Longs au japon Crise Financière, Poliique de Déflaion, Poliique D anicipaions e Ciblage des Taux Longs au japon SOUMARE Ibrahima Universié de Rouen Haue Normandie (France) Laboraoire CARE (Cenre d Analyse e de Recherche

Plus en détail

dspic30f3011 PWM "push-pull" avec les structures Output Compare DSPIC30F3011 PWM "push-pull" avec les structures Output Compare

dspic30f3011 PWM push-pull avec les structures Output Compare DSPIC30F3011 PWM push-pull avec les structures Output Compare DSPIC30F3011 PWM "push-pull" avec les srucures Oupu Compare Cee applicaion es uilisée dans le proje "VAE" (Vélo à Assisance Élecrique) pour piloer le converisseur DC-DC de l'éclairage. Le module "moeur"

Plus en détail