LE PARADOXE DES DEUX TRAINS

Dimension: px
Commencer à balayer dès la page:

Download "LE PARADOXE DES DEUX TRAINS"

Transcription

1 LE PARADOXE DES DEUX TRAINS Énoné du paradoxe Déaillons ou d abord le problème dans les ermes où il es souen présené On dispose de deux oies de hemins de fer parallèles e infinimen longues Enre les deux exise un quai sur lequel saionne un obseraeur I au repos par rappor à la oie Sur les deux lignes roulen dans des sens onraires deux rains A e B don la iesse, en module, a la même aleur par rappor aux oies, don par rappor à I Pour un l obseraeur I le emps séoulan dans A e B es dilaé dun faeur γ qui es le même pour les deux puisque / a la même aleur Le emps séoule don de la même façon, par rappor à I, dans A e B mais plus lenemen que pour lui même Les rains A e B éan en mouemen lun par rappor à laure, pour un obseraeur du rain A [ou B] le emps séoulan dans le rain B [ou A] le fai en éan dilaé Le paradoxe serai don le suian : dun ôé on onsae que le emps séoule «de la même façon» dans les deux rains A e B e de laure le emps séoule «plus lenemen» dans lun que dans laure La soluion du paradoxe serai alors de remere en ause le seond posula deinsein Soluion du paradoxe Il fau ou dabord en reenir au sens profond de la relaiié resreine RR Pour ela appuyons nous sur le lire de Jean-Marie Vigoureux «luniers en perspeie : relaiié resreine» hez Ellipse La présenaion suiane emprune lesseniel de son propos à e ourage Une propriéé fondamenale de la RR es que la dilaaion des durées e la onraion des longueurs enre deux obseraeurs son des effes réiproques Si nous aons deux obseraeurs en mouemen relaif, haun de eux-i oi lhorloge de laure ourner plus lenemen En RR les phénomènes surprenans obserés ne son pas des propriéés de lobseraeur lui même ii de I sur le quai e elui dans le rain A ou B ou des obseraeurs dans le rain A e dans le rain B mais une propriéé de la relaion exisane enre es deux lobseraeurs munis haun d une horloge Cee réiproié fondamenale doi se omprendre omme un effe de «perspeie dynamique» généralisan la perspeie saique Pour ellei, lorsquon obsere une personne éloignée, elle paraî plus peie mais, pour ee dernière, le premier obseraeur lui paraî aussi plus pei Don, lorsque deux personnes son éloignées lune de laure, haune paraî plus peie à laure Pour la «perspeie dynamique» nous aons un phénomène du même ype : si jobsere une personne en mouemen par rappor à moi jobsere que son horloge ourne plus lenemen que la mienne mais, pour lui, dune manière On s inspire ii d exrais que lon rerouera esseniellemen enre les pages 9 e 98 de l ourage de M Vigoureux

2 ou à fai réiproque, es ma propre horloge qui ourne moins ie Dans ee «perspeie dynamique», lorsque deux obseraeurs son en mouemen lun par rappor à laure, le premier se déplae ou auan par rappor au seond que le seond se déplae par rappor au premier En perspeie saique un dessinaeur doi représener les objes e les personnages dauan plus peis quils son plus éloignés de lui pour aoir une desripion ohérene de la réalié Cependan ei ne eu pas dire que le personnage du premier plan es réellemen plus grand que elui de larrière plan Le résula relaiise es ou à fai similaire : pour dérire les phénomènes de la naure dune manière ohérene il es néessaire de leur aribuer des durées propres es dire mesurées sur des horloges au repos par rappor aux lieux où se déroulen les phénomènes - dauan plus oures quils son aahés à des référeniels se déplaçan plus rapidemen par rappor à elui de lobseraeur Dans le as qui nous inéresse ii il faudrai don, en perspeie saique, faire lanalogie suiane Considérons rois obseraeurs I, A e B Les deux derniers son éloignés de I e plaés symériquemen par rappor à e dernier Pour I, A e B son de même aille mais neemen plus peis que lui même Mais pour A, sil regarde B, il a lui rouer une aille beauoup plus faible que la sienne Il en ira de même pour B qui regarde A On onsae ii lairemen que si les relaions qui exisen enre [I e A] d un ôé e [I e B] de l aure son les mêmes pour I, A e B on la même peie aille mais ei ne perme absolumen pas de dire que dans la relaion enre A e B les deux on la même aille On peu illusrer ela ae les shémas suians : Il ny a là auun paradoxe en perspeie saique e on doi en onenir Remarquons ependan que, en perspeie saique, plus un obje es loin plus il paraî pei alors quen perspeie dynamique plus un obje a ie plus la durée dun phénomène paraî grande

3 égalemen en «perspeie dynamique» Monrons mainenan par le alul que le paradoxe nes bien quapparen Pour ela il es ou dabord indispensable de définir lairemen les référeniels e les obseraeurs qui leur son aahés Soi R le référeniel lié aux oies e au quai, R elui qui es lié au rain A e R" elui lié au rain B Soi la iesse de A dans le référeniel R, - elle de B dans le même référeniel e V la iesse de B dans R don la iesse de A dans R" es V Soi deux éénemens E e E se produisan aux insans e en un même lieu de A où se roue nore obseraeur qui es don au repos dans R Lineralle de emps mesuré sur l horloge H A es don un emps propre Pour I, au repos dans R, E e E se déroulen en des lieux différens au emps e Lineralle de emps es alors une durée impropre Enre e nous aons don la relaion de dilaaion du emps elle que : On peu faire le même raisonnemen enre I e B On obien alors la même relaion enre e puisque la iesse de B dans R es la même, au signe près, que elle de A dans R Le shéma i dessous représene un des hoix possibles ii on se plae du poin de ue de I - ae le mouemen de B e de A ue de I Pour déerminer la relaion enre léoulemen du emps pour A au repos dans R e elui du emps pour B au repos dans R" il fau déjà onnaîre la iesse V B/A de B dans R [ou la iesse V A/B de A dans R"] Pour obenir ee iesse on uilise la loi relaiise de omposiion des iesses en sahan que B/I - A/I Le shéma i dessous représene un des deux hoix possibles ae le mouemen de B u de A 3

4 Don : V B / I I / B / I I A B / A < / A On peu illusrer ou ei ae une appliaion numérique en prenan par exemple 3/5 En reprenan les expliaions préédenes e les expressions aenanes nous aons, en noan V la iesse V B/A de B dans R : Pour les relaions {R,R } 3 ou {R,R"}, le faeur γ es donné par : R γ R γ R ae γ 5 / 4 / Pour la relaion {R,R"} le faeur γ es donné par : V R γ R ae γ 7 / Les faeurs γ des différenes siuaions éudiées son don bien différens e onfirmen la néessié, en relaiié resreine, de s appuyer sur ee idée de «perspeie dynamique» qui oblige à onsidérer, dans un alul d effe relaiise, que les résulas obenus onernen la relaion exisan enre deux obseraeurs apparenan à deux référeniels en mouemen relaif Ces résulas n on don pas de sens si on les onsidère qu en eux mêmes en oublian qu ils ne s appliquen qu à un ensemble indissoiable de deux référeniels en relaion de mouemen relaif Les onlusions déduies d une de es relaions ne peuen pas êre éendues à un aure ouple d obseraeurs Ii on a pu monrer que la relaion enre A e I éai la même que elle enre B e I uniquemen pare que la iesse de 3 Cee noaion indique la relaion enre une horloge au repos dans R e une aure horloge au repos dans R 4

5 A e la iesse de B par rappor à I aaien le même module Mais la iesse de A par rappor à B éan différene de la préédene, auune exension des onlusions préédenes n es possible Le seul lien possible enre les deux siuaions es elui fourni par la loi relaiise de omposiion des iesses uilisée ii Aure poin imporan Une aure araérisique de la RR en lien ae la manière don on onsidère le emps es souen oubliée e il es néessaire de la rappeler ii En RR on ne ien pas ompe du emps de propagaion des informaions dû à la iesse finie des ondes éleromagnéiques Considérons un obseraeur A au repos à l origine O de son référeniel propre R On réalise la mesure de l ineralle de emps enre deux éénemens E e E se produisan à proximié d un obseraeur B au repos dans R e en mouemen dans R Dans e référeniel, B es siué à une disane x, puis x, de O Dans e même référeniel les mesures des insans où se produisen es deux éénemens ne son pas faies sur la seule horloge H à ôé de A mais sur H E e H E qui son au repos dans R ET roisen exaemen haun des éénemens se produisan à ôé de B Il fau en effe onsidérer que dans haque référeniel il exise un réseau d horloges réparies ae un pas aussi pei que néessaire e que haque éénemen y es daé par l horloge oïnidene Si es l obseraeur siué à l origine qui ondui les mesures on esime qu il peu réupérer par la suie l ensemble des informaions emporelles réolées e reonsiuer a poseriori le déroulemen des éénemens On peu illusrer ça par les shémas suians : Shéma a : Manière orree de onsidérer les mesures dans R Shéma b : Manière inorree de onsidérer les mesures dans R Pour e dernier appelons e les insans enregisrés par H sahan qu ils 5

6 6 doien ompe du emps de propagaion de la lumière depuis les lieux où se produisen les éénemens De même nous appellerons e les insans fournis par les horloges H e H du shéma a Nous pouons exprimer e en fonion de e Pour ela nous érions : x x On onsae bien que la mesure de l ineralle de emps par une seule horloge ne donne pas une aleur ompaible ae e que l on aend En réalié nous aons ii une relaion qui es en rappor dire ae l effe Doppler En effe nous onnaissons la relaion enre la mesure de l ineralle de emps propre donné par l horloge aahé à B e don au repos dans R e l ineralle de emps impropre orrespondan donné par les deux horloges H e H On a : La dernière expression es bien elle de l effe Doppler en RR expriman la relaion enre la période propre d un signal enoyé par un obseraeur B e la période de e même signal reçu par un obseraeur A en mouemen par rappor au prééden Pierre MAGNIEN /4/3

Lycée Pilote Innovant et International. Jaunay-Clan LP2I

Lycée Pilote Innovant et International. Jaunay-Clan LP2I Lyée Piloe Innoan e Inernaional Lyée Piloe Innoan e Inernaional de Jaunay-Clan LPI Effe Dopplons Lyée Piloe Innoan e Inernaional Effe Dopplons Résumé Mesurer une iesse peu s aérer ompliqué dans eraines

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Chapitre 1.3 La vitesse instantanée

Chapitre 1.3 La vitesse instantanée Chapire.3 La iesse insananée La iesse dans un graphique de posiion On peu obenir une iesse moyenne en foncion du emps en effecuan un calcul de pene. Puisqu une pene es une rappor enre une ariaion selon

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

RENAshare Service de partage sécurisé de fichiers volumineux. Guide Utilisateur. GIP RENATER Services Applicatifs aux Utilisateurs.

RENAshare Service de partage sécurisé de fichiers volumineux. Guide Utilisateur. GIP RENATER Services Applicatifs aux Utilisateurs. ENAshare Service de parage sécurisé de fichiers volumineux Guide Uilisaeur GIP ENATE Services Applicaifs aux Uilisaeurs. Mai 0 Sommaire - Prenaion - Prenaion... - Connexion... - L'écran d'accueil... 4

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Les composants électroniques de commutation

Les composants électroniques de commutation Les omposans éleroniques e ommuaion hapire L TRANSSTOR POLAR Sommaire 1 GNRALTS... 24 2 OMMUTATON DU TRANSSTOR POLAR NPN... 25 2.1 RAPPLS... 25 2.2 LS PHASS D'UN TRANSSTOR A LA OMMUTATON... 25 2.2.1 Transisor

Plus en détail

Nature de l information

Nature de l information Naure de l informaion PAGE : Siuaion : Parfois l informaion fournie par un capeur Tou Ou Rien (TOR) n es pas suffisane pour piloer l équipemen. Dans ce cas nous devons avoir recours à des capeurs e déeceurs

Plus en détail

5.1 La conception d'animation

5.1 La conception d'animation ANIMATIONS Flash CS6 5.1 La concepion d'animaion A- Le concep d'animaion dans Flash Flash perme de créer des animaions. Lorsque vous animez un obje, vous gérez deux espaces : l'espaceemps dans le panneau

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

CIRCUITS LOGIQUES EN COMMUTATION

CIRCUITS LOGIQUES EN COMMUTATION IUITS LOIQUES EN OMMUTTION ee éude es limiée à des iruis logiques présenan à l'éa hau omme à l'éa bas une impédane d'enrée rès éleée, que l'on onsidérera infinie. 1. onsiuion d'un inerseur à MOSET : gae

Plus en détail

Caractérisation de cellules solaires

Caractérisation de cellules solaires Caraérisaion de ellules solaires 1. Sruure e prinipe de fonionnemen d une ellule solaire [1] 1.1 Prinipe de fonionnemen Une ellule solaire es un omposan éleronique qui onverie la lumière du soleil en éleriié.

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Introduction de paramètres dynamiques en reconnaissance faciale

Introduction de paramètres dynamiques en reconnaissance faciale Inroduion de paramères dynamiues en reonnaissane faiale Federio MATTA Jean-Lu DUGELAY Insiu Euréom 2229 roue des Crêes 06904 Sophia Anipolis, Frane {Federio.Maa,Jean-Lu.Dugelay}@eureom.fr Résumé Dans e

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

MESURE DE VISCOSITÉ. v(z) V = 0. Figure 1.

MESURE DE VISCOSITÉ. v(z) V = 0. Figure 1. MESURE DE VISCOSITÉ I - QUELQUES ÉLÉMENTS DE RHÉOLOGIE La mesure de la viscosié d'un fluide fai parie de la rhéologie, qui es la science des écoulemens de la maière. Dans la suie, on noera : -la viscosié

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé y 2003-2004 Devoir n 5 CONVERSION DE PUISSANCE Parie I EUDE D UN CAPEUR DE POSIION ANGULAIRE A / ÉUDE D'UN CIRCUI MAGNÉIQUE Considérons le disposiif schémaisé sur la figure, composé de deux bobines

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

Le modèle linéaire général simple à deux variables

Le modèle linéaire général simple à deux variables L3 Mahémaique e Saisique Les esimaeurs des MCO M Le modèle liéaire gééral simple à deu variables Iroduio géérale U modèle es ue représeaio simplifiée, mais la plus ehausive possible, d ue eié éoomique

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

,Y e. , Z e ) est supposée être en C, centre optique de la lentille (point nodal du plan principal objet pour un système optique)

,Y e. , Z e ) est supposée être en C, centre optique de la lentille (point nodal du plan principal objet pour un système optique) PROJECTION DE L'ESPACE TRIDIMENSIONNEL L'espae éel es de naue idimensionnelle, alos que les ouils usuels de fomaion d'une image son bidimensionnels. La pojeion es la fonion de passage du 3D au 2D. L'image

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

L impact des chocs boursiers sur le crédit en France depuis le milieu des années quatre-vingt-dix. John BAUDE 1

L impact des chocs boursiers sur le crédit en France depuis le milieu des années quatre-vingt-dix. John BAUDE 1 4 mars 25 L impa des hos boursiers sur le rédi en Frane depuis le milieu des années quare-ving-dix John BAUDE 1 Résumé : Les fores fluuaions boursières inervenues depuis le milieu des années quare-ving-dix,

Plus en détail

2 ème Partie Cinématique: Déplacement, vitesse, accélération

2 ème Partie Cinématique: Déplacement, vitesse, accélération ème Parie Cinémaique: Déplacemen, viesse, accéléraion Inroducion Noes de cours de Licence de A. Colin de Verdière Un obje es en mouvemen si sa posiion mesurée par rappor à un aure obje change. Si cee posiion

Plus en détail

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Les nouveautés de Word 2013

Les nouveautés de Word 2013 WORD 2013 Office 2013 - Word, Excel, PowerPoin e Oulook Les nouveaués de Word 2013 Aciver/désaciver les repères d'alignemen Les repères d'alignemen permeen, lors du déplacemen ou du redimensionnemen d'un

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Demande de travail et âge de la retraite 1

Demande de travail et âge de la retraite 1 emande de raail e âge de la reraie 1 imiri Paolini * ésumé Ce aricle explore le rôle de la demande de raail des personnes âgées dans l analyse des poliiques de reraie e de préreraie. Plus précisémen, nous

Plus en détail

Effets différés Structures en béton Chap. ch.

Effets différés Structures  en béton Chap. ch. Effes différés Sruures ECOLE POLYTECHNIQUE ENAC Prof. Dr Aurelio Muoni Année aadémique 25-26 Chap. h. Assisan : N. Kosi ED-1 Effes de la empéraure sur une sruure en béon armé L aier e le béon, omme ou

Plus en détail

Les composants électroniques de commutation

Les composants électroniques de commutation es omposans éleroniques de ommuaion Chapire V es Ciruis d'aide à a Commuaion (CAC) Sommaire 1 ROE... 50 2 COMMUTATION SUR UNE CHARGE SEFIQUE... 50 2.1 ESTIMATION ES PERTES... 52 2.1.1 Peres quand l'inerrupeur

Plus en détail

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT

CHAPITRE 6 CONSOMMATION ET CALCUL INTERTEMPOREL : L HYPOTHESE DU REVENU PERMANENT icence Sciences Economiques 3ème année er semesre MICROECONOMIE APPROFONDIE ET CACU INTERTEMPORE CHAPITRE 6 CONSOMMATION ET CACU INTERTEMPORE : HYPOTHESE DU REVENU PERMANENT Vision simplifiée du schéma

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

Dispositif d Orientation de Panneaux Solaires

Dispositif d Orientation de Panneaux Solaires Rev. Energ. Ren. Vol. 5 ()19-138 Disposiif d Orienaion de Panneaux Solaires A. Chermii (1) e B. Benyouef () (1) Universié Aboubekr Belkaid, faulé des sienes de l ingénieur, BP 119, 13 Tlemen () Universié

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

E9904 Optimisation d un sondage à probabilité proportionnelle à la taille. Le cas des CA3. Christian HESSE, Benoît MERLAT

E9904 Optimisation d un sondage à probabilité proportionnelle à la taille. Le cas des CA3. Christian HESSE, Benoît MERLAT E9904 Opimisaion d un sondage à probabilié proporionnelle à la aille Le cas des CA3 Crisian HESSE, Benoî MERLAT 3 Opimisaion d un sondage à probabilié proporionnelle à la aille Le cas des CA3 Crisian

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

GENERATEURS DE HAUTE TENSION

GENERATEURS DE HAUTE TENSION ours de A. Tilmaine HAPITRE VII GENERATEURS DE HAUTE TENSION Les généraeurs de haue ension son uilisés dans : a) les laboraoires de recherche scienifique ; b) les laboraoires d essai, pour eser les équipemens

Plus en détail

I. La lumière et ses propriétés

I. La lumière et ses propriétés Module 3 : L opique : Vocabulaire Ampliude (f) Hyperméropie (f) Propagaion (f) reciligne Axe (m) principal Image (f) réelle Réfléchi Concave Image (f) viruelle Réflexion (f) Convexe Incidence (f) Réflexion

Plus en détail

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max

1ère partie : caractéristiques générales d'un signal périodique v(t) v V max G. Pinson - Physique Appliquée Signaux périodiques A3-P / A3 - Mesurage des signaux périodiques ère parie : caracérisiques générales d'un signal périodique () 3 + 4 sin 5 max pp DC (ms) min () Signal arian

Plus en détail

10. Trigonométrie. - 1 - Trigonométrie du triangle quelconque. 10.1 La mesure de l angle

10. Trigonométrie. - 1 - Trigonométrie du triangle quelconque. 10.1 La mesure de l angle - 1 - Trigonométrie du triangle quelonque 10.1 La mesure de l angle 10. Trigonométrie Les quatre unités prinipales de mesure d'un angle géométrique sont le degré, le radian, le grade et le tour. Le degré

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I

AMPLIFICATEUR LINEAIRE INTEGRE (A.L.I) Montages Fondamentaux à base d A.L.I Chapire C1 Leçon C1 AMPLIFICATEU LINEAIE INTEGE (A.L.I) Monages Fondamenaux à base d A.L.I I. Uilisaion d un A.L.I en régime non linéaire : 1) Acivié praique : a) A l aide d une maquee fournie ou à parir

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK 2010 1 INTRODUCTION Le modèle que je propose

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

4. "SEPO" - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE

4. SEPO - UNE MÉTHODE POUR L'AUTO- ÉVALUATION ET POUR LES PROJETS-PILOTE D/ Baobab: Cours de gesion des projes page 46 4. "" - UN MÉTHD UR L'AUT- ÉVALUATIN T UR L RJT-ILT 4.1 Inroducion (angl.:w) es un ouil pour l'auoévaluaion e pour les projes-piloe. Il a éé élaboré lors de

Plus en détail

PROPAGATION DES ONDES SONORES DANS LES FLUIDES. I. L approximation acoustique. L équation de propagation. 1 ) Le cadre de l étude.

PROPAGATION DES ONDES SONORES DANS LES FLUIDES. I. L approximation acoustique. L équation de propagation. 1 ) Le cadre de l étude. ONDE ACOUTIQUE DAN LE FLUIDE () PROPAGATION DE ONDE ONORE DAN LE FLUIDE I L aoimaion aousique L équaion de oagaion ) Le ade de l éude Les effes de la esaneu ou les auses d amoissemen (isosié, ) ne son

Plus en détail

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures

EXAMEN FINAL Économie Monétaire Internationale 27 janvier heures niversié de Paris X Nanerre École Docorale MP DA conomie Inernaionale, Modélisaion e Analyse des Poliiques Économiques Année 2004-2005 XAMN FINAL Économie Monéaire Inernaionale 27 janvier 2005 2 heures

Plus en détail

La prime de risque dans un cadre international : le risque de change est-il apprécié?

La prime de risque dans un cadre international : le risque de change est-il apprécié? La prime de risque dans un adre inernaional : le risque de hange es-il appréié? AROURI Mohamed El Hedi * Résumé L obje de e arile es d éudier les déerminans e la dynamique de la prime de risque des aions

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET MODELES DE LA COURBE DES AUX D INERE UNIVERSIE d EVRY Séance 4 Philippe PRIAULE Plan de la Séance Les modèles sochasiques de déformaion de la courbe des aux: Approche déaillée Le modèle de Black: référence

Plus en détail

Formalisme des processus aléatoires

Formalisme des processus aléatoires HAPITRE Formalisme des processus aléaoires. - Signal déerminise e signal aléaoire.. - Signal déerminise Les signaux déerminises son connus par leur représenaion emporelle e specrale. Dans le domaine emporel,

Plus en détail

Chapitre 2 : LOGIQUE SÉQUENTIELLE

Chapitre 2 : LOGIQUE SÉQUENTIELLE Chapire 2 : Logique séquenielle Chapire 2 : LOGIUE ÉUENTIELLE INTODUCTION Dans le chapire précéden, nous avons considéré des sysèmes don le comporemen es qualifié de combinaoire dans la mesure où les évoluions

Plus en détail

Etudier le mouvement d un point matåriel dans un champ de pesanteur uniforme g g.

Etudier le mouvement d un point matåriel dans un champ de pesanteur uniforme g g. Mouemen balisique d un projecile. Influence de la råsisance de l air Eudier le mouemen d un poin maåriel dans un champ de pesaneur uniforme. u, en nåliean dans un premier emps le freinae aårodnamique (råsisance

Plus en détail

Indice relatif à l'économie et à la société numériques 1-2015 2

Indice relatif à l'économie et à la société numériques 1-2015 2 Indice relaif à l'économ e à la sociéé numériques 1-2015 2 Fiche pays La obn une globale 3 de 0,48 e se e à la 14 e place sur les 28 Éas membres de l'. Concernan l année écoulée, la améliore sa générale

Plus en détail

TUTORAT UE Physique CORRECTION Séance n 4 Semaine du 18/ 10 /2010

TUTORAT UE Physique CORRECTION Séance n 4 Semaine du 18/ 10 /2010 TUTORAT UE3 2010-2011 Physique CORRECTION éance n 4 emaine du 18/ 10 /2010 RMN 2 Pr. Zanca QCM n 1 : B-C Pour l angle de bascule : η=2πν 1 τ = γb 1 τ or γ= 2πν 0 B0 = 2πν0 car B 0 = 1T. η=2πν 0 B 1 τ =2π*42*10

Plus en détail

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU

ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU ANNEXE 2 - REGLES DE CALCUL DU TAUX DE RENTABILITE DES EXTENSIONS DE RESEAU SOMMAIRE ARTICLE 1 - Définiion du aux de renabilié ARTICLE 2 - Seuil minimum de renabilié ARTICLE 3 - Evaluaion de la recee acualisée

Plus en détail

TS 7 De la rotation de Saturne à la structure de ses anneaux

TS 7 De la rotation de Saturne à la structure de ses anneaux FICHE Fihe à destination des enseignants Type d'atiité TS 7 De la rotation de Saturne à la struture de ses anneaux Atiité expérimentale Notions et ontenus du programme de Terminale S Effet Doppler. Compétenes

Plus en détail

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS

CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Universié de Savoie DEUG STPI Unié U32 Sysèmes linéaires - Auomaique CHAPITRE 3 INTRODUCTION A LA PERFORMANCE D'UN SYSTÈME REPRÉSENTATIONS Le sysème es mainenan mis en équaion, il es donc beaucoup plus

Plus en détail

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou

ELECTRICITE. Chapitre 9 Valeur moyenne des signaux périodiques. Analyse des signaux et des circuits électriques. Michel Piou ELECRICIE Analyse des signaux e des circuis élecriques Michel Piou Chapire 9 Valeur moyenne des signaux périodiques. Ediion //24 able des maières POURQUOI E COMMEN?... 2 INERE DE LA NOION DE VALEUR MOYENNE....2

Plus en détail

Estimation des matrices de trafics

Estimation des matrices de trafics Cédric Foruny 1/5 Esimaion des marices de rafics Cedric FORTUNY Direceur(s) de hèse : Jean Marie GARCIA e Olivier BRUN Laboraoire d accueil : LAAS & QoSDesign 7, av du Colonel Roche 31077 TOULOUSE Cedex

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

Solvency II, IFRS : l impact des modèles d actifs retenus

Solvency II, IFRS : l impact des modèles d actifs retenus Les normes IFRS en assurance Solvency II, IFRS : l impac des modèles d acifs reenus 31 e journée de séminaires acuariels ISA-HEC Lausanne e ISFA Lyon Pierre THÉROND pherond@winer-associes.fr 18 novembre

Plus en détail

Estimation composite par régression pour l Enquête sur la population active du Canada avec plan de sondage à renouvellement de panel

Estimation composite par régression pour l Enquête sur la population active du Canada avec plan de sondage à renouvellement de panel Techniques d enquêe, juin 00 35 Vol. 7, N o, pp. 35 48 Saisique Canada, N o 00 au caalogue Esimaion composie par régression pour l Enquêe sur la populaion acive du Canada avec plan de sondage à renouvellemen

Plus en détail

Eléctricité. Réalisations passées

Eléctricité. Réalisations passées 12 Infrasruures Physiques CDR Sepembre 2007 Elériié De nombreux projes prinipaux on éé réalisés dans le seeur de l'éleriié jusqu'à la fin 2006 pour un monan de 1,45 milliards de US$. Mainenan que le Gouvernemen

Plus en détail

Un modèle intégré de la demande totale d énergie Application à la province de Québec RÉSUMÉ

Un modèle intégré de la demande totale d énergie Application à la province de Québec RÉSUMÉ Un modèle inégré de la demande oale d énergie Applicaion à la province de Québec par JeanThomas Bernard Tiulaire de la Chaire en économique de l'énergie élecrique Déparemen d'économique Universié Laval

Plus en détail

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002 Universié Paris IX Dauphine UFR Economie Appliquée Maîrise Economie Appliquée ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 00 Noes de Cours Auorisées, Calcularices sans Mémoire Auorisées Durée :

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT.

ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT. Objecifs CINÉMATIQUE DES FLUIDES ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT Coprendre les différences enre l approche lagrangienne e l approche eulérienne Saoir eprier une accéléraion lagrangienne en

Plus en détail

Temps-fréquence et traitement statistique

Temps-fréquence et traitement statistique in Temps-réquence: conceps e ouils, eds. F. lawasch and F. Auger, Paris, France: ermes/lavoisier, 2005, Chap. 10, pp. 289 330. Copyrigh 2005 ermes/lavoisier Chapire 10 Temps-réquence e raiemen saisique

Plus en détail

Retour aux bases de la photographie Partie 1 L' EXPOSITION

Retour aux bases de la photographie Partie 1 L' EXPOSITION Parie 1 - Secion 1.5 Reour aux bases de la phoographie Parie 1 L' EXPOSITIO Secion 1.5 Synhèse Exposiion Indices de Luminaion IL (EV) 1 Synhèse des valeurs Rappel des échelles normalisées des différens

Plus en détail

CH.3 PROBLÈME DE FLOTS

CH.3 PROBLÈME DE FLOTS H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch 3 1 3.1 Le réeaux de ranpor Réeau de ranpor : graphe

Plus en détail

DOCUMENT DE TRAVAIL N 439

DOCUMENT DE TRAVAIL N 439 DOCUMENT DE TRAVAIL N 439 RÈGLES BUDGÉTAIRES STRICTES ET STABILITÉ MACRO ÉCONOMIQUE : LE CAS DE LA TVA SOCIALE Parik Fève, Julien Maheron e Jean-Guillaume Sahu Aoû 2013 DIRECTION GÉNÉRALE DES ÉTUDES ET

Plus en détail

Série d exercices Bobine et dipôle RL

Série d exercices Bobine et dipôle RL xercice 1 : Série d exercices Bobine e dipôle R On réalise un circui élecrique comporan une bobine d inducance e de résisance r, un conduceur ohmique de résisance R, un généraeur de ension de f.é.m. e

Plus en détail

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3

PHYSIQUE APPLIQUÉE. Durée : 4 heures Coefficient 3 PHYSIQUE APPLIQUÉE Durée : 4 heures Coefficien 3 Le problème éudie l enraînemen d un venilaeur conrôlan le irage d une chaudière de fore puissance équipan une usine de pâe à papier. La régulaion de empéraure

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

CONVERSION DE PUISSANCE

CONVERSION DE PUISSANCE Spé ψ 2015-2016 Devoir n 6 CNVERSIN DE PUISSANCE L obje de ce problème consise à éudier la producion d énergie élecrique à parir d une éolienne. Le disposiif pore alors le nom d «aérogénéraeur» e es consiué

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail