Evaluation des Options avec Prime de Risque Variable

Dimension: px
Commencer à balayer dès la page:

Download "Evaluation des Options avec Prime de Risque Variable"

Transcription

1 Evaluaion des Opions avec Prime de Risque Variable Lahouel NOUREDDINE Correspondance : LEGI-Ecole Polyechnique de Tunisie, BP : 743,078 La Marsa, Tunisie, Insiu Supérieur de Finance e de Fiscalié de Sousse. (006) Résumé L évidence empirique qui a monré que le prix d opions diffère sysémaiquemen de celui de Black-Scholes a airé l aenion de plusieurs chercheurs. L une des approches proposée comme alernaive au modèle de Black-Scholes éai le processus GARCH. Ce dernier évalue les opions en supposan une prime du risque consane. Cee hypohèse es discuée par Chrisoffersen-Jacobs (004), en proposan de considérer une prime de risque variable. Dans ce ravail, on essaie d élaborer une nouvelle version du modèle GARCH d opions qui ien compe de la prime du risque comme une variable condiionnelle. Le processus proposé a fai l obje d une éude empirique sur les opions sur l indice FTSE 00. Les performances, d ajusemen ou-of-sample e de couverure de posiions d opions, de ce dernier son éudiées relaivemen au modèle GARCH simple d évaluaion des opions. Mos clés: Evaluaion d opions, GARCH, volailié, prime de risque, performance, ou-of-sample, couverure.

2 . Inroducion La première approche d évaluaion des opions a eu le jour en 900 dans la hèse présenée à la Sorbonne, du mahémaicien français Louis Bachelier qui a invené le mouvemen brownien pour modéliser les opions sur les bons (ires) du gouvernemen français. C éai un modèle en emps coninu. La recherche dans ce domaine a éé reprise en 965 par Samuelson. Ce dernier a uilisé le mouvemen brownien géomérique pour modéliser le comporemen aléaoire de l acif sous-jacen. Sur cee base, il a modélisé la valeur aléaoire de l opion à l exercice. La formule proposée éai en grande parie arbiraire. Elle n offre pas les moyens aux acheeurs e vendeurs, ayan des degrés d aversion au risque différens, pour êre d accord sur un prix. Pour remédier à ce problème, Black e Scholes (973) on proposé une approche complèemen nouvelle. Ces deux aueurs on dérivé une formule d évaluaion d un call européen sur une acion ne payan pas de dividende. Ils on ravaillé en éroie collaboraion avec Meron qui a publié la même année cee formule e ses divers prolongemens. L hypohèse cruciale de Black e Scholes es la log-normalié des rendemens des acions: le logarihme de rendemen de l acion sui une loi normale de moyenne e de variance consanes. Des biais associés au modèle de Black e Scholes d évaluaion des opions on éé documenés dans la liéraure (Rubinsein 985, 994; Derman e Kani 994): le rendemen de l acif de base présene une ceraine déviaion par rappor à la log-normalié. Cela signifie que la volailié des rendemens es variable dans le emps. La quesion de modélisaion des rendemens présenan une volailié variable dans le emps a occupée une place imporane dans la liéraure économérique e financière. La première approche modélisan ce ype de rendemen a éé le modèle ARCH proposé par Engle (98). Plusieurs issues d exension de ce dernier en éé envisagées. Une forme généralisée du modèle ARCH a éé éablie par Bollerslev (986), c éai le modèle GARCH qui donne une forme plus parcimonieuse que le modèle ARCH d ordre élevé. Ce ype de modèle es perinen dans la modélisaion du comporemen des renabiliés boursières (Bollerslev, Chou e Kroner; 99). Ce dernier a éé largemen esé dans le cadre d évaluaion des opions. Récemmen, Bin Chang (00) a évalué la performance empirique de ce modèle e celle du modèle de référence de Black e Scholes. Il a aboui au fai que le modèle Black-Scholes es plus performan pour l esimaion in-sample e moins performan pour l évaluaion ou-of-sample. Cependan, ous les modèles GARCH éudiés prennen la prime du risque des rendemens des acifs sous-jacens comme consane. Cee hypohèse es criiquée dans l aricle de Chrisoffersen-Jacobs (004). Ces deux aueurs posen le problème de spécifier cee variable différemmen. Dans ce essaie, on propose de la considérer comme une variable qui bouge dans le emps, en la modélisan par un processus GARCH. Bien sûr, la spécificaion suggérée es jusifiée par cerains ess empiriques.

3 Le rese du ravail sera organisé ainsi comme sui: dans la deuxième secion, on discuera les modèles GARCH d évaluaion des opions. La secion rois s occupera de proposer le nouveau modèle e ses propriéés. Une applicaion empirique de ce modèle, compléée par une éude de sa performance par rappor au modèle simple, fera l obje de la secion quare. Enfin, la secion cinq va conclure.. Les modèles GARCH des opions.. Cadre héorique des modèles GARCH La liéraure sur les processus ARCH a éé iniiée par Engle (98). Ce son des processus sériellemen non corrélés, don les variances condiionnelles ne son pas consanes, mais avec des variances incondiionnelles (à long erme) consanes. Le modèle ARCH es défini par cee série d équaions : X = µ + ε () ε = u σ () σ = α 0 + q i= αi ε Où X es une série financière, µ es une consane, u es un processus brui blanc de variance, u e ε-i son indépendans l un de l aure, α 0 > 0, αi 0; pour i=,, q e σ es la variance du résidu ε sachan la quanié d informaion disponible en (-). L enier q déermine l ordre de reard. Dans ce modèle la variance peu changer dans le emps, e elle es prédie par les erreurs passées. Une forme plus populaire du processus ARCH es le modèle ARCH généralisé (GARCH) proposé par Bollerslev (986). Dans le modèle GARCH (p,q), la variance σ es spécifiée par : i (3) σ = α 0 + q i= αi ε i + p j= β j σ j (4) Où α0 > 0, αi 0 e β 0; i =,..., q e j =,..., p. Ces conraines son imposées j pour avoir une variance posiive. Le modèle es saionnaire si αi + β j <. Le modèle GARCH le plus simple e le plus uilisé es GARCH (,), qui es donné par : σ = α0 + αε- + βσ (5) 3 q i= p j=

4 Ce modèle es plus performan dans l ajusemen des rendemens financiers, que d aures plus compliqués (Pagan, 996). Les modèles ARCH e GARCH classiques permeen de prendre en compe le clusering de la volailié sur des données financières, qui es en éroie relaion avec le phénomène de la lepokuricié de la disribuion. Ils ne raien pas l effe d asymérie de cee dernière. Cee quesion a éé considérée par d aures ravaux comme le modèle ARCH à seuil (TARCH) de Rabemananjara e Zakoian (993) e Glosen, Jagannahan e Runkle (993) e le modèle ARCH à composanes (COMP-ARCH) de Engle e Lee (993), parmi aures... Les modèles GARCH des opions Le modèle GARCH peu êre uilisé pour valoriser les opions uniquemen lorsque les séries des rendemens des acifs sous-jacens son suscepibles de suivre un processus de ce ype. Les premiers ravaux d évaluaion des opions dans un cadre des processus GARCH éaien ceux de Duan (995) e Amin e Ng (993). Duan (995) a inrodui un modèle GARCH d opions avec sa validaion empirique. Il a commencé par un modèle pour les rendemens de suppors d une période. Les rendemens condiionnellemen S composés R = Log, où S es le prix de l acif suppor au emps, son modélisés S par : R r + λσ σ Avec : - r es le aux d inérê sans risque, - λ es le prix du risque consan, - η N( 0,). = + η σ (6) La dynamique de la volailié condiionnelle σ es la suivane : q i= p i η i + j= σ = α0 + αi σ β σ j (7) La forme simple de cee équaion s écri alors : σ = α0 + ασ η + βσ (8) Ce ype de modélisaion considère une prime du risque ( λ ) consane. Peer- Chrisoffersen (004) on conseillé de spécifier une prime du risque variable pour améliorer la performance des processus GARCH d évaluaion d opions. On propose une nouvelle approche qui s inscri dans ce cadre. j 4

5 3. Le modèle GARCH d évaluaion d opions avec prime de risque variable 3.. Hypohèses du modèle H : je considère une économie en emps discre, à vene d acifs à découver possible e à coûs de ransacion e axes nuls. L inceriude es caracérisée par un espace probabilisé ( R,τ, P), où R es l ensemble des réels, τ es la ribu borélienne e P es une mesure de probabilié objecive. Ce espace es muni d une filraion d informaion qui sui un mouvemen brownien sandard. ( F ) 0,... Je cherche à déerminer le premium d un call européen de prix d exercice K, de maurié T e poran sur un acif suppor ne payan pas de dividende. Le premium à calculer es donc supposé foncion du aux d inérê sans risque (consan) r e d un ensemble de variables d éa de R+. H : les variables d éa, desquelles dépend le premium du call européen, son : - Le cours de l acif sous-jacen, S ; - La volailié des rendemens de ce acif, σ ; - La prime du risque de la volailié de ce dernier. 3.. Spécificaion du modèle Sous les hypohèses ci-dessus, si on noe par C le premium d un call européen, alors : ( K, T, r ) C = f, x (9) 3 Avec x es le veceur de variables d éa : x R +. Les rendemens condiionnels son modélisés par : R = r + λσ σ + η σ (0) Où : λ es la prime du risque variable e σ es décrie par l équaion (8). 5

6 Frenkel (98) exprime la prime de risque variable sous la forme suivane : λ = ω + e () Avec ω la valeur moyenne e e es un brui blanc (de moyenne nulle e de variance ; T es la aille de l échanillon). Cee supposiion es foremen refusée par le es T de Box-Pierce (Q = 8.33) effecué sur des données inraquoidiennes sur l indice FTSE 00 de la période 4//000-30//005. En effe, le reje de l hypohèse nulle de brui blanc indique l exisence d une corrélaion significaive enre les résidus. Telle relaion peu êre confirmée par les figures suivanes : Auocorrelaion Parial Correlaion *** ** ** * * * Figure : FAC pour λ. Auocorrelaion Parial Correlaion ** ** *** *** ** * ** * ** * ** * ** Figure : FAC pour λ. Le fai que les λ son dépendanes peu êre modélisé par un processus de volailié de la forme (Con, 00) : = avec N( 0,) λ ω + υ u u. () Où es un brui blanc de moyenne nulle e es la volailié variable dans le emps u des primes de risque. On propose le cas où sui un processus GARCH : υ υ υ = 0 + a + a υ u b υ (3) Pour assurer la posiivié de la variance dans ce cas, il fau que a0 > 0, a 0 e b 0. La persisance du modèle exige : a + b <. En finance, la prime de risque es définie comme éan la différence enre le aux de rendemens des acifs e le aux d inérê sans risque. Par conséquen, on peu signaler Les données uilisées son les dividendes diminués du aux d inérê sans risque, qui es fixé arbirairemen à 5% par année. Soi un aux quoidien de 0.05/365 =

7 que la corrélaion enre prime de risque e rendemens financiers es significaivemen non nulle. Les deux premiers momens caracérisan le rendemen son alors : E ( ) = r + E( ) R λ σ 0.5σ = r + ωσ 0.5σ = σ λ + σ + ρ σ υ ( R) V ( ) = ( + + ) σ υ ρυ Avec ρ es le coefficien de corrélaion enre R e λ. 4. Applicaion du modèle V Pour évaluer les opions sous la dynamique GARCH, Hardle e Hafner (000) on uilisé une méhode en deux éapes. On essaie d adaper cee procédure à la spécificaion proposée. Telle méhode consise à esimer les paramères des équaions (8), () e (3) dans une première éape sous la mesure de probabilié physique P. Dans la seconde éape, on uilise les paramères ainsi esimés dans une dynamique risque-neure Q pour valoriser l opion. 4.. Les données Nous considérons la période de Janvier 00 qui inclu journées commerciales allan de à3 Janvier. Les données son composées d un même nombre d opions call e d opions pu, 30 pour chaque ype. Pour chaque jour, nous considérons quare mauriés. Les prix d exercice son encadrés par 45 e 65 avec un prix moyen de 56. Pour le aux d inérê, nous fixons arbirairemen un aux annuel égal à 5%. 4.. Esimaion des paramères : Approche in-sample Pour appliquer la première éape de la procédure d évaluaion décrie ci hau, on peu adoper par la méhode de maximum de vraisemblance en maximisan la foncion de log-vraisemblance ci-après : ln L = 0.5T ln T T T ( ) ( ) ( R r ωσ + 0.5σ ) ln 0.5 ln + + π σ υ ρυ (4) ( + ) = = = σ υ + ρυ Les déails sur la relaion enre la dynamique de probabilié physique e celle de risque-neure son expliciés dans Chrisoffersen-Jacobs (004). 7

8 Les ableaux e monren les paramères esimés du modèle GARCH-PR proposé e ceux du modèle GARCH simple de la secion (celui avec prime de risque consane). Nous esimons les deux modèles pour, ensuie, éudier leurs performances relaives : Paramères r α0 α β Esimaions E-07 (3.7E-07) (0.044) (0.0407) Tableau : Esimaion des paramères du modèle GARCH simple. Paramères r α0 α β ω a0 a b ρ Esimaions E-08 (3.9E-08) (0.03) (0.049) (3.7E-07) 9.38E-07 (3.7E-07) (0.043) (0.43) Tableau : Esimaion des paramères du modèle GARCH-PR (0.0005) Les écars ypes (valeurs enre parenhèses dans les ableaux) son faibles, ce qui indique que les paramères son sables pendan la période d éude. On remarque que la persisance de la volailié des renabiliés ( α + β ) a diminué dans le modèle GARCH- PR par rappor celle du modèle GARCH simple ( dans GARCH-PR conre dans GARCH simple). Cela peu êre aribué à l inroducion de la prime du risque variable qui a expliqué une parie de la dynamique des rendemens. Ensuie, le modèle GARCH-PR es le meilleur pour raduire l évoluion de la volailié condiionnelle, éan donnée la valeur de Log-vraisemblance ( conre pour le modèle GARCH simple). Les paramères obenus seron uilisés dans une dynamique risque-neure pour valoriser l opion. Il convien alors d explicier, ou d abord, la relaion enre la dynamique de probabilié physique e la dynamique risque-neure Evaluaion des opions Pour dériver le modèle GARCH des opions, Duan (995) avai appliqué l évaluaion risque-neure définie comme éan la relaion d évaluaion localemen risque-neure (RELRN). Sous cee mesure, le processus de rendemen devien : R = r σ + η σ ; η N( 0,). (5) Le processus de la variance des rendemens, σ, devien : σ ( ) βσ = α 0 + α σ η λ + (6) 8

9 Par récurrence, on rouve facilemen que le prix de l acif sous-jacen à la dae de maurié T : S T T T = S exp r( T ) 0.5σ i + ηi σ (7) i= + i= + Le premium d un call européen, de prix d exercice K, peu êre calculé par : C ( ) Q ( r( T ) ) max( K,0) = exp E ST F (8) GARCH F éan généré par { S T, σ +,..., σ T}. Cependan, on ne dispose pas d expression analyique pour le prix d opion. On aura donc besoin de déerminer ce prix à l aide de la méhode de simulaion de Mone Carlo Mesure de la performance ou-of-sample Dans cee sous secion, on propose d éudier la performance ou-of-sample du modèle GARCH-PR relaivemen à celle du modèle simple. La performance du modèle peu êre esimée à l aide d une foncion de pere sandard (sandard loss funcion). Elle représene la moyenne des carrés des erreurs d évaluaion (mean square of valuaion errors : MSE). La performance ou-of-sample peu êre mesurée aussi par le pourcenage moyen des erreurs d évaluaion (mean of pourcenrage errors : MPE). Ces deux mesures on données par : MSE = N N ( i= mod mk Ci Ci ) (9) 00 MPE = N N i= C C mk Ci mod i mk i (0) Avec Ci mk es le prix observé de l opion i, Ci mod es le prix du modèle correspondan. N es le nombre des conras d opion dans l échanillon. En considéran les erreurs d évaluaion mesurées par les équaions (9) e (0), en foncion de moneyness e de maurié en jours. Les résulas obenus son résumés dans les ableaux suivans : La moneyness es le prix de l acif sous-jacen divisé par le prix d exercice de l opion. 9

10 Maurié en jours [,50] [5,80] [8,0] [,40] >40 Moneyness MSE MPE MSE MPE MSE MPE MSE MPE MSE MPE < >.06 Toues les opions Tableau 3 : Somme des carrés des erreurs d évaluaion de modèle GARCH simple. Maurié en jours [,50] [5,80] [8,0] [,40] >40 Moneyness MSE MPE MSE MPE MSE MPE MSE MPE MSE MPE < >.06 Toues les opions Tableau 4 : Somme des carrés des erreurs d évaluaion du modèle GARCH-PR. D après les deux ableaux, 3 e 4, les deux mesures de performance adopées favorisen le modèle GARCH-PR. D un aure côé, la mesure MPE indique que les modèles éudiés enden à surévaluer les opions call ou-of-he-money e sous-évaluer celles inhe-money. Cee consaaion apparaî d une façon claire sur la figure suivane : 50 Marché GARCH simple 50 Marché GARCH-PR Figure : Evoluion du premium du marché e celui calculé par les deux modèles. 0

11 Les deux racés monren une supériorié du modèle GARCH-PR dans l ajusemen des données empiriques sur l indice FTSE 00. Ce processus fourni un premium de l opion presque confondu avec celui du marché La performance de couverure Pour éudier cee quesion, on effecue des ess de couverure sur des sraddles qui poren sur l indice FTSE 00. Par définiion, un sraddle es une posiion consisan à combiner un call e un pu de même prix d exercice e de même maurié. De ce fai, le sraddle es une posiion insensible au sens de variaion du cours de l acif sous-jacen, mais il es sensible aux variaions de la volailié. D ailleurs, l opéraeur sur le marché es moivé par l acha de sraddle lorsqu il s aend à un changemen brusque dans le cours de l acif sous-jacen, sans savoir dans quel sens ce dernier va varier. On évalue la performance de couverure par rois crières : l erreur moyenne de couverure (mean hedging error : ME), la moyenne des valeurs absolues des erreurs de couverure (mean of absolue hedging error : MAE) e la moyenne des valeurs absolues des erreurs d évaluaion normalisées (normalized absolue hedging error : NAE). L erreur moyenne de couverure ne consiue pas une mesure de performance, mais elle fourni une informaion sur le fai qu un modèle pariculier perme de présener, sysémaiquemen, une sur (ou sous) couverure. Les deux ableaux suivans présenen les crières de mesure de la performance de couverure de posiions d opions par les deux modèles : Maurié en jours [,50] [5,80] [8,0] [,40] >40 Mesure jour 5 jours jour 5 jours jour 5 jours jour 5 jours jour 5 jours ME MAE NAE Tableau 5 : Erreurs de couverure des sraddles par le modèle GARCH simple. Maurié en jours [,50] [5,80] [8,0] [,40] >40 Mesure jour 5 jours jour 5 jours jour 5 jours jour 5 jours jour 5 jours ME MAE NAE Tableau 6 : Erreurs de couverure des sraddles par le modèle GARCH-PR L erreur absolue normalisée es définie par : erreur /prix iniial.

12 Pour la couverure des sraddles sur l indice FTSE 00, le modèle GARCH-PR monre la performance la plus grande par rappor au modèle GARCH simple. Ce résula confirme la consaaion de la secion précédene concernan la performance ou-ofsample. 5. Conclusion Ce aricle présene une nouvelle spécificaion GARCH d évaluaion des opions. Il considère un modèle GARCH avec prime de risque variable dans le emps. Ce modèle es appliqué à des données d opions sur l indice FTSE 00 de la période janvier 00. La performance d ajusemen ou-of-sample de ce dernier es éudiée relaivemen à la spécificaion GARCH d opions la plus simple, e il es le plus performan. Les résulas des ess de couverure de sraddles monren aussi clairemen une supériorié de la spécificaion GARCH-PR proposée. Néanmoins, il fau oujours noer que les résulas obenus resen valables dans la limie de l échanillon éudié. On peu assiser à des résulas ou à fai différens lorsqu on uilise d aures données. Pour approfondir les résulas obenus dans ce ravail, un prolongemen naurel concerne la violaion de l hypohèse du aux d inérê consan considérée par les spécificaions GARCH d opions. On peu aussi s inéresser à des éudes empiriques qui comparen ce modèle avec d aures ypes d approches d évaluaion des opions.

13 Bibliographie. Amin K. and Ng V. (993), «ARCH processes and opion valuaion», Manuscrip. Universiy of Michigan.. Bachelier L. (900), «Théorie de la Spéculaion», Annales Scienifiques de l Ecole Normale Supérieure, 7, Bin Chang (00), «Evaluaing he Black-Scholes Model and he GARCH Opion Pricing Model», Copyrigh c Bin Chang Black, F., and M.Scholes (973), «The Pricing of Opions and Corporae Liabiliies», Journal of Poliical Economy, 8, Bollerslev. T (986), «Generalized auoregressive condiional heeroskedasiciy», Journal of Economerics, 3, Bollerslev T, Chou R.Y, and Kroner K.F (99), «ARCH Modeling in Finance», Journal of Economerics, 5, Chrisoffersen P. and K. Jacobs (004), «Which GARCH model for opion valuaion», McGill Universiy and CIRANO. 8. Con R. (00), «Empirical proprieies of asse reurns: sylized facs and saisical issues», Quaniaive Finance,, Derman E. and Kani I. (994), «Riding on a Smile», Risk, 7, Duan J. C. (995), «The GARCH opion pricing model», Mahemaical Finance, 5, Engle, R. (98), «Auoregressive Condiional Heeroskedasiciy wih of he Variance of UK Inflaion», Economerica, 50, Engle R. and Lee G.A. (993), «A permanen and ransiory componen model of sock, reurn and volailiy», Discussion paper, Universiy of California, San Diego. 3. Frenkel J. F. (98), «Flexible exchange raes and role of news, Lessons from 970 s», Journal of poliical economy. 4. Glosen L.R., Jagannahan R. and Runkle D.E. (993), «On he relaion beween he expeced value and he volailiy of he nominal excess reurns on socks», Journal of Finance, 48(5),

14 5. Hardle W. and Hafner C. (000), «Discree ime opion pricing wih flexible volailiy esimaion», Finance and Sochasics, 4, Meron R.C (973), «The Theory of Raional Opion Pricing», Bell Journal of Economic and Managemen Science, 4, Pagan A. R. (996), «The economerics of financial markes», Journal of Empirical Finance, 3, Rabemananjara R. and Zakoian J.M. (993), «Threshold ARCH models and asymeries in volailiy», Journal of Applied Economerics, 8(), Rubinsein. M (985), «Nonparameric Tess of Alernaive Opion Pricing Models Using All Repored Trades and Quoes on he 30 Mos Acive CBOE Opion Classes from Augus 3,976 hrough Augus 3,978», Journal of Finance, 40, Rubinsein. M (994), «Implied Binomial Trees», Journal of Finance, 49, Samuelson P.A. (965), «Raional Theory of Warran Pricing», Indusrial Managemen Review, 6,

Solvency II, IFRS : l impact des modèles d actifs retenus

Solvency II, IFRS : l impact des modèles d actifs retenus Les normes IFRS en assurance Solvency II, IFRS : l impac des modèles d acifs reenus 31 e journée de séminaires acuariels ISA-HEC Lausanne e ISFA Lyon Pierre THÉROND pherond@winer-associes.fr 18 novembre

Plus en détail

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt»

Exercice du Gestion Financière à Court Terme «Cas FINEX Gestion du risque de taux d intérêt» Exercice du Gesion Financière à Cour Terme «Cas FINEX Gesion du risque de aux d inérê» Ce cas raie des différens aspecs de la gesion du risque de aux d inérê liée à la dee d une enreprise : analyse d emprun,

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

4. Principe de la modélisation des séries temporelles

4. Principe de la modélisation des séries temporelles 4. Principe de la modélisaion des séries emporelles Nous raierons ici, à ire d exemple, la modélisaion des liens enre la polluion amosphérique e les indicaeurs de sané. Mais les méhodes indiquées, comme

Plus en détail

Documents de Travail du Centre d Economie de la Sorbonne

Documents de Travail du Centre d Economie de la Sorbonne Documens de Travail du Cenre d Economie de la Sorbonne D un muliple condiionnel en assurance de porefeuille : CAViaR pour les gesionnaires? Benjamin HAMIDI, Emmanuel JURCZENKO, Berrand MAILLET 2009.33

Plus en détail

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin.

«Savoir vendre les nouvelles classes d actifs financiers» Produits à capital garanti : méthode du coussin (CCPI) François Longin www.longin. Formaion ESSEC Gesion de parimoine Séminaire i «Savoir vendre les nouvelles classes d acifs financiers» Produis à capial garani : méhode du coussin (CCPI) Origine de la méhode Descripion de la méhode Plan

Plus en détail

Sous-évaluation des prix d options par le modèle de Black & Scholes.

Sous-évaluation des prix d options par le modèle de Black & Scholes. Sous-évaluaion des prix d opions par le modèle de Black & Scholes. Mise en évidence par une dynamique combinan mouvemen brownien e processus à saus. Marc Debersé ocobre 6 Résumé S il es bien connu que

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

Etude de risque pour un portefeuille d assurance récolte

Etude de risque pour un portefeuille d assurance récolte Eude de risque pour un porefeuille d assurance récole Hervé ODJO GROUPAMA Direcion ACTUARIAT Groupe 2, Bd Malesherbes 75008 Paris Tél : 33 (0 44 56 72 46 herve.odjo@groupama.com Viviane RITZ GROUPAMA Direcion

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET MODELES DE LA COURBE DES AUX D INERE UNIVERSIE d EVRY Séance 4 Philippe PRIAULE Plan de la Séance Les modèles sochasiques de déformaion de la courbe des aux: Approche déaillée Le modèle de Black: référence

Plus en détail

L évaluation immobilière. Michel Baroni 27/11/2009

L évaluation immobilière. Michel Baroni 27/11/2009 L évaluaion immobilière Michel Baroni 27/11/2009 Méhodes exisanes Méhodes des comparables Dépend de la base de données; méhode hédonique évenuellemen possible Méhodes de capialisaion Dépend de la base

Plus en détail

Académie Européenne Interdisciplinaire des Sciences Colloque Théories et Modèles en Sciences Sociales 28-29 novembre 2011.

Académie Européenne Interdisciplinaire des Sciences Colloque Théories et Modèles en Sciences Sociales 28-29 novembre 2011. RISQUE EXTREME ET REGULARITE FRACTALE EN FINANCE Académie Européenne Inerdisciplinaire des Sciences Colloque Théories e Modèles en Sciences Sociales 28-29 novembre 2011 Lauren Emmanuel Calve Lauren Emmanuel

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance UNIVERSITE DE PARIS-DAUPHINE Février 2004 MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Inernaionale, Monnaie, Finance Noes de Cours Auorisées, seules les

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

Essai sur les Modèles du Taux de Change. Incorporant la Règle de Taylor

Essai sur les Modèles du Taux de Change. Incorporant la Règle de Taylor Universié de Monréal Essai sur les Modèles du Taux de Change Incorporan la Règle de Taylor Par Houria Aoufi Sous la direcion de Mme Marine Carrasco Déparemen des Sciences Économiques Faculé des ars e des

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

budgétaire et extérieure

budgétaire et extérieure Insiu pour le Développemen des Capaciés / AFRITAC de l Oues / COFEB Cours régional sur la Gesion macroéconomique e les quesions de dee Dakar, Sénégal du 4 au 5 novembre 203 Séance S-4 : Souenabilié budgéaire

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Interdépendance des marchés d actions : analyse de la relation entre les indices boursiers américain et européens

Interdépendance des marchés d actions : analyse de la relation entre les indices boursiers américain et européens Inerdépendance des marchés d acions : analyse de la relaion enre les indices boursiers américain e européens SANVI AVOUYI-DOVI, DAVID NETO Direcion générale des Éudes e des Relaions inernaionales Direcion

Plus en détail

La prise en compte des événements extrêmes pour la valorisation d options européennes

La prise en compte des événements extrêmes pour la valorisation d options européennes La prise en compe des événemens exrêmes pour la valorisaion d opions européennes JULIEN IDIER CAROLINE JARDET GAËLLE LE FOL Banque de France, Banque de France Banque de France, Universié Paris I Universié

Plus en détail

Pricing des produits dérivés de crédit dans un modèle

Pricing des produits dérivés de crédit dans un modèle Pricing des produis dérivés de crédi dans un modèle à inensié Nordine Bennani & Cyril Sabbagh Table des maières 1 Présenaion générale des dérivés de crédi 3 1.1 Inroducion...................................

Plus en détail

Les Générateurs de Scénarios Économiques : quelle utilisation en assurance? 1

Les Générateurs de Scénarios Économiques : quelle utilisation en assurance? 1 Les Généraeurs de Scénarios Économiques : quelle uilisaion en assurance? 1 Alaeddine FALEH 2 Frédéric PLANCHET 3 Didier RULLIERE 4 ISFA- Universié Lyon I 5 Caisse des Dépôs e Consignaions 6 RÉSUMÉ Dans

Plus en détail

Claudio Araujo, CERDI 1

Claudio Araujo, CERDI 1 0/09/03 Macroéconomérie I. Naissance de la modélisaion macroéconomérique : Cowles Commission and London chool Economics Claudio Arauo CERDI, Universié d Auvergne Clermon-Ferrand, France www.cerdi.org hp://www.cerdi.org/claudio-arauo/perso/

Plus en détail

Panorama des méthodes de coûtenance

Panorama des méthodes de coûtenance Recherche en Managemen de Proje Panorama des méhodes de coûenance Pour réduire les coûs de vos projes e augmener vos marges, quelle méhode choisir? François GAGNÉ, FGF Consulan Les Renconres 2005 du Managemen

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX Obje de la séance 9: défini le risque de aux e présener

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE

Risque associé au contrat d assurance-vie pour la compagnie d assurance. par Christophe BERTHELOT, Mireille BOSSY et Nathalie PISTRE Ce aricle es disponible en ligne à l adresse : hp://www.cairn.info/aricle.php?id_revue=ecop&id_numpublie=ecop_149&id_article=ecop_149_0073 Risque associé au conra d assurance-vie pour la compagnie d assurance

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Une mesure financière de l importance de la prime de risque de change dans la prime de risque boursière*

Une mesure financière de l importance de la prime de risque de change dans la prime de risque boursière* Une mesure financière de l imporance de la prime de risque de change dans la prime de risque boursière* Salem Boubakri Janvier 2009 Résumé Cee éude ese une exension inernaionale du Modèle d Evaluaion des

Plus en détail

Le modèle de Black Scholes

Le modèle de Black Scholes Le modèle de Black Scholes Philippe Briand, Mars 3 1. Présenaion du modèle Les mahémaiciens on depuis longemps essayé de résoudre les quesions soulevées par le monde de la finance. Une des caracérisiques

Plus en détail

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE 009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1.

Pourcentages MATHEMATIQUES 1ES. à débourser 1 700. CORRIGES EXERCICES. Prix de l article : 1 700 = 85% du prix donc 1 700 100 Exercice 1. Pourcenages MATHEMATQUES 1ES 5. Lors de l acha d un aure aricle, je dois verser un acompe de 15%, e il me resera alors POURCENTAGES à débourser 1 700. CORRGES EXERCCES Prix de l aricle : 1 700 = 85% du

Plus en détail

Écart de production et inflation en France

Écart de production et inflation en France L obje de la présene éude es d apprécier l incidence sur l inflaion d une modificaion de l écar de PIB. Les qualiés explicaives e prédicives des six indicaeurs d écar de producion calculés pour la France

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail

La persistance des chocs de volatilité sur le marché des changes s est-elle modifiée depuis le début des années quatre-vingts?

La persistance des chocs de volatilité sur le marché des changes s est-elle modifiée depuis le début des années quatre-vingts? La persisance des chocs de volailié sur le marché des changes s es-elle modifiée depuis le débu des années quare-vings? Michel BEINE * Sébasien LAURENT Ce aricle vise à déerminer si la persisance des chocs

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

Les générateurs de scénarios économiques Problématiques et modélisation des indices financiers. Le 29 Mars 2012

Les générateurs de scénarios économiques Problématiques et modélisation des indices financiers. Le 29 Mars 2012 Les généraeurs de scénarios économiques Problémaiques e modélisaion des indices financiers Le 29 Mars 202 Les généraeurs de scénarios économiques Inroducion Un généraeur de scénarios économiques perme

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Abstract. Classification JEL: C22 ; G01 ; G15 Mots clés : contagion financière ; cointégration et ecm asymétrique; modèles TAR, M-TAR

Abstract. Classification JEL: C22 ; G01 ; G15 Mots clés : contagion financière ; cointégration et ecm asymétrique; modèles TAR, M-TAR Modélisaion de la conagion des marchés financiers basée sur la coinégraion asymérique : le cas des marchés américain, français, anglais e japonais. Absrac Le bu de ce aricle es d analyser la conagion des

Plus en détail

Surveillance et maintenance Prévisionnelle

Surveillance et maintenance Prévisionnelle Page Surveillance e mainenance Prévisionnelle Sommaire Page 2 La Prévisionnelle o Terminologie e Normes o Elémens de conexe ( enjeux, mise en œuvre.) Exemples d applicaions réalisées par le Ceim o L approche

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

La monnaie est-elle un bon indicateur de la production et de l inflation?

La monnaie est-elle un bon indicateur de la production et de l inflation? La monnaie es-elle un bon indicaeur de la producion e de l inflaion? Marin Charron* Ocobre 2002 Documen de ravail du Minisère des Finances 2002-04 Minisère des Finances Direcion des poliiques économique

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002 Universié Paris IX Dauphine UFR Economie Appliquée Maîrise Economie Appliquée ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 00 Noes de Cours Auorisées, Calcularices sans Mémoire Auorisées Durée :

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

L ajustement microéconomique des prix des carburants en France

L ajustement microéconomique des prix des carburants en France L ajusemen microéconomique des prix des carburans en France Erwan GAUTIER (LEMNA-TEPP, Universié de Nanes e Banque de France. Email : erwan.gauier@univ-nanes.fr) Ronan LE SAOUT (CREST e Ecole Polyechnique)

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

pour un régime de rentiers

pour un régime de rentiers Les Crières normes d allocaion IFRS en assurance d acifs pour un régime de reniers 1 er juille 2004 Frédéric PLANCHET Acuaire associé Pierre THEROND Acuaire 1 er juille 2004 Page 1 Conexe (1) La déerminaion

Plus en détail

CHAPITRE III LA PREVISION

CHAPITRE III LA PREVISION CHAPITRE III LA PREVISION Prévoir ce qui va se passer dans le fuur es d'une imporance capiale pour la plupar des enreprises. En effe, la producion es selon le ype d'acivié un processus plus ou moins long,

Plus en détail

Centre d Analyse Théorique et de Traitement des données économiques

Centre d Analyse Théorique et de Traitement des données économiques Cenre d Analyse Théorique e de Traiemen des données économiques CATT WP No. 9. January 2011 L IMPACT DU TAUX DE CHANGE SUR LES EXPORTATIONS DE L ALLEMAGNE ET DE LA FRANCE HORS ZONE EURO Serge REY CATT-UPPA

Plus en détail

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite

Impact du vieillissement démographique sur l impôt prélevé sur les retraits des régimes privés de retraite DOCUMENT DE TRAVAIL 2003-12 Impac du vieillissemen démographique sur l impô prélevé sur les rerais des régimes privés de reraie Séphane Girard Direcion de l analyse e du suivi des finances publiques Ce

Plus en détail

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance

Modélisation et quantification de systèmes vieillissants pour l optimisation de la maintenance ème édiion du congrès inernaional pluridisciplinaire Du au 20 mars 2009 Modélisaion e quanificaion de sysèmes vieillissans pour l opimisaion de la mainenance LAIR William,2, MERCIER Sophie, ROUSSIGNOL

Plus en détail

Les nouveautés de Word 2013

Les nouveautés de Word 2013 WORD 2013 Office 2013 - Word, Excel, PowerPoin e Oulook Les nouveaués de Word 2013 Aciver/désaciver les repères d'alignemen Les repères d'alignemen permeen, lors du déplacemen ou du redimensionnemen d'un

Plus en détail

Question 1: Analyse et évaluation des obligations

Question 1: Analyse et évaluation des obligations Quesion 1: Analyse e évaluaion des obligaions (31 poins) Vous ravaillez dans le déparemen des invesissemens obligaaires pour une compagnie d assurance-vie. Vous avez créé le ableau ci-dessous conenan des

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

SECONDE PARTIE ÉVALUATION ET GESTION DU RISQUE DE LIQUIDITÉ. La Liquidité - De la Microstructure à la Gestion du Risque de Liquidité

SECONDE PARTIE ÉVALUATION ET GESTION DU RISQUE DE LIQUIDITÉ. La Liquidité - De la Microstructure à la Gestion du Risque de Liquidité SECONDE PARTIE ÉVALUATION ET GESTION DU RISQUE DE LIQUIDITÉ Erwan Le Saou - Novembre 2000. 169 Au cours de la première parie de cee hèse, nous avons mis en relief l aspec «microsrucurel» de la liquidié.

Plus en détail

Les Univers Virtuels de la Finance

Les Univers Virtuels de la Finance Les Univers Viruels de la Finance Viruel Worlds of Finance ierre Devolder 1 Résumé. La mesure neure au risque es devenue une noion cenrale en finance moderne: elle s obien par changemen de mesure de probabilié

Plus en détail

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

LA PERTINENCE DES ACTIFS INCORPORELS AVEC LES IFRS

LA PERTINENCE DES ACTIFS INCORPORELS AVEC LES IFRS LA PERTINENCE DES ACTIS INCORPORELS AVEC LES IRS Gaëlle LENORMAND-TOUCHAIS IREJE Universié de Breagne-Sud (rance) Lionel TOUCHAIS CREM-IAE de Rennes Universié de Rennes1 (rance) RESUME : Ce aricle s inerroge

Plus en détail

EDSR et EDSPR avec grossissement de filtration, problèmes d asymétrie d information et de couverture sur les marchés financiers

EDSR et EDSPR avec grossissement de filtration, problèmes d asymétrie d information et de couverture sur les marchés financiers UNIVERSITE PAUL SABATIER TOULOUSE III U.F.R Mahémaique Informaique Gesion THÈSE présenée e souenue publiquemen le 7 décembre 25 pour l obenion du Docora de l Universié Paul Sabaier TOULOUSE III mahémaiques

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Evaluation stochastique des contrats d épargne : agrégation des trajectoires de l actif & mesure de l erreur liée à l agrégation

Evaluation stochastique des contrats d épargne : agrégation des trajectoires de l actif & mesure de l erreur liée à l agrégation Evaluaion sochasique des conras d éargne : agrégaion des raecoires de l acif & mesure de l erreur liée à l agrégaion - Oberlain NEUKAM-EUGUIA (Winer & Associés) - Frédéric PLANCHE (Universié Lyon Laboraoire

Plus en détail

Règle de Taylor dans le cadre du Ciblage d inflation: Cas de la Nouvelle Zélande

Règle de Taylor dans le cadre du Ciblage d inflation: Cas de la Nouvelle Zélande Règle de Taylor dans le cadre du Ciblage d inflaion: Cas de la Nouvelle Zélande Résumé : La nouvelle Zélande es le pays ayan la plus grande expérience en poliique du ciblage d inflaion. Cee poliique a

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement

Les deux déficits, budgétaire et du compte courant, sont-ils jumeaux? Une étude empirique dans le cas d une petite économie en développement Les deux déficis, budgéaire e du compe couran, sonils jumeaux? Une éude empirique dans le cas d une peie économie en développemen (Version préliminaire) Aueur: Wissem AJILI Docorane CREFED Universié Paris

Plus en détail

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA

Un modèle de projection pour des contrats de retraite dans le cadre de l ORSA Un modèle de proecion pour des conras de reraie dans le cadre de l ORSA - François Bonnin (Hiram Finance) - Floren Combes (MNRA) - Frédéric lanche (Universié Lyon 1, Laboraoire SAF) - Monassar Tammar (rim

Plus en détail

E9904 Optimisation d un sondage à probabilité proportionnelle à la taille. Le cas des CA3. Christian HESSE, Benoît MERLAT

E9904 Optimisation d un sondage à probabilité proportionnelle à la taille. Le cas des CA3. Christian HESSE, Benoît MERLAT E9904 Opimisaion d un sondage à probabilié proporionnelle à la aille Le cas des CA3 Crisian HESSE, Benoî MERLAT 3 Opimisaion d un sondage à probabilié proporionnelle à la aille Le cas des CA3 Crisian

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

DOCUMENTS DE TRAVAIL. La mobilité résidentielle depuis la fin des Trente Glorieuses. Nathalie Donzeau Jean-Louis Pan Ké Shon

DOCUMENTS DE TRAVAIL. La mobilité résidentielle depuis la fin des Trente Glorieuses. Nathalie Donzeau Jean-Louis Pan Ké Shon 59 2009 DOCUMENTS DE TRAVAIL La mobilié résidenielle depuis la fin des Trene Glorieuses Nahalie Donzeau Jean-Louis Pan Ké Shon 2 La mobilié résidenielle depuis la fin des Trene Glorieuses Nahalie Donzeau

Plus en détail

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1 ASAC 008 Halifax, Nouvelle-Écosse Jacques Sain-Pierre (Professeur Tiulaire) Chawki Mouelhi (Éudian au Ph.D.) Faculé des sciences de l adminisraion Universié Laval Sélecion de porefeuilles e prédicibilié

Plus en détail

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007 Bureau fédéral du Plan Avenue des Ars 47-49, 1000 Bruxelles hp://www.plan.be WORKING PAPER 18-10 Comparaison des composanes de la croissance de la producivié : Belgique, Allemagne, France e Pays-Bas 1996-2007

Plus en détail

Cahiers Recherche et Méthodes

Cahiers Recherche et Méthodes Numéro 3 Février 2013 Cahiers Recherche e Méhodes Analyse des événemens de l hisoire de vie : esimaion de modèles logisiques à emps discre avec SPSS Jean-Marie Le Goff & Yannic Forney Jean-Philippe Anoniei

Plus en détail

par Colin Thirtle et Robert Townsend, Université de Reading et Université de Pretoria

par Colin Thirtle et Robert Townsend, Université de Reading et Université de Pretoria Jour 10 L'esimaion de la réacion dnamique de l'offre par Colin Thirle e Rober Townsend, Universié de Reading e Universié de Preoria Table des maières Inroducion 1. La héorie de base de la producion e de

Plus en détail

DOCUMENT DE RECHERCHE EPEE

DOCUMENT DE RECHERCHE EPEE DOCUMENT DE RECHERCHE EPEE CENTRE D ETUDE DES POLITIQUES ECONOMIQUES DE L UNIVERSITE D EVRY Comporemen du banquier cenral en environnemen incerain Sanvi AVOUYI-DOVI & Jean-Guillaume SAHUC 07-05 www.univ-evry.fr/epee

Plus en détail

Quelle convergence pour les primes de risque sur les marchés boursiers? Une analyse sur des données internationales de 1984 à 2007

Quelle convergence pour les primes de risque sur les marchés boursiers? Une analyse sur des données internationales de 1984 à 2007 Quelle convergence pour les primes de risque sur les marchés boursiers? Une analyse sur des données inernaionales de 1984 à 2007 Rafik ABDESSELAM 1, Sylvie LECARPENTIER-MOYAL 2, Paricia RENOU-MAISSANT

Plus en détail

Gestion Actif Passif et Solvabilité

Gestion Actif Passif et Solvabilité Gesion Acif Passif e Solvabilié Charles Descure & Crisiano Borean Generali France 7/9 Boulevard Haussmann 759 Paris Tel. : +33 58 38 86 84 +33 58 38 86 64 Fax. : +33 58 38 8 cdescure@generali.fr cborean@generali.fr

Plus en détail

Sur les Obligations Convertibles à Option Retardée de Remboursement Anticipé au Gré de l Émetteur 1

Sur les Obligations Convertibles à Option Retardée de Remboursement Anticipé au Gré de l Émetteur 1 ur les Obligaions Converibles à Opion Reardée de Remboursemen Anicipé au Gré de l Émeeur F. ANDRE-LE POGAMP F. MORAUX florence.andre@univ-rennes.fr franck.moraux@univ-rennes.fr Universié de Rennes I-IGR

Plus en détail

Crise Financière, Politique de Déflation, Politique D anticipations et Ciblage des Taux Longs au japon

Crise Financière, Politique de Déflation, Politique D anticipations et Ciblage des Taux Longs au japon Crise Financière, Poliique de Déflaion, Poliique D anicipaions e Ciblage des Taux Longs au japon SOUMARE Ibrahima Universié de Rouen Haue Normandie (France) Laboraoire CARE (Cenre d Analyse e de Recherche

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

Méthodes financières et allocation d actifs en assurance

Méthodes financières et allocation d actifs en assurance Méhodes financières e allocaion d acifs en assurance - Norber GAURON (JWA Acuaires, Paris) - Frédéric PLANCHE (Universié Lyon, Laboraoire SAF) - Pierre HEROND (JWA Acuaires, Lyon) 2005. (WP 2025) Laboraoire

Plus en détail

Fonds spéculatifs : évolution de l exposition au risque et de l effet de levier 1

Fonds spéculatifs : évolution de l exposition au risque et de l effet de levier 1 Parick McGuire +41 61 28 8921 parick.mcguire@bis.org Eli Remolona +852 2878 715 eli.remolona@bis.org Kosas Tsasaronis +41 61 28 882 ksasaronis@bis.org Fonds spéculaifs : évoluion de l exposiion au risque

Plus en détail

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES

BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES BUREAU D'APPLICATION DES METHODES STATISTIQUES ET INFORMATIQUES DT 2/2005 Croissance économique e consommaion d énergie au Congo : une analyse en ermes de causalié Samuel AMBAPOUR Chrisophe MASSAMBA BAMSI

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE CIENCE DE L'INGÉNIEU TP N 3 page 1 / 8 GÉNIE ÉLECTIQUE TEMINALE Durée : 2h OUVE POTAIL FAAC : EUE CODÉE Cenres d'inérê abordés : Thémaiques : CI11 ysèmes logiques e numériques I6 Les sysèmes logiques combinaoires

Plus en détail