AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE

Dimension: px
Commencer à balayer dès la page:

Download "AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE"

Transcription

1 AMPLIFICATEUR OPERATIONNEL EN REGIME NON LINEAIRE Dans e hapire l'amplifiaeur différeniel inégré sera oujours onsidéré omme parfai, mais la ension de sorie ne pourra prendre que deux valeurs : V sa e V sa qui son les ensions de sauraion posiive e négaive de l'amplifiaeur. Puisque l' AOP ne fonionne plus en régime linéaire il n'y a plus proporionnalié enre les ensions d'enrée e de sorie, e la ension différenielle d'enrée v d ne peu plus êre onsidérée omme nulle. En revanhe les ourans d'enrée le seron.. COMPARATEUR À UN SEUIL v v Si < v alors = V sa, alors que si > v, = V sa, d'où les hronogrammes obenus ave un signal riangulaire e une ension oninue v.. COMPARATEUR À DEUX SEUILS (À HYSTÉRÉSIS OU TRIGGER) Si le signal es enâhé de brui, il se produira plusieurs basulemens au momen de l'égalié des ensions d'enrée du omparaeur. v Pour remédier à e problème, on réalise un omparaeur à deux seuils. AA OOPP NNoonn LLi iinn... ddoo Page sur 6

2 v R Observons la figure idessus : quelle que soi la valeur de la ension v, la sorie de l'aop es en sauraion e = β. ave : β = R soien : = β.v sa e = β.v sa Supposons v < : = V sa e = β. > 0 Faisons roîre v : La sorie hange d'éa lorsque v = β.v sa, prenan alors la valeur = V sa < 0. Si l'on oninue à faire roîre la ension v la sorie rese dans e éa. Faisons mainenan déroîre v : Pour que la sorie hange d'éa, il fau mainenan que : v = β.v sa, reprenan alors sa valeur iniiale V sa e y resan an que v déroî, d'où la araérisique de ransfer : v Si l'on désire deux ensions de seuil posiives il suffi d'ajouer au monage prééden une soure de ension oninue onformémen au monage idessous, la araérisique de ransfer éan ranslaée suivan l'axe des absisses, les ensions de seuil ayan pour valeur : = (β).e β.v sa e = (β).e β.v sa v R v E AA OOPP NNoonn LLi iinn... ddoo Page sur 6

3 Pour que la ension soi posiive il es néessaire de hoisir : E > β. V sa /(β). La largeur du yle d'hysérésis devra êre supérieure à l'ampliude du brui superposé au signal riangulaire. 3. MULTIVIBRATEUR ASTABLE 3. Prinipe Son shéma de prinipe uilise un omparaeur à deux seuils auquel on ajoue un irui RC, le signal d'enrée éan supprimé. R i C R Supposons qu'à l'insan = 0, on mee le irui sous ension, le ondensaeur C éan iniialemen déhargé; la sorie passera alors insananémen en sauraion posiive ou négaive. Nous hoisirons arbirairemen : (0 ) = V sa. Le ondensaeur se harge don à ravers la résisane R sous la ension V sa jusqu'à e que la ension v = β.v sa à l'insan ; la ension basulan alors à V sa. Le ondensaeur se harge alors sous la ension V sa jusqu'à l'insan où v = β.v sa, repassan insananémen à V sa. Le ondensaeur se reharge à nouveau sous la ension V sa jusqu'à l'insan 3 où v = β.v sa. Nous nous rerouvons alors dans les mêmes ondiions qu'à l'insan ; la même séquene se reprodui don indéfinimen, d'où les hronogrammes : v 3. Equaions : période La ension aux bornes du ondensaeur es liée à la ension de sorie par l'équaion différenielle : τ dv d v = v = e ave τ = R.C s équaion qui a pour soluion : () = A.e /τ où A es une onsane d'inégraion. Si on appelle o la ension iniiale (à = 0) aux bornes du ondensaeur, alors A = o,d'où : () =.( e /τ ) o.e /τ = (o ).e /τ De ee équaion on peu déduire le emps que me la ension pour passer de la valeur o à la valeur () : AA OOPP NNoonn LLi iinn... ddoo Page 3 sur 6

4 Ln v o = τ. v v ( ) s Prenons omme origine des emps l'insan où basule à V sa, ayan alors pour valeur β.v sa. On onsidère généralemen que les ensions de sauraion son symériques don : V sa = V sa = Si on appelle θ la durée de l'éa bas en sorie, e puisque (θ ) = β. : θ β = τ τ. R. Ln =. Ln β R d'où la période : R T = = Ln.. θ τ. ave τ = R.C R 3.3 Modifiaion du rappor ylique Le rappor ylique es le rappor enre la durée à l'éa hau e la période du signal de sorie. Pour le modifier on réalise le monage suivan : P C D D R R v v R Le ondensaeur se harge sous ave la onsane de emps (R γ.p).c e sous ave la onsane de emps (R (γ).p).c. En appelan θ la durée à l'éa bas e θ elle à l'éa hau, on obien : θ = γ. R ( R. P). C. Ln R θ = γ. R [ R ( ). P]. C. Ln R Le signal aura don pour période :. R T = (. R P). C. Ln R e pour rappor ylique : α θ = = γ R. P T. R P Les aluls on éé fais en supposan les diodes parfaies; on remarquera qu'en héorie la période es indépendane de la posiion du urseur du poeniomère. Les mulivibraeurs asables son uilisés pour générer des signaux reangulaires de période e de rappor ylique variables. AA OOPP NNoonn LLi iinn... ddoo Page 4 sur 6

5 4. MONOSTABLE 4. Prinipe C' v e R' C R v' Le irui R'.C' d'enrée ransforme les frons de ension en impulsions. Pour un fonionnemen orre du monage la onsane de emps R'.C' doi êre faible devan la onsane de emps R.C ave R = R R (sinon la durée de l'impulsion de sorie dépendra de la onsane de emps R'.C'). Au repos v = E, l'inensié du ouran dans le ondensaeur C es nulle, e v' son don nulles e la sorie de l'aop es en sauraion posiive ar > v. Si v e présene un fron posiif d'ampliude supérieure à E, passe de à. Le fron de ension de sorie. es ransmis par C e v' passe insananémen de 0 à, quan à la ension, elle vau alors β., onribuan ainsi à mainenir la sorie en sauraion négaive lorsque v aein à nouveau E (à ondiion que β..< E). Le ondensaeur se harge alors sous la ension, les ensions e v' endan exponeniellemen vers 0 V. Mais lorsque aein E la sorie basule à e y rese (éa sable). Le fron de. en sorie es ransmis par C, passan insananémen de E à.βvsae mainien la sorie en sauraion posiive. C se harge mainenan sous, e v' enden exponeniellemen vers 0V (éa iniial). Pour appliquer une nouvelle impulsion à l'enrée, il es néessaire que le irui soi à nouveau dans son éa sable (v' = 0), soi après la durée r, appelée emps de réupéraion qu'on hoisi égal à 5.τ. Ce emps de réupéraion peu êre diminué en ajouan, enre le poin ommun à R e C e la masse, une diode (ahode à la masse) e une résisane en série, de faible valeur devan R R, qui permera une déharge plus rapide du ondensaeur C. 4. Equaions : durée de l'impulsion La durée de l'impulsion peu êre déerminée à parir de l'équaion : θ = τ. Ln v o v v ( θ) s ave : τ = (R R ).C = o = (θ) = E/β don : θ = ( ). V R. C. Ln E sa R R AA OOPP NNoonn LLi iinn... ddoo Page 5 sur 6

6 4.3 Chronogrammes v E β.vsae E β. E/β θ 4.4 Appliaions Les monosables son uilisés pour générer des impulsions de durée alibrée ou pour réer des impulsions reardées. Une appliaion inéressane es le onverisseur fréquene ension : un monosable suivi d'un filre passebas délivre une ension don la valeur moyenne es égale au rappor θ/t = θ.f, f éan la fréquene du signal d'enrée du monosable. AA OOPP NNoonn LLi iinn... ddoo Page 6 sur 6

COMMANDE D UNE PORTE DE GARAGE COLLECTIF

COMMANDE D UNE PORTE DE GARAGE COLLECTIF COMMANDE D UNE PORTE DE GARAGE COLLECTIF Les quesions raiées devron êre soigneusemen numéroées e le documen-réponse fourni devra êre compléé selon les indicaions de l énoncé. Il es vivemen conseillé de

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

La logique séquentielle

La logique séquentielle La logique séquenielle Logseq 1) ifférence enre sysèmes combinaoires e sysèmes séqueniels. Un sysème combinaoire es el que l'éa de ses sories ne dépende que de l'éa des enrées. Il peu donc êre représené

Plus en détail

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE

VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE VISUALISATION DES SIGNAUX ELECTRIQUES OSCILLOSCOPE CATHODIQUE ANALOGIQUE INTRODUCTION L'oscilloscope es le plus polyvalen des appareils de mesures élecroniques. Il peu permere simulanémen de visualiser

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

Intégration de Net2 avec un système d alarme intrusion

Intégration de Net2 avec un système d alarme intrusion Ne2 AN35-F Inégraion de Ne2 avec un sysème d alarme inrusion Vue d'ensemble En uilisan l'inégraion d'alarme Ne2, Ne2 surveillera si l'alarme inrusion es armée ou désarmée. Si l'alarme es armée, Ne2 permera

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

LE PARADOXE DES DEUX TRAINS

LE PARADOXE DES DEUX TRAINS LE PARADOXE DES DEUX TRAINS Énoné du paradoxe Déaillons ou d abord le problème dans les ermes où il es souen présené On dispose de deux oies de hemins de fer parallèles e infinimen longues Enre les deux

Plus en détail

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE

SCIENCES DE L'INGÉNIEUR TP N 3 page 1 / 8 GÉNIE ÉLECTRIQUE TERMINALE Durée : 2h OUVRE PORTAIL FAAC : SERRURE CODÉE CIENCE DE L'INGÉNIEU TP N 3 page 1 / 8 GÉNIE ÉLECTIQUE TEMINALE Durée : 2h OUVE POTAIL FAAC : EUE CODÉE Cenres d'inérê abordés : Thémaiques : CI11 ysèmes logiques e numériques I6 Les sysèmes logiques combinaoires

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

B34 - Modulation & Modems

B34 - Modulation & Modems G. Pinson - Physique Appliquée Modulaion - B34 / Caracérisiques d'un canal de communicaion B34 - Modulaion & Modems - Définiions * Half Duplex ou simplex : ransmission un sens à la fois ; exemple : alky-walky

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Sciences Industrielles pour l Ingénieur

Sciences Industrielles pour l Ingénieur Sciences Indusrielles pour l Ingénieur Cenre d Inérê 6 : CONVERTIR l'énergie Compéences : MODELISER, RESOUDRE CONVERSION ELECTROMECANIQUE - Machine à couran coninu en régime dynamique Procédés de piloage

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1

Documentation Technique de Référence Chapitre 8 Trames types Article 8.14-1 Documenaion Technique de Référence Chapire 8 Trames ypes Aricle 8.14-1 Trame de Rappor de conrôle de conformié des performances d une insallaion de producion Documen valide pour la période du 18 novembre

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3

CHAPITRE 13. EXERCICES 13.2 1.a) 20,32 ± 0,055 b) 97,75 ± 0,4535 c) 1953,125 ± 23,4375. 2.±0,36π cm 3 Chapire Eercices de snhèse 6 CHAPITRE EXERCICES..a), ±,55 b) 97,75 ±,455 c) 95,5 ±,475.±,6π cm.a) 44,, erreur absolue de,5 e erreur relaive de, % b) 5,56, erreur absolue de,5 e erreur relaive de,9 % 4.a)

Plus en détail

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche

GBF et Oscilloscope. 1. «un seul bouton à la fois tu manipuleras»; 2. «aux boutons inconnus tu ne toucheras». I) Première approche e Oscilloscope objecif de ce TP es d apprendre à uiliser, ie. à régler, deux des appareils les plus courammen uilisés : le e l oscilloscope. Pour cela vous serez amené(e) à uiliser e à associer de nouveaux

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

CANAUX DE TRANSMISSION BRUITES

CANAUX DE TRANSMISSION BRUITES Canaux de ransmissions bruiés Ocobre 03 CUX DE TRSISSIO RUITES CORRECTIO TRVUX DIRIGES. oyer Canaux de ransmissions bruiés Ocobre 03. RUIT DE FOD Calculer le niveau absolu de brui hermique obenu pour une

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007 Bureau fédéral du Plan Avenue des Ars 47-49, 1000 Bruxelles hp://www.plan.be WORKING PAPER 18-10 Comparaison des composanes de la croissance de la producivié : Belgique, Allemagne, France e Pays-Bas 1996-2007

Plus en détail

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t

Annuités. I Définition : II Capitalisation : ( Valeur acquise par une suite d annuités constantes ) V n = a t Annuiés I Définiion : On appelle annuiés des sommes payables à inervalles de emps déerminés e fixes. Les annuiés peuven servir à : - consiuer un capial ( annuiés de placemen ) - rembourser une dee ( annuiés

Plus en détail

ÉTUDE D UN SYSTÈME PLURITECHNIQUE

ÉTUDE D UN SYSTÈME PLURITECHNIQUE DM SSI: AQUISITION DE l INFORMATION ÉTUDE D UN SYSTÈME PLURITECHNIQUE Pores Laérales Coulissanes de monospace PRÉSENTATION DE L ÉTUDE Mise en siuaion Les fabricans d'auomobiles, face à une concurrence

Plus en détail

PORTAIL AUTOMATIQUE A COMMANDE PAR DIGICODE. Dossier technique

PORTAIL AUTOMATIQUE A COMMANDE PAR DIGICODE. Dossier technique PORTAIL AUTOMATIQUE A COMMANDE PAR DIGICODE Dossier echnique SOMMAIRE Inroducion Présenaion en images des différens élémens Principe de foncionnemen e rôle des différens élémens Diagramme sagial Mise en

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD

Université Technique de Sofia, Filière Francophone d Informatique Notes de cours de Réseaux Informatiques, G. Naydenov Maitre de conférence, PhD LA COUCHE PHYSIQUE 1 FONCTIONS GENERALES Cee couche es chargée de la conversion enre bis informaiques e signaux physiques Foncions principales de la couche physique : définiion des caracérisiques de la

Plus en détail

Introduction aux produits dérivés

Introduction aux produits dérivés Chapire 1 Inroducion aux produis dérivés de crédi Le risque de crédi signifie les risques financiers liés aux incapaciés d un agen (un pariculier, une enreprise ou un éa souverain) de payer un engagemen

Plus en détail

Cahier technique n 114

Cahier technique n 114 Collecion Technique... Cahier echnique n 114 Les proecions différenielles en basse ension J. Schonek Building a ew Elecric World * Les Cahiers Techniques consiuen une collecion d une cenaine de ires édiés

Plus en détail

Le mécanisme du multiplicateur (dit "multiplicateur keynésien") revisité

Le mécanisme du multiplicateur (dit multiplicateur keynésien) revisité Le mécanisme du muliplicaeur (di "muliplicaeur kenésien") revisié Gabriel Galand (Ocobre 202) Résumé Le muliplicaeur kenésien remone à Kenes lui-même mais il es encore uilisé de nos jours, au moins par

Plus en détail

DE L'ÉVALUATION DU RISQUE DE CRÉDIT

DE L'ÉVALUATION DU RISQUE DE CRÉDIT DE L'ÉALUAION DU RISQUE DE CRÉDI François-Éric Racico * Déparemen des sciences adminisraives Universié du Québec, Ouaouais Raymond héore Déparemen Sraégie des Affaires Universié du Québec, Monréal RePAd

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB)

Filtrage optimal. par Mohamed NAJIM Professeur à l École nationale supérieure d électronique et de radioélectricité de Bordeaux (ENSERB) Filrage opimal par Mohamed NAJIM Professeur à l École naionale supérieure d élecronique e de radioélecricié de Bordeaux (ENSERB) Filre adapé Définiions Filre adapé dans le cas de brui blanc 3 3 Cas d un

Plus en détail

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé

Romain Burgot & Tchim Silué. Synthèse de l article : Note sur l évaluation de l option de remboursement anticipé ENSAE 3 eme année Romain Burgo & Tchim Silué Synhèse de l aricle : Noe sur l évaluaion de l opion de remboursemen anicipé Mémoire de gesion ALM Juin 2006 Résumé Depuis 1979, la loi offre à l empruneur

Plus en détail

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET

MODELES DE LA COURBE DES TAUX D INTERET. UNIVERSITE d EVRY Séance 4. Philippe PRIAULET MODELES DE LA COURBE DES AUX D INERE UNIVERSIE d EVRY Séance 4 Philippe PRIAULE Plan de la Séance Les modèles sochasiques de déformaion de la courbe des aux: Approche déaillée Le modèle de Black: référence

Plus en détail

Documents de Travail du Centre d Economie de la Sorbonne

Documents de Travail du Centre d Economie de la Sorbonne Documens de Travail du Cenre d Economie de la Sorbonne D un muliple condiionnel en assurance de porefeuille : CAViaR pour les gesionnaires? Benjamin HAMIDI, Emmanuel JURCZENKO, Berrand MAILLET 2009.33

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2

Les solutions solides et les diagrammes d équilibre binaires. sssp1. sssp1 ssss1 ssss2 ssss3 sssp2 Les soluions solides e les diagrammes d équilibre binaires 1. Les soluions solides a. Descripion On peu mélanger des liquides par exemple l eau e l alcool en oue proporion, on peu solubiliser un solide

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

FONCTIONS LOGIQUES I INTRODUCTION : II FONCTION LOGIQUE ET OPERATEUR BINAIRE : III DEFINITION ET REPRESENTATIONS D UN OPERATEUR BINAIRE :

FONCTIONS LOGIQUES I INTRODUCTION : II FONCTION LOGIQUE ET OPERATEUR BINAIRE : III DEFINITION ET REPRESENTATIONS D UN OPERATEUR BINAIRE : I INTRODUCTION : FONCTION LOGIQUE BT MI Variabl binair : L élcrochniqu, l élcroniqu, la mécaniqu éudin uilisn la variaion d grandurs physiqus lls qu la prssion, la forc, la nsion, c. Crains applicaions

Plus en détail

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement

Chapitre 2 L investissement. . Les principales caractéristiques de l investissement Chapire 2 L invesissemen. Les principales caracérisiques de l invesissemen.. Définiion de l invesissemen Définiion générale : ensemble des B&S acheés par les agens économiques au cours d une période donnée

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE

2009-01 EFFICIENCE INFORMATIONNELLE DES 1948-2008 UNE VERIFICATION ECONOMETRIQUE MARCHES DE L OR A PARIS ET A LONDRES, DE LA FORME FAIBLE 009-01 EFFICIENCE INFORMATIONNELLE DES MARCHES DE L OR A PARIS ET A LONDRES, 1948-008 UNE VERIFICATION ECONOMETRIQUE DE LA FORME FAIBLE Thi Hong Van HOANG Efficience informaionnelle des marchés de l or

Plus en détail

LES MODÈLES DE TAUX DE CHANGE

LES MODÈLES DE TAUX DE CHANGE LES MODÈLES DE TAUX DE CHANGE Équilibre de long erme, dynamique e hysérèse Anoine Bouvere Docoran à l OFCE Henri Serdyniak Direceur du Déparemen économie de la mondialisaion de l OFCE Professeur associé

Plus en détail

Une mesure financière de l importance de la prime de risque de change dans la prime de risque boursière*

Une mesure financière de l importance de la prime de risque de change dans la prime de risque boursière* Une mesure financière de l imporance de la prime de risque de change dans la prime de risque boursière* Salem Boubakri Janvier 2009 Résumé Cee éude ese une exension inernaionale du Modèle d Evaluaion des

Plus en détail

L impact des chocs boursiers sur le crédit en France depuis le milieu des années quatre-vingt-dix. John BAUDE 1

L impact des chocs boursiers sur le crédit en France depuis le milieu des années quatre-vingt-dix. John BAUDE 1 4 mars 25 L impa des hos boursiers sur le rédi en Frane depuis le milieu des années quare-ving-dix John BAUDE 1 Résumé : Les fores fluuaions boursières inervenues depuis le milieu des années quare-ving-dix,

Plus en détail

est proportionnel à B, lui même proportionnel au courant i. On a donc

est proportionnel à B, lui même proportionnel au courant i. On a donc INDUCTION ÉLCTROMGNÉTIQU DNS UN CIRCUIT FIX INDUCTION ÉLCTROMGNÉTIQU DNS UN CIRCUIT FIX : CS D NUMNN I Descipion des cicuis dans le cade de l RQS 1 ) Inducances popes e inducances muuelles de cicuis filifomes

Plus en détail

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe.

TD 11. Les trois montages fondamentaux E.C, B.C, C.C ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe. TD 11 Les trois montages fondamentaux.,.,. ; comparaisons et propriétés. Association d étages. *** :exercice traité en classe ***exercice 11.1 On considère le montage ci-dessous : V = 10 V R 1 R s v e

Plus en détail

Solutions auto-semblables pour des modèles avec conductivité thermique

Solutions auto-semblables pour des modèles avec conductivité thermique Soluions auo-semblables pour des modèles avec conducivié hermique Séphane DELLACHERIE e Olivier LAFITTE CRM-327 5 décembre 25 Cenre de Recherches Mahémaiques, Universié de Monréal, Case posale 628, Succursale

Plus en détail

3 POLITIQUE D'ÉPARGNE

3 POLITIQUE D'ÉPARGNE 3 POLITIQUE D'ÉPARGNE 3. L épargne exogène e l'inefficience dynamique 3. Le modèle de Ramsey 3.3 L épargne opimale dans le modèle AK L'épargne des sociéés dépend largemen des goûs des agens, de faceurs

Plus en détail

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine.

Analyse par intervalles pour la localisation et la cartographie simultanées; Application à la robotique sous-marine. Analyse par inervalles pour la localisaion e la carographie simulanées; Applicaion à la roboique sous-marine Fabrice LE BARS Analyse par inervalles pour la localisaion e la carographie simulanées; Thèse

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr

COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE. François LONGIN www.longin.fr COURS GESTION FINANCIERE A COURT TERME SEANCE 3 PLANS DE TRESORERIE SEANCE 3 PLANS DE TRESORERIE Obje de la séance 3 : dans la séance 2, nous avons monré commen le besoin de financemen éai couver par des

Plus en détail

Mesures du coefficient adiabatique γ de l air

Mesures du coefficient adiabatique γ de l air Mesures du oeffiient adiabatique γ de l air Introdution : γ est le rapport des apaités alorifiques massiques d un gaz : γ = p v Le gaz étudié est l air. La mesure de la haleur massique à pression onstante

Plus en détail

Etude de risque pour un portefeuille d assurance récolte

Etude de risque pour un portefeuille d assurance récolte Eude de risque pour un porefeuille d assurance récole Hervé ODJO GROUPAMA Direcion ACTUARIAT Groupe 2, Bd Malesherbes 75008 Paris Tél : 33 (0 44 56 72 46 herve.odjo@groupama.com Viviane RITZ GROUPAMA Direcion

Plus en détail

pouvant être utilisé pour représenter les nombres. Par convention, la base dans laquelle le nombre est exprimé se

pouvant être utilisé pour représenter les nombres. Par convention, la base dans laquelle le nombre est exprimé se psi--a-uomiquesysèmes ominoires- J.Kuhler V4.- CIENCE INDUTRIEE POUR INGÉNIEUR CI-8 pge /8. Auomique A. ysèmes ominoires PCII oopp ioonn II Codge de l informion. Opéreurs logiques fondmenux. Fonions logiques.

Plus en détail

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE

SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE SYSTÈME HYBRIDE SOLAIRE THERMODYNAMIQUE POUR L EAU CHAUDE SANITAIRE Le seul ballon hybride solaire-hermodynamique cerifié NF Elecricié Performance Ballon hermodynamique 223 lires inox 316L Plaque évaporarice

Plus en détail

Mathématiques financières. Peter Tankov

Mathématiques financières. Peter Tankov Mahémaiques financières Peer ankov Maser ISIFAR Ediion 13-14 Preface Objecifs du cours L obje de ce cours es la modélisaion financière en emps coninu. L objecif es d un coé de comprendre les bases de

Plus en détail

Le modèle de Black Scholes

Le modèle de Black Scholes Le modèle de Black Scholes Philippe Briand, Mars 3 1. Présenaion du modèle Les mahémaiciens on depuis longemps essayé de résoudre les quesions soulevées par le monde de la finance. Une des caracérisiques

Plus en détail

Production statistique: passage d une démarche axée sur les domaines à une démarche axée sur les processus

Production statistique: passage d une démarche axée sur les domaines à une démarche axée sur les processus Nations Unies Conseil éonomique et soial Distr. générale 31 mars 2015 Français Original: anglais ECE/CES/2015/26 Commission éonomique pour l Europe Conférene des statistiiens européens Soixante-troisième

Plus en détail

dspic30f3011 PWM "push-pull" avec les structures Output Compare DSPIC30F3011 PWM "push-pull" avec les structures Output Compare

dspic30f3011 PWM push-pull avec les structures Output Compare DSPIC30F3011 PWM push-pull avec les structures Output Compare DSPIC30F3011 PWM "push-pull" avec les srucures Oupu Compare Cee applicaion es uilisée dans le proje "VAE" (Vélo à Assisance Élecrique) pour piloer le converisseur DC-DC de l'éclairage. Le module "moeur"

Plus en détail

CAHIER 1199 CONTRAINTE DE CRÉDIT, CAPITAL HUMAIN ET CROISSANCE. Ghazi BOULILA et Mohamed TRABELSI

CAHIER 1199 CONTRAINTE DE CRÉDIT, CAPITAL HUMAIN ET CROISSANCE. Ghazi BOULILA et Mohamed TRABELSI CAHIER 99 CONTRAINTE DE CRÉDIT, CAPITAL HUMAIN ET CROISSANCE Ghazi BOULILA e Mohamed TRABELSI Universié de Monréal Cenre de reherhe e développemen en éonomique C.P. 68, Suursale Cenre-ville Monréal (Québe)

Plus en détail

par Colin Thirtle et Robert Townsend, Université de Reading et Université de Pretoria

par Colin Thirtle et Robert Townsend, Université de Reading et Université de Pretoria Jour 10 L'esimaion de la réacion dnamique de l'offre par Colin Thirle e Rober Townsend, Universié de Reading e Universié de Preoria Table des maières Inroducion 1. La héorie de base de la producion e de

Plus en détail

Equations différentielles et Cinétique chimique

Equations différentielles et Cinétique chimique Equaions différnills Cinéiqu chimiqu En Cinéiqu, l'éud ds visss lors ds réacions condui à ds équaions différnills don la plupar corrspondn au programm d Mahémaiqus ds classs d STS chimiss Ls sujs raiés

Plus en détail

DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers

DESSd ingéniérie mathématique Université d Evry Val d Essone Evaluations des produits nanciers DESSd ingéniérie mahémaique Universié d Evry Val d Essone Evaluaions des produis nanciers Véronique Berger Cours Janvier-Mars 2003 version du 27 mars 2003 Conens I Présenaion du plan de cours 3 II Insrumens

Plus en détail

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE

Cours Thème VIII.3 CONVERSION STATIQUE D'ÉNERGIE ours hème VIII.3 ONVSION SAIQU D'ÉNGI 3- Famlles de conversseurs saques Suvan le ype de machne à commander e suvan la naure de la source de pussance, on dsngue pluseurs famlles de conversseurs saques (schéma

Plus en détail

UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ

UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ UN MODÈLE D ÉVALUATION DES COÛTS AGRÉGÉS LIÉS AUX ASSURANCES POUR LES PROFESSIONNELS DE LA SANTÉ Mémoire Emmanuel Hamel Maîrise en acuaria Maîres ès sciences (M.Sc.) Québec, Canada Emmanuel Hamel, 03 Résumé

Plus en détail

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau

Ecole des HEC Université de Lausanne FINANCE EMPIRIQUE. Eric Jondeau Ecole des HEC Universié de Lausanne FINANCE EMPIRIQUE Eric Jondeau FINANCE EMPIRIQUE La prévisibilié des rendemens Eric Jondeau L hypohèse d efficience des marchés Moivaion L idée de base de l hypohèse

Plus en détail

Exercices de révision

Exercices de révision Exercices de révisio Exercice U ivesisseur souscri à l émissio d u bille de résorerie do les caracérisiques so les suivaes : - Nomial : 5 M - Taux facial : 3,2% - Durée de vie : 9 mois L ivesisseur doi

Plus en détail

Chapitre IV- Induction électromagnétique

Chapitre IV- Induction électromagnétique 37 Chapitre IV- Indution életromagnétique IV.- Les lois de l indution IV..- L approhe de Faraday Jusqu à maintenant, nous nous sommes intéressés essentiellement à la réation d un hamp magnétique à partir

Plus en détail

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1

Sélection de portefeuilles et prédictibilité des rendements via la durée de l avantage concurrentiel 1 ASAC 008 Halifax, Nouvelle-Écosse Jacques Sain-Pierre (Professeur Tiulaire) Chawki Mouelhi (Éudian au Ph.D.) Faculé des sciences de l adminisraion Universié Laval Sélecion de porefeuilles e prédicibilié

Plus en détail

NOTE SUR LES METHODES UNIVARIEES

NOTE SUR LES METHODES UNIVARIEES BRUSSELS EONOMI REVIEW - AHIERS EONOMIQUES DE BRUXELLES VOL 5 N 3 AUTUMN 7 NOTE SUR LES METHODES UNIVARIEES D EXTRATION DU YLE EONOMIQUE ANNA SESS ET MIHEL GRUN-REHOMME (UNIVERSITE PARIS, ERMES- NRS- UMR78)

Plus en détail

CONVERSION ÉLECTRONIQUE STATIQUE. HACHEURS. I : Ce que vous ne pouvez pas deviner. 1 ) Principes généraux des convertisseurs de puissance.

CONVERSION ÉLECTRONIQUE STATIQUE. HACHEURS. I : Ce que vous ne pouvez pas deviner. 1 ) Principes généraux des convertisseurs de puissance. ONVSON ÉONQ SAQ AS : e qe vos ne povez pas devner 1 ) Prnpes générax des onverssers de pssane es pssanes mses en je Gamme des pssanes overes par l éleronqe de pssane S AS monres, APN, 10 ordnaers, haînes

Plus en détail

LE PENETROMETRE STATIQUE Essais CPT & CPTU

LE PENETROMETRE STATIQUE Essais CPT & CPTU LE PENETROMETRE STATIQUE Essais CPT & CPTU Mesures Interprétations - Appliations Doument rédigé par des ingénieurs géotehniiens de GINGER CEBTP sous la diretion de : Mihel KHATIB Comité de releture : Claude-Jaques

Plus en détail

La polarisation des transistors

La polarisation des transistors La polarisation des transistors Droite de charge en continu, en courant continu, statique ou en régime statique (voir : le transistor) On peut tracer la droite de charge sur les caractéristiques de collecteur

Plus en détail

Informatique TP 4 & 5. Chaînes de Markov. Partie 1 : exemple introductif

Informatique TP 4 & 5. Chaînes de Markov. Partie 1 : exemple introductif Informatique TP 4 & 5 ECS2 Lyée La Bruyère, Versailles Chaînes de Markov Partie 1 : exemple introdutif Exerie 1 : épidémiologie On modélise l évolution d une maladie en lassant les individus en trois groupes

Plus en détail

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin

Pouvoir de marché et transmission asymétrique des prix sur les marchés de produits vivriers au Bénin C N R S U N I V E R S I T E D A U V E R G N E F A C U L T E D E S S C I E N C E S E C O N O M I Q U E S E T D E G E S T I O N CENTRE D ETUDES ET DE RECHERCHES SUR LE DEVELOPPEMENT INTER NATIONAL Pouvoir

Plus en détail

Electronique du véhicule

Electronique du véhicule Module 2 Electronique du véhicule Orientation véhicules légers Diagnosticien d'automobiles avec brevet fédéral Orientation véhicules utilitaires Modules 7 à 9 Modules 10 à12 Modules 1 à 6 UPSA, Mittelstrasse

Plus en détail

L évaluation du prix des actions par les fondamentaux : analyse du marché français

L évaluation du prix des actions par les fondamentaux : analyse du marché français L évaluaion du prix des acions par les fondamenaux : analyse du marché français Dominique epin To cie his version: Dominique epin. L évaluaion du prix des acions par les fondamenaux : analyse du marché

Plus en détail

Sur les Obligations Convertibles à Option Retardée de Remboursement Anticipé au Gré de l Émetteur 1

Sur les Obligations Convertibles à Option Retardée de Remboursement Anticipé au Gré de l Émetteur 1 ur les Obligaions Converibles à Opion Reardée de Remboursemen Anicipé au Gré de l Émeeur F. ANDRE-LE POGAMP F. MORAUX florence.andre@univ-rennes.fr franck.moraux@univ-rennes.fr Universié de Rennes I-IGR

Plus en détail

Séquence 2. Pourcentages. Sommaire

Séquence 2. Pourcentages. Sommaire Séquence 2 Pourcenages Sommaire Pré-requis Évoluions e pourcenages Évoluions successives, évoluion réciproque Complémen sur calcularices e ableur Synhèse du cours Exercices d approfondissemen 1 1 Pré-requis

Plus en détail

Quantité de mouvement et moment cinétique

Quantité de mouvement et moment cinétique 6 Quantité de mouvement et moment cinétique v7 p = mv L = r p 1 Impulsion et quantité de mouvement Une force F agit sur un corps de masse m, pendant un temps Δt. La vitesse du corps varie de Δv = v f -

Plus en détail

CONVERTISSEURS NA ET AN

CONVERTISSEURS NA ET AN Convertisseurs numériques analogiques (xo Convertisseurs.doc) 1 CONVTIU NA T AN NOT PLIMINAI: Tous les résultats seront exprimés sous formes littérales et encadrées avant les applications numériques. Les

Plus en détail

COMPÉTITIVITÉ ÉCONOMIQUE DU MAROC

COMPÉTITIVITÉ ÉCONOMIQUE DU MAROC COMPÉTITIVITÉ ÉCONOMIQUE DU MAROC CONCEPTS DE BASE DE LA MODELISATION HYDROLOGIQUE ET HYDRAULIQUE APPORTS ET PRINCIPES D UTILISATION DES OUTILS HEC, HEC-HMS ET HEC-RAS, PLATEFORME D INTEGRATION WMS ET

Plus en détail

ETUDE COMPARATIVE RELATIVE AU SERTISSAGE DES CANALISATIONS EN CUIVRE DANS LE SECTEUR DE LA RENOVATION

ETUDE COMPARATIVE RELATIVE AU SERTISSAGE DES CANALISATIONS EN CUIVRE DANS LE SECTEUR DE LA RENOVATION - Février 2003 - ETUDE COMPARATIVE RELATIVE AU SERTISSAGE DES CANALISATIONS EN CUIVRE DANS LE SECTEUR DE LA RENOVATION Centre d Information du Cuivre 30, avenue Messine 75008 Paris HOLISUD Ingénierie 21,

Plus en détail

Relation entre la Volatilité Implicite et la Volatilité Réalisée.

Relation entre la Volatilité Implicite et la Volatilité Réalisée. Relaion enre la Volailié Implicie e la Volailié Réalisée. Le cas des séries avec la coinégraion fracionnaire. Rappor de Recherche Présené par : Mario Vázquez Velasco Direceur de Recherche : Benoî Perron

Plus en détail