Stabilisation des systèmes bilinéaires fractionnaires

Dimension: px
Commencer à balayer dès la page:

Download "Stabilisation des systèmes bilinéaires fractionnaires"

Transcription

1 Sbilision des sysèmes bilinéires frcionnires Ibrhim N Doye,, Michel Zsdzinski, Nour-Eddine Rdhy, Mohmed Drouch Cenre de Recherche en Auomique de Nncy, UMR 739 Nncy-Universié, CNRS IUT de Longwy, 86 rue de Lorrine 544 Cosnes e Romin, Frnce. Lboroire Physique e Mériux Microélecronique Auomique e Thermique Universié Hssn II, Fculé des Sciences Ain-Chock BP : 5366 Mrif, Csblnc, Mroc. Résumé Ce ricle rie de l sbilision des sysèmes bilinéires frcionnires pr l pproche de l nouvelle générlision du lemme de Gronwll-Bellmn. L uilision de cee nouvelle pproche perme de monrer sous cerines hypohèses déques, qu on peu grnir une sbilision sympoique pr reour d é sique e pr reour de sorie sique des sysèmes bilinéires frcionnires. L méhodologie es illusrée pr l inermédiire d un exemple numérique. Mos-clés Sysèmes bilinéires frcionnires, nouvelle générlision du lemme de Gronwll-Bellmn, reour d é sique, reour de sorie sique, sbilision sympoique. I. Inroducion Beucoup de vris sysèmes dynmiques son mieux crcérisés pr un modèle dynmique d ordre non enier, bsé en générle sur l noion de différeniion ou d inégrion de l ordre non enier. Les sysèmes frcionnires ou d ordre non enier son ussi sbles que leurs homologues, les sysèmes d ordre enier. En effe, du fi que les sysèmes frcionnires son d une pr, pour l plupr considérés comme des sysèmes à mémoire qui son générlemen plus sbles comprés ux sysèmes d ordre enier e d ure pr, du fi qu ils ffichen une dynmique beucoup plus sophisiquée, ce qui présene une grnde impornce pr exemple dns le domine de l communicion sécurisée. Récemmen, le problème de l synchronision choique éé nurellemen éendue ux sysèmes frcionnires en rison des pplicions nombreuses e poenielles en physique des lsers, des réceurs chimiques, de l communicion sécurisée e de l biomédecine. Le clcul rdiionnel én bsé sur l différeniion e l inégrion d ordre enier. Le concep du clcul frcionnire le poeniel énorme de chnger l mnière don nous voyons, modélisons, e commndons l nure uour de nous. L rison principle de l usge fréquen des modèles d ordre enier éi l bsence des méhodes de soluion pour des équions frcionnires ou d ordre non enier. Acuellemen, un bon nombre de méhodes pour l pproximion de l dérivée e de l inégrle frcionnire peu êre fcilemen employé dns diverses pplicions nommen en héorie du conrôle nouveux conrôleurs e modèles de sysèmes frcionnires en héorie de circuis élecriques frcnces, en héorie de condenseur ec... D illeurs, quelques éudes héoriques e expérimenles monren que cerins sysèmes élecrochimiques [], hermiques [] e viscoélsiques [3] son régis pr des équions différenielles à dérivées non enières. L uilision de modèles clssiques bsés sur une dérivion enière n es donc ps ppropriée. Des modèles bsés sur des équions différenielles à dérivées non enières on, à ce effe, éé développés [4]. Pr illeurs, l quesion de l sbilié es rès imporne surou en héorie du conrôle. Dns le cs de l commnde des sysèmes d ordre frcionnire, il y beucoup de défis e des problèmes non résolus liés à l héorie de l sbilié els que l sbilié robuse, l sbilié inerne, l sbilié à enrée bornée e à sorie bornée ec... L objecif de ce ppier es d éudier l sbilision pr reour d é sique e pr reour de sorie sique des sysèmes bilinéires frcionnires non homogènes. L pproche nurelle pour celà, es l uilision de l prie linéire du sysème, pour monrer que sous cerines hypohèses déques, il es possible de conrôler le sysème globl pr reour d é sique e pr reour de sorie sique, en uilisn l nouvelle générlision du lemme de Gronwll-Bellmn. L preuve du lemme de Gronwll- Bellmn sndrd ou clssique e son uilision dns l héorie des sysèmes non linéires peuven êre rouvés dns [5], [6], [7] e quelques générlisions de ce lemme dns [8], [9]. Des définiions de bse du clcul frcionnire, en priculier, l foncion de Mig-Leffler, son présenées d bord dns l secion II. Puis, dns l secion III, on présene l définiion de l sbilié des sysèmes dynmiques d ordre frcionnire commensurble en men en exergue les différenes régions de sbilié. Dns l secion IV, on propose d éudier l sbilision sympoique des sysèmes bilinéires frcionnires ou d ordre non enier pr reour d é sique e pr reour de sorie sique en uilisn une nouvelle générlision du lemme de Gronwll-Bellmn. Un exemple numérique es uilisée dns l secion V pour illusrer nos résuls. L nouvelle générlision du lemme es prouvée églemen dns l nnexe. Noions. x = x T x e A = λ mx A T A son, respecivemen l norme euclidienne de veceur e l norme specrle de mrice où λ mx A T A es l vleur propre mximle de l mrice symérique A T A. f i es l ième composne du veceur f.

2 II. Définiions préliminires A. Définiion de l dérivée frcionnire Dns ce ppier, les symboles de l dérivion frcionnire on éé normlisés comme sui [], [] d α D α = d α, α >, α = α, α < où D α représene l opéreur de dérivion d ordre α, es l limie inférieure e l limie supérieure de ce opéreur de dérivion frcionnire. Dns ce qui sui, on pose =, lors l opéreur D α es remplcé pr D α. L formulion suivne des dérivées frcionnires die dérivée u sens de Cpuo es souven uilisée puisque s rnsformée de Lplce condui à des condiions iniiles qui prennen l même forme que pour les sysèmes à dérivée d ordre enier vec des inerpréions physiques clires. L dérivée u sens de Cpuo es définie pr [], [] : d α f d α = Γn α d n fτ d n, n α<n τ α n+ vec n IN e α IR +, où Γ es l foncion Gmm Euler. L inerpréion physique e l résoluion des équions différenielles frcionnires on éé lrgemen riées dns [], []. Dns l résoluion des équions différenielles e nlyiques, l uilision de l echnique de rnsformion de Lplce es souven nécessire e joue un rôle imporn dns l résoluion des équions à dérivée frcionnire. L rnsformée de Lplce de l dérivée frcionnire u sens de Cpuo de l équion es donnée pr : n D α fe s d = s α Lf s α k f k = 3 k= où s C es l opéreur de Lplce. En considérn que oues les condiions iniilles son nulles l équion 3 peu êre réduie à d α f L d α = s α Lf. 4 L iniilision ppropriée es églemen crucile dns l résoluion e l compréhension des équions ou sysèmes frcionnires. Ainsi, on dope générlemen l noion pour l cuslié rrogne de l foncion ou du sysème pour ou α < cd α f = d α f + d α f, vec c = < 5 où d α f es l dérivée d ordre α qui peu s écrire sous l forme suivne d α f = d fτ d Γ α τ α 6 e où d α f = Ψα, f,,, es une foncion iniile définie pr d α f=ψα, f,,, = d fτ d Γ α τ α 7 B. Définiion de l foncion de Mig-Leffler à deux prmères L foncion de Mig-Leffler es une générlision de l foncion exponenielle, elle es souven uilisée dns l résoluion des problèmes physiques décris pr des équions à dérivée ou inégrle frcionnire. Elle es églemen connue pour voir un nombre fini de zéros réels, ce qui es pplicble à de nombreux problèmes physiques. L foncion de Mig-Leffler à deux prmères es définie pr l relion suivne [], [3] : où E α,β z = k= E α, z = z k, α >, β > 8 Γαk + β k= z k Γαk + E αz es l foncion de Mig-Leffler à un seul prmère. L rnsformée de Lplce de l foncion de Mig- Leffler à deux prmères peu s écrire : où e s αk+β E k α,β α d = sα β k! s α k+ 9 E k α,β = dk d k E α,β. Lemme : [4] Si α <, β un nombre réel choisi rbiriremen, γ es el que.5απ < γ < min[π, πα] e C > es un réel consn, lors E α,β z C, γ rgz π, z. + z Pour une mrice de n-dimension, nous obenons le corollire suivn Corollire : [5] Si A C n n e α <, β es un nombre réel choisi rbiriremen, γ es el que απ < γ < min[π, πα] e θ > es un réel consn, lors θ E α,β A + A, γ rgλ ia π, i =... n où θ =mxc, P P C, λ i A es l ième vleur propre de l mrice A, P es une mrice de rnsformion non singulière donnée pr l forme cnonique de Jordn de l C mrice A, + A mx C i i n + λ i, où C e C i son des consnes posiives. III. Sbilié des sysèmes linéires frcionnires Dns l héorie de l sbilié des sysèmes linéires à emps invrin, nous svons bien qu un sysème es sble si les rcines du polynôme crcérisique son négives ou à pries réelles négives si elles son complexes conjugés donc siuées sur l moiié guche du pln complexe. Pr illeurs, dns le cs des sysèmes frcionnires linéires à emps invrin, l définiion de l sbilié es différene des sysèmes d ordre enier. En effe, l noion inéressne es que les sysèmes frcionnires ou d ordre non enier peuven bel e bien voir des rcines dns l moiié droie du pln complexe.

3 L sbilié des sysèmes frcionnires éé éudiée dns [6], [7], où des condiions nécessires e suffisnes on éé obenues donnn lieu u héorème suivn : Théorème : [6], [7] Considérons le sysème linéire frcionnire d ordre commensurble suivn : D α x = Ax + Bu y = Cx < α < x = x x IR n, u IR m, y IR p. Soi σa = {λ,..., λ n }. Le sysème es sble si es seulemen si : rgλ i > απ, λ i σa, i =... n D près, ce héorème de l sbilié, il en découle les différenes régions ou zones sbles e insbles, voir figure. Im sble sble sble sble sble sble insble α π α π insble Fig.. Régions de sbilié des sysèmes d ordre frcionnires vec <α< Re IV. Sbilision des sysèmes bilinéires frcionnires Considérons le sysème bilinéire frcionnire décri pr le modèle suivn : D α x =A x + u i A i x + Bu < α < y = Cx x=x 3 où x IR n es le veceur d é, u IR m es le veceur des enrées, y IR p représene le veceur de sorie, u i es l ième coordonnée de u, A i es l mrice ssocieé à l coordonnée u i, A, B e C son des mrices consnes de dimensions ppropriées. A. Sbilision pr reour d é sique Le bu de cee secion es d éudier le problème de l sbilision sympoique pr reour d é sique du sysème bilinéire frcionnire 3 vec C = I n. Hypohèse : Supposons qu il exise une mrice gin L elle que l relion du corollire soi sisfie, c es à dire, l mrice A es remplcée pr l mrice à = A + BL vec β =, e que rgλ i à απ > pour ou i =,..., n. L sbilision sympoique du sysème bilinéire frcionnire 3 vec C = I n es donnée pr le héorème suivn. Théorème : Sous l hypohèse, le sysème 3 vec C = I n conrôlé pr le reour d é suivn u = Lx 4 es sympoiquemen sble si es seulemen si oues les vleurs propres de l mrix à = A +BL son à prie réelles négives e si l é iniil x sisfi l relion suivne α à x < θ. 5 L A i De plus, l é du sysème x es borné en norme comme sui θ x + à α x. 6 θ L x A i α à + à Preuve : En uilisn l rnsformée de Lplce du sysème 3 e l relion 4 vec C = I n, nous obenons l équion suivne m Xs=I n s s α à α x +L A i xlx i 7 où à = A + BL. Puis, en ppliqun l rnsformée inverse de Lplce de l équion 7, obenue d une pr grâce à l rnsformée inverse de l foncion de Mig-Leffler à deux prmères, e d ure pr, en uilisn l inégrle de convoluion, on obien l églié suivne x=e α, Ãα x m + τ α E α,αã τα A i xτlxτ i 8 en ppliqun ensuie l norme des deux côés de l équion 8 e en uilisn le corollire, on obien l inéglié suivne x θ x + Ãα + θ m ou d une mnière équivlene A i L τ α + à τα xτ 9 x θ x + + θ m A i L τ α à α + à xτ. τα En uilisn insi le lemme 3 de l nouvelle générlision du lemme de Gronwll-Bellmn e en considérn r= θ x θ A i L τ α, fτ= + à α + Ã. τα

4 On peu vérifier que l inéglié 4 du lemme 3 es bien vérifiée, c es à dire l b l inéglié peu s écrire sous l forme θ x + Ã τ α rs l fs d s > θ A i L τ α où d une mnière équivlene + Ã >, > 3 τα θ τ L x A i α >, >, + Ã τ α + Ã τ α 4 vérifions minenn que l inéglié suivne es bien sisfie θ L x A i Φ >, > 5 où Φ = τ α + Ã τ α. 6 + Ã τ α L inégrle dns 6 peu êre décomposer en une somme de deux inégrles Φ = + τ α + Ã τ α + Ã τ α τ α + Ã τ α 7 + Ã τ α vec < α < e τ τ pour ou τ [, ], on obien τ α + Ã τ α + Ã τ α τ α + Ã τ α 8 + Ã τ α de même, < α < e τ τ pour ou τ [, ], on τ α + Ã τ α + Ã τ α = τ α + Ã τ α + Ã τα + Ã η α d η, 9 + Ã η α η α en subsiun τ pr η. En uilisn les deux relions 8 e 9, l relion 6 peu êre réécrie comme sui τ Φ = α + Ã τ α + Ã τ α = τ α cee dernière es équivlene à 3 + Ã τ α Φ = α Ã. 3 + Ã À prir de l équion 3, on monre que Φ > si > e l relion suivne θ L x A i Φ dns l inéglié 5 es minimle qund end vers l infini. Pr illeurs, l inéglié 5 es sisfie si l é iniil x vérifie l condiion 5. À prir de l équion, on pplique le lemme 3 de l nouvelle générlision du lemme de Gronwll-Bellmn e on obien l inéglié suivne θ x + Ã α x θ L x A i Φ 3 qui vérifie bien l inéglié 6 énoncée dns le héorème. Enfin, on vérifie bien que si le emps end vers l infini, x converge vers zéro, ce qui implique que l soluion du sysème frcionnire es sympoiquemen sble. B. Sbilision pr reour de sorie sique Dns cee secion, on chercher églemen à éudier le problème de l sbilision sympoique pr reour de sorie sique du sysème bilinéire d ordre frcionnire 3. Pour celà, nous supposons que l é du sysème bilinéire d ordre frcionnire es priellemen mesurble e nous considérons oujours le sysème bilinéire frcionnire défini dns 3. Hypohèse : Supposons qu il exise une mrice gin K elle que l relion du corollire soi sisfie c es à dire l mrice A es remplcée pr l mrice A = A + BKC vec β =, e que rgλi A > απ pour ou i =,..., n e A IR n n. Remrque : Il n es ps éviden de déerminer le gin K de l hypohèse dns le cs d un reour de sorie sique, ceci mène rès souven ux problèmes d opimision non convexes ciés dns [8] : il n exise ps de condiions nécessires e suffisnes sur les mrices données A, B e C elles que le gin K sisfi le corollire. Dns l liérure, beucoup d ueurs on conribué e proposé des lois de commnde pr reour de sorie sique sur les sysèmes linéires voir [9], [] e références incluses.

5 L sbilision sympoique du sysème bilinéire frcionnire 3 conrôlé pr un reour de sorie sique es donnée pr le héorème suivn. Théorème 3 : Sous l hypohèse, le sysème 3 conrôlé pr le reour de sorie sique suivn u = Ky 33 es sympoiquemen sble si es seulemen si oues les vleurs propres de l mrix A = A + BKC son à prie réelles négives e si l é iniil x vérifie l relion suivne x < α A θ. 34 KC A i De plus, l é du sysème x es borné en norme comme sui x θ KC x m α A θ x + A α A i + A. 35 Preuve : L preuve du héorème 3 es donnée pr l preuve du héorème en remplçn, respecivemen, à = A + BL e L pr A = A + BKC e KC. V. Exemple numérique Prenons le sysème bilinéire frcionnire insble suivn { D α x = A x + A ux + Bu < α < 36 x = x vec A = [ ], A = [ ], B = [ Pour simplifier, nous consruisons le conrôleur d é linéire ou gin L = [ ] el que rgλ i à απ > e que les vleurs propres de l mrice à = A o +BL soien égles à,. Ainsi, l condiion du héorème én sisfie. On conclu donc que l soluion du sysème bilinéire frcionnire conrôlé pr un reour d é sique es sympoiquemen sble. Les résuls de l simulion son donnés pr l figure vec θ =.5 ; x = [ ] T e <α<. VI. Conclusion Dns ce ricle, on monré que sous cerines condiions déques, on pouvi sbiliser sympoiquemen pr reour d é sique e pr reour de sorie sique le sysème bilinèire frcionnire en uilisn l pproche d une nouvelle générlision du lemme de Gronwll- Bellmn, cee dernière éé prouvée dns l nnexe. Les résuls de simulion on illusré l efficcié de cee pproche e de l méhode de conrôle proposée. ] x α =. α =. α =.3 α =.4 α =.5 α =.6 α =.7 α =.8 α =.9 α = emps [s] Fig.. Sbilision pr reour d é sique du sysème bilinéire frcionnire vec <α< Annexe : Nouvelle générlision du Lemme de Gronwll-Bellmn Lemme Lemme de Gronwll-Bellmn [7] p 9 [5] p 5 Soi f, g e k, foncions inégrbles e définies de IR + IR, g, k, g L, gk es inégrble sur IR +. Si u : IR + IR sisfi u f + g lors u f + g kτuτ, 37 kτfτ exp ksgs d s,. τ 38 Corollire : [8] Soi k : IR + IR, inégrble sur IR + e k e c foncion posiive monoone e décroissne. Si u : IR + IR + sisfi lors u c + u c exp kτuτ, 39 kτ,. 4 Lemme 3 Générlision du lemme de Gronwll-Bellmn Soi, b IR, < b, r > une foncion posiive décroissne, l > un enier, f : [, b] IR + une foncion inégrble elle que, α, β [, b], α < β, on i β α fs d s > x : [, b] IR + une foncion bornée elle qu on i x r + lors, sous l hypohèse suivne l fsxs l d s. 4 rs l fs d s > 4

6 on x l Preuve 3 : L inéglié 4 s écri x r + r. 43 rs l l fs d s fsxs l xs d s en ppliqun le lemme de Gronwll-Bellmn clssique, [6], [7], on obien l inéglié suivne x r exp fsxs l d s 44 ou d une mnière equivlene x l r l exp l fsxs l d s. 45 Muliplions l inéglié précédene pr l f, on obien l fx l l r l f exp l fsxs l d s qui peu s écrire sous l forme l fx l exp l fsxs l d s 46 l r l f 47 en uilisn l primiive de l foncion exponenielle, l inéglié 47 devien d exp l d en inégrn de à, on rouve exp l fsxs l d s l r l f 48 fsxs l d s l rs l fs d s. 49 Noons que l consne d inégrion es égle à lorsqu on choisi =. si l inéglié 4 es vérifiée, on exp l fsxs l d s l Les inégliés 45 e 5 impliquen x l r l l. 5 rs l fs d s rs l fs d s d où x l r. 5 rs l l fs d s Références [] R. Drling nd J. Newmn, On he shor behviour of porous inercion elecrodes, J. of he Elecrochemicl Sociey, vol. 44, pp , 997. [] J. Bgli, L. L. Ly, A. O. J.C. Bsle, nd O. Cois, He flux simion hrough invered non ineger idenificion models, vol. 39, pp ,. [3] C. R. Sermen, Synhèse d un isoleur d ordre non enier fondé sur une rchiecure rborescene d élémens viscoélsiques qusi-ideniques. PhD hesis, Universié Bordeux, Frnce,. [4] O. Cois, A. Ousloup, E. Bgli, nd J. L. Bgli, Non ineger model from modl decomposiion for ime domin sysem idenificion, in Proc. IFAC Symposium on Sysem Idenificion, Sn Brbr, USA,. [5] C. Desoer nd M. Vidysgr, Feedbck Sysems Inpu-Oupu Properies. New York : Elecricl Sciences. Acdemic Press, 975. [6] B. Pchpe, A noe on Gronwll-Bellmn inequliy, J. of Mhemicl Anlysis nd Applicions, vol. 44, pp , 973. [7] M. Vidysgr, Nonliner Sysems Anlysis. Englewood Cliffs, New Jersey : Prenice Hll, nd ed., 993. [8] B. Pchpe, On some generlizions of Bellmn s lemm, J. of Mhemicl Anlysis nd Applicions, vol. 5, pp. 4 5, 975. [9] N. El Almi, Anlyse e Commnde Opimle des Sysèmes Bilinéires Disribués. Applicions ux Procédés Energéiques. PhD hesis, Univesié de Perpignn, Frnce, 986. Docor d E. [] K. Oldhm nd J. Spnier, The Frcionl Clculus : Theory nd Applicion of Differeniion nd Inegrion o Arbirry Order. New York : Acdemic Press, 974. [] S. Ds, Funcionl Frcionl Clculus for Sysem Idenificion nd Conrols. Heidelberg : Springer, 8. [] I. Podlubny, Geomeric nd physicl inerpreion of frcionl inegrion nd frcionl differeniion, Frcionl Clculus & Applied Anlysis, vol. 5, pp ,. [3] A. Kilbs, H. Srivsv, nd J. Trujillo, Theory nd Applicions of Frcionl Differenil Equions, vol. 4 of Norh- Hollnd Mhemics Sudies. Amserdm : Elsevier, 6. [4] I. Podlubny, Frcionl Differenil Equions. New York : Acdemic, 999. [5] X. Wen, Z. Wu, nd J. Lu, Sbiliy nlysis of clss of nonliner frcionl-order sysems, IEEE Trns. Circ. Sys. II : Express Briefs, vol. 55, pp. 78 8, 8. [6] D. Mignon, Sbiliy resuls for frcionl differenil equions wih pplicions o conrol processing, in Proc. IEEE- IMACS Sys. Mn Cyber. Conf., Lille, Frnce, 996. [7] D. Mignon, Recen resuls in frcionl differenil sysems heory, Tech. Rep. 96C4, École Nionle Supérieure des Télécommunicions, Frnce, 996. [8] M. Fu, Pole plcemen vi sic oupu feedbck is NP-hrd, IEEE Trns. Au. Conr., vol. 49, pp , 4. [9] V. Syrmos, C. Abdllh, P. Doro, nd K. Grigoridis, Sic oupu feedbck : survey, Auomic, vol. 33, pp. 5 37, 997. [] L. El Ghoui, F. Ousry, nd M. Aï Rmi, A cone complemenry linerizion lgorihm for sic oupu-feedbck nd reled problems, IEEE Trns. Au. Conr., vol. 4, pp. 7 76, 997.

MATRICES EXERCICES CORRIGES Exercice n 1.

MATRICES EXERCICES CORRIGES Exercice n 1. MATRICES EXERCICES CORRIGES Exercice n. 6 8 4 On considère l mrice A = 0 7 3. 7 0, 8 ) Donner le form de A ) Donner l vleur de chcun des élémens 4, 3, 33 3 3) Ecrire l mrice rnsposée A de A donner son

Plus en détail

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore :

Planche 2. z ), où γ = 1 µ/σ2 ; ou encore : Plnche Exercice 1 On considère un mrché nncier de ux d'inérê r e une cion de dynmique risque neure ds = S µd + σdw, S = x Soi une brrière hue ; on considère une opion brrière Up In qui délivre l'cion S

Plus en détail

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE

c.jossin J:\TRAVAIL\AUTOM\Algèbre_de_Boole\_Algèbre_de_Boole.doc Algèbre de BOOLE cjossin J:\TRAVAIL\AUTOM\Algère_de_Boole\_Algère_de_Booledoc Algère de BOOLE SOMMAIRE : 1 Présenion, hisorique 2 Propriéés; 21 Ideniés remrqules; 22 Théorèmes de DE MORGAN 3 Représenions grphiques : 31

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Systèmes séquentiels - Fonction Mémoire

Systèmes séquentiels - Fonction Mémoire Cours - ysèes séqueniels - Foncion Méoire Pge /8 ysèes séqueniels - Foncion Méoire ) EPEENTATION PA UN CONOGAMME...3 2) OBTENTION D UN EFFET MEMOIE PA AUTO-MAINTIEN....3 2) CAIE DE CAGE DE DIFFEENTE MEMOIE...

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

LASTO Appuis élastomère

LASTO Appuis élastomère LASTO Appuis élsomère LASTO BLOCK F Appuis de déformion non-rmés Swizerlnd www.mgeb.ch Chmps d pplicion e specs imporns Chmps d pplicion LASTO BLOCK F es un ppui de déformion non-rmé en élsomère qui es

Plus en détail

Modèles de dimensionnement et de planification dans un centre d appels

Modèles de dimensionnement et de planification dans un centre d appels Modèles de dimensionnemen e de plnificion dns un cenre d ppels Rbie Ni-Abdllh To cie his version: Rbie Ni-Abdllh. Modèles de dimensionnemen e de plnificion dns un cenre d ppels. Engineering Sciences. Ecole

Plus en détail

Transmission des prix le long de la chaîne d approvisionnement en bœuf canadien et incidence de l ESB

Transmission des prix le long de la chaîne d approvisionnement en bœuf canadien et incidence de l ESB N o -60-M u clogue N o 9 ISSN 707-0376 ISBN 978--00-90388-0 Documen de recherche Série de documens de rvil sur l'griculure e le milieu rurl Trnsmission des prix le long de l chîne d pprovisionnemen en

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

Electronique numérique

Electronique numérique Lycée Louis ARMAND : 45 4 8 8 73 Bd de Srsourg : 48 73 63 5 Elecronique numérique Éude, dpion e concepion De circuis de commnde en echnologie numérique câlée Ojecif Réliser un circui de commnde en echnologie

Plus en détail

Méthode d'analyse économique et financière ***

Méthode d'analyse économique et financière *** Méhode d'analyse économique e financière *** Noion d acualisaion e indicaeurs économiques uilisables pour l analyse de projes. Dr. François PINTA CIRAD-Forê UR Bois - Kourou CHRONOLOGIE D INTERVENTION

Plus en détail

THE VOLATILITY OF THE FINANCIAL MARKET A QUANTITATIVE APPROACH

THE VOLATILITY OF THE FINANCIAL MARKET A QUANTITATIVE APPROACH Meşer Ion eodor HE VOLAILIY OF HE FINANCIAL MARKE A QUANIAIVE APPROACH Universiy of Orde, Fculy of Economics, imeser@uorde.ro Absrc: During he ls yers, he finncil mrkes hve been subjec o significn flucuions

Plus en détail

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville

Théorème de Lax Milgram Application au problème de Dirichlet pour l équation de Sturm Liouville Théorème de Lx Milgrm Appliction u problème de Dirichlet pour l éqution de Sturm Liouville Résumé du cours de MEDP Mîtrise de mthémtiques 2000 2001 2001nov18 (medp-lx-milgrm.tex) Dns ce chpitre, on se

Plus en détail

Sur la résolution numérique de problèmes de contrôle optimal à solution bang-bang via les méthodes homotopiques. Joseph Gergaud

Sur la résolution numérique de problèmes de contrôle optimal à solution bang-bang via les méthodes homotopiques. Joseph Gergaud Sur la résoluion numérique de problèmes de conrôle opimal à soluion bang-bang via les méhodes homoopiques Joseph Gergaud Universié de Toulouse INP-ENSEEIHT-IRIT (UMR CNRS 555) Mémoire d Habiliaion à Diriger

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

Réforme du Régime Belge de Pension Légale Basée sur la Longévité

Réforme du Régime Belge de Pension Légale Basée sur la Longévité éforme du égime Belge de Pension Légle Bsée sur l Longévié Pierre Devolder e Xvier Mréchl 2 ésumé. L méliorion consne de l espérnce de vie endue dns les prochines décennies ne mnquer ps d influencer l

Plus en détail

Chromatographie en Phase Gazeuse CPG.

Chromatographie en Phase Gazeuse CPG. TEISSIER Thomas MADET Nicolas Licence IUP SIAL Universié de Créeil-Paris XII COMPTE-RENDU DE TP DE CHROMATOGRAPHIE: Chromaographie en Phase Gazeuse CPG. Année universiaire 23/24 Sommaire. I OBJECTIF...3

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

Cours de Mathématique - Statistique Calcul Matriciel

Cours de Mathématique - Statistique Calcul Matriciel L - Mth Stt Cours de Mthémtique - Sttistique Clcul Mtriciel F. SEYTE : Mître de conférences HDR en sciences économiques Université de Montpellier I M. TERRZ : Professeur de sciences économiques Université

Plus en détail

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre

Document créé le 28 novembre 2013 Lien vers la dernière mise à jour de ce document Lien vers les exercices de ce chapitre Document créé le 28 novembre 2013 Lien vers l dernière mise à jour de ce document Lien vers les exercices de ce chpitre Chpitre 20 Intégrtion Sommire 20.1 Continuité uniforme.................................

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites

Le mode de fonctionnement des régimes en annuités. Secrétariat général du Conseil d orientation des retraites CONSEIL D ORIENTATION DES RETRAITES Séance plénière du 28 janvier 2009 9 h 30 «Les différens modes d acquisiion des drois à la reraie en répariion : descripion e analyse comparaive des echniques uilisées»

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

Analyse de la mortalité infantile

Analyse de la mortalité infantile Cours «Anlyse e modèles démogrphiues» pr A.Avdeev 6/2/22 Universié Pris Pnhéon Sorbonne, Insiu de démogrphie I U P Cours d nlyse démogrphiuepr Alexndre Avdeev, niveu : Mser de démogrphie Chpire 3 Anlyse

Plus en détail

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn)

Chapitre 7. Primitives et Intégrales. 7.1 Primitive d une fonction. 7.2 Propriétés des primitives. 7.3 Intégrale définie ou Intégrale de Riemannn) Chpitre 7 Primitives et Intégrles 7. Primitive d une fonction Soit f une fonction définie sur un intervlle K de R. On ppelle primitive de f, une fonction F dont l dérivée est f : F (x) = f(x). On note

Plus en détail

MATHEMATIQUES FINANCIERES

MATHEMATIQUES FINANCIERES MATHEMATIQUES FINANCIERES LES ANNUITES INTRODUCTION : Exemple 1 : Une personne veu acquérir une maison pour 60000000 DH, pour cela, elle place annuellemen au CIH une de 5000000 DH. Bu : Consiuer un capial

Plus en détail

459,6nm 450nm,750nm qui

459,6nm 450nm,750nm qui Exercice : Travaux dirigés de l opique géomérique SVT 03,. T =,533.0-5 4 s, d où la fréquence : = A.N. : = 6,53.0 Hz T c c. 0 = c.t = =. A.N. : 0 459,6nm 0, 4596m f 3. Oui, cee radiaion es visible à l

Plus en détail

De l inscription à la publication des résultats en ligne à l Université de Lomé : quels impacts sur l adoption des TIC chez les étudiants?

De l inscription à la publication des résultats en ligne à l Université de Lomé : quels impacts sur l adoption des TIC chez les étudiants? Ouagadougou, Burkina Faso, du 26 au 28 février 2015 De l inscripion à la publicaion des résulas en ligne à l Universié de Lomé : quels impacs sur l adopion des TIC chez les éudians? Halourou MAMAN, Universié

Plus en détail

CHAPITRE I : Cinématique du point matériel

CHAPITRE I : Cinématique du point matériel I. 1 CHAPITRE I : Cinémaique du poin maériel I.1 : Inroducion La plupar des objes éudiés par les physiciens son en mouvemen : depuis les paricules élémenaires elles que les élecrons, les proons e les neurons

Plus en détail

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL

Thème : Electricité Fiche 5 : Dipôle RC et dipôle RL Fiche ors Thème : Elecricié Fiche 5 : Dipôle e dipôle Plan de la fiche Définiions ègles 3 Méhodologie I - Définiions oran élecriqe : déplacemen de charges élecriqes q a mesre d débi de charges donne l

Plus en détail

Intégrales généralisées

Intégrales généralisées 3 Iégrles géérlisées Pour ce chpire, les focios cosidérées so priori défiies sur u iervlle réel I o rédui à u poi, à vleurs réelles ou complees e coiues pr morceu. L défiiio e les propriéés de l iégrle

Plus en détail

5.1 La conception d'animation

5.1 La conception d'animation ANIMATIONS Flash CS6 5.1 La concepion d'animaion A- Le concep d'animaion dans Flash Flash perme de créer des animaions. Lorsque vous animez un obje, vous gérez deux espaces : l'espaceemps dans le panneau

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques.

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques. Mesures de risque dynamiques, pricing d opions vanilles e EDSR quadraiques. Cyrille Guillaumie 1 Thibau Masrolia 2 Rappor echnique rendu en juin 213 1. European Securiies and Markes Auhoriy, cyrille.guillaumie@esma.europa.eu

Plus en détail

Etude de risque pour un portefeuille d assurance récolte

Etude de risque pour un portefeuille d assurance récolte Eude de risque pour un porefeuille d assurance récole Hervé ODJO GROUPAMA Direcion ACTUARIAT Groupe 2, Bd Malesherbes 75008 Paris Tél : 33 (0 44 56 72 46 herve.odjo@groupama.com Viviane RITZ GROUPAMA Direcion

Plus en détail

Potentiels ponctuels en dimension 1

Potentiels ponctuels en dimension 1 0 mon exe Poenies poncues en dimension 1 Séminaire du Maser 2 Recherche de Mahémaiques Universié de Rennes 1 mon exe Suje proposé par Dimiri Yafaev Lauren Paer janvier 2009 Cadre physique du probème On

Plus en détail

Plan : : Les méthodes de codage numérique en

Plan : : Les méthodes de codage numérique en Plan : : Les méhodes de codage numérique en 3.1 Inroducion 3.2 Codages binaires 3.2.1 Codage NRZ (Non Reour à Zéro) 3.2.2 Codage biphasé ou (Mancheser) 3.2.3 Codage CMI (Code Mark Inversion) 3.3 Codages

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

Le modèle de Black Scholes

Le modèle de Black Scholes Le modèle de Black Scholes Philippe Briand, Mars 3 1. Présenaion du modèle Les mahémaiciens on depuis longemps essayé de résoudre les quesions soulevées par le monde de la finance. Une des caracérisiques

Plus en détail

Solvency II, IFRS : l impact des modèles d actifs retenus

Solvency II, IFRS : l impact des modèles d actifs retenus Les normes IFRS en assurance Solvency II, IFRS : l impac des modèles d acifs reenus 31 e journée de séminaires acuariels ISA-HEC Lausanne e ISFA Lyon Pierre THÉROND pherond@winer-associes.fr 18 novembre

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX

COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX COURS GESTION FINANCIERE A COURT TERME SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX SEANCE 9 LE RISQUE DE TAUX GESTION DU RISQUE DE TAUX Obje de la séance 9: défini le risque de aux e présener

Plus en détail

Synthèse de cours (Terminale S) Calcul intégral

Synthèse de cours (Terminale S) Calcul intégral Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (

Plus en détail

2. Formules d addition.

2. Formules d addition. IX. Trigonométrie 1. Rppels 1.1 Définitions : Dns le cercle trigonométrique C ( O, 1 ), si nous fixons un point P correspondnt à un ngle d mplitude nous vons défini : = bscisse du point P sin = ordonnée

Plus en détail

Cours d électrocinétique :

Cours d électrocinétique : Universié de Franche-Comé UFR des Sciences e Techniques STARTER 005-006 Cours d élecrocinéique : Régimes coninu e ransioire Elecrocinéique en régimes coninu e ransioire 1. INTRODUCTION 5 1.1. DÉFINITIONS

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

AFRICAMPUS 2015 Ouagadougou, Burkina Faso, du 26 au 27 février 2015

AFRICAMPUS 2015 Ouagadougou, Burkina Faso, du 26 au 27 février 2015 zzz UNE APPROCHE CONCEPTUELLE DE L APPROPRIATION DES SYSTEMES D INFORMATION MOBILES (SIM) PAR LES UTILISATEURS OUEST AFRICAINS AU TRAVERS D UNE METHODE DELPHI Marc BIDAN & Béchir ABBA GONI Thème n 5 PLAN

Plus en détail

Oscillations forcées en régime sinusoïdal.

Oscillations forcées en régime sinusoïdal. Conrôle des prérequis : Oscillaions forcées en régime sinusoïdal. - a- Rappeler l expression de la période en foncion de la pulsaion b- Donner l expression de la période propre d un circui RLC série -

Plus en détail

[ Aire ] représente l aire algébrique comprise entre la courbe et l axe des temps sur un intervalle d une période. T : période en secondes (s)

[ Aire ] représente l aire algébrique comprise entre la courbe et l axe des temps sur un intervalle d une période. T : période en secondes (s) AIDE-MEMOIRE REGIME PERIODIQE Grdeur périodique : e grdeur périodique es ue grdeur qui se répèe ideiqueme à elle même e régulièreme ds le emps. Période : durée cose oée, exprimée e secode (s) qui sépre

Plus en détail

ETUDE DU COMPORTEMENT AU FEU DE PAROIS ET PLANCHERS CONSTITUES DE STRUCTURES BOIS

ETUDE DU COMPORTEMENT AU FEU DE PAROIS ET PLANCHERS CONSTITUES DE STRUCTURES BOIS ETUDE DU COMPORTEMENT AU FEU DE PAROIS ET PLANCHERS CONSTITUES DE STRUCTURES BOIS CONVENTION Y09-12 ACTION 33 sous acion 1 Levée des freins réglemenaires e normaifs à l'usage du bois dans la consrucion

Plus en détail

Recueil d'exercices de logique séquentielle

Recueil d'exercices de logique séquentielle Recueil d'exercices de logique séquenielle Les bascules: / : Bascule JK Bascule D. Expliquez commen on peu modifier une bascule JK pour obenir une bascule D. 2/ Eude d un circui D Q Q Sorie A l aide d

Plus en détail

Global Journal of Management and Business Research

Global Journal of Management and Business Research Globl Journl of Mngemen nd Business Reserch Volume 2 Issue 9 Version.0 202 Tpe: Double Blind Peer Reviewed Inernionl Reserch Journl Publisher: Globl Journls Inc. (USA) Online ISSN: 2249-4588 & Prin ISSN:

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

CARACTERISTIQUES STATIQUES D'UN SYSTEME

CARACTERISTIQUES STATIQUES D'UN SYSTEME CARACTERISTIQUES STATIQUES D'UN SYSTEE 1 SYSTEE STABLE, SYSTEE INSTABLE 1.1 Exemple 1: Soi un sysème composé d une cuve pour laquelle l écoulemen (perurbaion) es naurel au ravers d une vanne d ouverure

Plus en détail

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a

Intégration. Rappels. Définition 3. Soit I un intervalle réel et f : I E. On dit que F : I E est. f(x) f(a) x a Intégrtion Les fonctions considérées ci-dessous sont des fonctions définies sur un intervlle réel I, à vleurs réelles ou complees ou, plus générlement, à vleurs dns un espce vectoriel normé de dimension

Plus en détail

pouvant être utilisé pour représenter les nombres. Par convention, la base dans laquelle le nombre est exprimé se

pouvant être utilisé pour représenter les nombres. Par convention, la base dans laquelle le nombre est exprimé se psi--a-uomiquesysèmes ominoires- J.Kuhler V4.- CIENCE INDUTRIEE POUR INGÉNIEUR CI-8 pge /8. Auomique A. ysèmes ominoires PCII oopp ioonn II Codge de l informion. Opéreurs logiques fondmenux. Fonions logiques.

Plus en détail

Intégration de la valeur actuelle nette (VAN), de la valeur économique ajoutée (VÉA) et des flux monétaires libérés (FML)

Intégration de la valeur actuelle nette (VAN), de la valeur économique ajoutée (VÉA) et des flux monétaires libérés (FML) Inégion de l vleu cuelle nee (VAN, de l vleu économique jouée (VÉA e des flux monéies libéés ( D Jcques Sin-iee Dieceu ofesseu iulie Dépemen de Finnce e Assunce Fculé des sciences de l dminision villon

Plus en détail

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000

ANNEXES. André de Palma et Cédric Fontan. Thema Transport & Réseaux. Le 26 octobre 2000 Enquêe MADDIF : Mulimoif Adpée à l Dynmique des comporemens de Déplcemen en Ile-de-Frnce ANNEXES André de Plm e Cédric Fonn Them Trnspor & Réseux Le 26 ocobre 2000 Lere de commnde N 99MT20 DRAST Minisère

Plus en détail

Croissance et régimes d'investissement

Croissance et régimes d'investissement No 24 1 Jnvier Croissnce e régimes d'invesissemen Pierre Vill Croissnce e régimes d'invesissemen Pierre Vill No 24 1 Jnvier Croissnce e régimes d'invesissemen TBLE OF CONTENTS SUMMRY... 4 BSTRCT... 5 RÉSUMÉ...

Plus en détail

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures

EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE 1. Durée : 4 heures SESSION PSIP3 EPREUVE SPECIFIQUE - FILIERE PSI PHYSIQUE Durée : 4 heures NB : Le candida aachera la plus grande imporance à la claré, à la précision e à la concision de la rédacion Si un candida es amené

Plus en détail

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët

Université de Marseille Licence de Mathématiques, 1ere année, Analyse (limites, continuité, dérivées, intégration) T. Gallouët Université de Mrseille Licence de Mthémtiques, ere nnée, Anlyse (limites, continuité, dérivées, intégrtion) T. Gllouët July 29, 205 Tble des mtières Limites 3. Définition et propriétés......................................

Plus en détail

EPUUniversité de Tours

EPUUniversité de Tours DI 3ème nnée EPUUniversité de Tours Déprtement Informtique 007-008 ANALYSE NUMERIQUE Chpitre 3 Intégrtion numérique résumé du cours 1 Introduction Il s git d une mniére générle de déterminer, le mieux

Plus en détail

Chapitre 13 : intégration sur un intervalle quelconque : théorie

Chapitre 13 : intégration sur un intervalle quelconque : théorie Mth Spé MP Chpitre 13 : intégrtion sur un intervlle quelconque : théorie 19/1/2012 1 Cs des onctions à vleurs dns R + Déinition : onction continue pr morceux sur un intervlle : Une onction : K où (K =

Plus en détail

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little.

Files d attente (1) F. Sur - ENSMN. Introduction. 1 Introduction. Vocabulaire Caractéristiques Notations de Kendall Loi de Little. Cours de Tronc Commun Scienifique Recherche Opéraionnelle Les files d aene () Les files d aene () Frédéric Sur École des Mines de Nancy www.loria.fr/ sur/enseignemen/ro/ 5 /8 /8 Exemples de files d aene

Plus en détail

ANALYSE APPROFONDIES II MT242

ANALYSE APPROFONDIES II MT242 ALGÈBRE ET ANALYSE APPROFONDIES II MT242 Année 1998-1999 Chpitre 0. Introduction générle Dns cette introduction nous llons commenter les principles notions contenues dns le cours du second semestre, leurs

Plus en détail

ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT.

ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT. Objecifs CINÉMATIQUE DES FLUIDES ÉTUDE CINÉMATIQUE D UN FLUIDE EN ÉCOULEMENT Coprendre les différences enre l approche lagrangienne e l approche eulérienne Saoir eprier une accéléraion lagrangienne en

Plus en détail

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques

THÈSE. Pour l obtention du grade de Docteur de l Université de Paris I Panthéon-Sorbonne Discipline : Sciences Économiques Universié de Paris I Panhéon Sorbonne U.F.R. de Sciences Économiques Année 2011 Numéro aribué par la bibliohèque 2 0 1 1 P A 0 1 0 0 5 7 THÈSE Pour l obenion du grade de Doceur de l Universié de Paris

Plus en détail

UNITÉ 1: LA CINÉMATIQUE

UNITÉ 1: LA CINÉMATIQUE UNITÉ 1: L CINÉMTIQUE Cinémaique: es la branche e la physique qui raie e la escripion u mouemen objes sans référence aux forces ni aux causes régissan ce mouemen. 1.1 L VITESSE ET L VITESSE VECTORIELLE

Plus en détail

TP Mesures de la vitesse du son

TP Mesures de la vitesse du son TP Mesures de la viesse du son Bu du TP. Lors de cee séance de ravaux praiques, l éudian es amené à mesurer la viesse de propagaion du son dans l air e dans l eau. 1 Inroducion Qu es-ce qu un son? Un son

Plus en détail

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique.

Ecole Normale Supérieure de Cachan 61 avenue du président Wilson 94230 CACHAN. Concours d admission en 3 ème année Informatique. C39211 Ecole Normle Supérieure de Cchn 61 venue du président Wilson 94230 CACHAN Concours d dmission en 3 ème nnée Informtique Session 2009 INFORMATIQUE 1 Durée : 5 heures «Aucun document n est utorisé»

Plus en détail

ESTIMER LA PRÉCISION DES MESURES

ESTIMER LA PRÉCISION DES MESURES ESTIMER LA PRÉCISION DES MESURES I. Précision d'une mesure directe Une mesure directe est une mesure lue sur un ppreil de mesure. Le résultt d'une mesure directe n'est jmis connu de fçon prfitement excte.

Plus en détail

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007

Comparaison des composantes de la croissance de la productivité : Belgique, Allemagne, France et Pays-Bas 1996-2007 Bureau fédéral du Plan Avenue des Ars 47-49, 1000 Bruxelles hp://www.plan.be WORKING PAPER 18-10 Comparaison des composanes de la croissance de la producivié : Belgique, Allemagne, France e Pays-Bas 1996-2007

Plus en détail

Gestion Actif Passif et Solvabilité

Gestion Actif Passif et Solvabilité Gesion Acif Passif e Solvabilié Charles Descure & Crisiano Borean Generali France 7/9 Boulevard Haussmann 759 Paris Tel. : +33 58 38 86 84 +33 58 38 86 64 Fax. : +33 58 38 8 cdescure@generali.fr cborean@generali.fr

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Théorème de Poincaré - Formule de Green-Riemann

Théorème de Poincaré - Formule de Green-Riemann Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler

Plus en détail

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1

Exercices corrigés 9325 = 2 4662 + 1 4662 = 2 2331 + 0 2331 = 2 1165 + 1 Grenoble INP Pgor 1ère nnée Exercices corrigés Anlyse numérique NB : Les exercices corrigés ici sont les exercices proposés durnt les sénces de cours. Les corrections données sont des corrections plus

Plus en détail

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire

Etude et Conception Assistée par Ordinateur d un Système de Réfrigération par Voie Solaire Rev. Energ. Ren. : Journées de hermue (200) 25-30 Eude e Concepon sssée pr Ordneur d un Sysème de Réfrgéron pr Voe Solre M. Belrb, F. Benyrou e B. Benyoucef Lborore des Méru e Energes Renouvelbles, Fculé

Plus en détail

Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013

Exercices M1: Cinématique du point. A) Questions de compréhension. LCD Physique 2eBC 1 Ex2eMeca1_13.docx 04/11/2013 LCD Physique ebc 1 Exercices M1: Cinémaique du poin A) Quesions de compréhension 1) Un voyageur dans un rain en mouvemen à viesse consane laisse omber un obje. Esquisser l allure de la rajecoire : pour

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x.

MP1 Janson DS6 du 17 janvier 2014/2015. 1 n x. MP Jnson DS6 du 7 jnvier 24/25 Problème (CCP) Toutes les fonctions de ce problème sont à vleurs réelles. PARTE PRÉLMNARE Les résultts de cette prtie seront utilisés plusieurs fois dns le problème.. Fonction

Plus en détail

Segmentation d images couleur par fusion de régions.

Segmentation d images couleur par fusion de régions. SETIT 2005 3 rd Inernaional Conference: Sciences of Elecronic, Technologies of Informaion and Telecommunicaions March 27-31, 2005 TUNISIA Segmenaion d images couleur par fusion de régions. Mme AMEUR Zohra,

Plus en détail

CH.3 PROBLÈME DE FLOTS

CH.3 PROBLÈME DE FLOTS H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch 3 1 3.1 Le réeaux de ranpor Réeau de ranpor : graphe

Plus en détail

Production d un son par les instruments de musique

Production d un son par les instruments de musique Producion d un son par les insrumens de musique ACTIVITÉ 1 : Recherche documenaire : Les foncions d un insrumen de musique Objecif : découvrir commen les insrumens de musique acousique peuven remplir leurs

Plus en détail

fnstallationétectrique W

fnstallationétectrique W Sommire du chpire fnsllionéecrique W Vous rouverez dns ce chpire des indicions concernn l'insllion élecrique de vore crvne. Les indicions concernen en priculier:. l sécurié. l'explicion de ermes echniques

Plus en détail

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002

ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 2002 Universié Paris IX Dauphine UFR Economie Appliquée Maîrise Economie Appliquée ECONOMETRIE II - SERIES TEMPORELLES PARTIEL FEVRIER 00 Noes de Cours Auorisées, Calcularices sans Mémoire Auorisées Durée :

Plus en détail

Sommaire de la séquence 12

Sommaire de la séquence 12 Sommaire de la séquence 12 Séance 1........................................................................................................ Je prends un bon dépar.......................................................................................

Plus en détail

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION

Rappels théoriques. -TP- Modulations digitales ASK - FSK. Première partie 1 INTRODUCTION 2 IUT Blois Déparemen GTR J.M. Giraul, O. Bou Maar, D. Ceron M. Richard, P. Sevesre e M. Leberre. -TP- Modulaions digiales ASK - FSK IUT Blois Déparemen du Génie des Télécommunicaions e des Réseaux. Le

Plus en détail

Capteurs CCD (Charge Coupled Device)

Capteurs CCD (Charge Coupled Device) Capeurs CCD (Charge Coupled Device) 1 NOTION SUR LES CONDUCTEURS, SEMI-CONDUCTEURS ET ONDES LUMINEUSES... 2 1.1 STRUCTURE DE LA MATIERE... 2 1.2 LES ISOLANTS... 2 1.3 LES CONDUCTEURS... 2 1.4 LES SEMI-CONDUCTEURS...

Plus en détail

Introduction a QuickSort

Introduction a QuickSort M2 - SL lorihmes sur les séquenes en bioinformique ours 6: lorihmes probbilises de reherhe de moifs lessndr rbone Universié Pierre e Mrie urie Pln QuikSor rndomisé lorihmes rndomisés Reherhe ourmnde du

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail