Non-résonance entre les deux premières valeurs propres d un problème quasi-linéaire

Dimension: px
Commencer à balayer dès la page:

Download "Non-résonance entre les deux premières valeurs propres d un problème quasi-linéaire"

Transcription

1 Non-résonance enre les deux premières valeurs propres d un problème quasi-linéaire AREl Amrouss MMoussaoui Absrac We consider he quasilinear Dirichle boundary value problem (φ p (u )) = f(u)+h(x),u(a)=u(b)=0, where (φ p (u )) is he one dimenional p-laplacien, and prove is solvabiliy for any given h, under new assumpions on he asympoic behaviour of he poenial of he nonlineariy f, wih respec o wo firs eigenvalues of he associaed quasilinear problem Inroducion Dans ce aricle on s inéresse à l exisence des soluions du problème suivan : { (φp (u (P) )) = f(u)+h(x) dans ]a,b[ u(a) =u(b) = 0 où f : R R es une foncion coninue, h :[a, b] R es Lebesgue inégrable e φ p : R R définie par φ p (s) = s p 2 s, p> Noons par λ k (p), la k ième valeur propre du problème : { (φp (u )) = λφ p (u) dans ]a,b[ u(a) =u(b) = 0 Received by he ediors January 996 Communicaed by J Mawhin 99 Mahemaics Subjec Classificaion : 34B5-34C25 Key words and phrases : Non-résonance - Quasi-linéaire - héorie du degré Bull Belg Mah Soc 4 (997), 37 33

2 38 AREl Amrouss MMoussaoui Il es bien connu que λ k (p) = e Posons s l ± (p) = inf s ± L ± (p) = inf s ± ( ) p kπp (p ) /p avec Π p =2 b a 0 φ p (s), k ±(p) = sup s ± ds ( sp )/p p φ p (s) pf (s) s, K pf (s) ±(p) = sup p s ± s p où F (s) = f() d 0 On suppose λ (2) l ± (2) k ± (2) λ 2 (2) () Il es bien connu que, voir par exemple [D] e [M-W], dans ces condiions e si λ (2) <l ± (2) e k + (2) ou k (2) <λ 2 (2) alors pour ou h, (P) es solvable pour p =2 Récemmen, cerains aueurs on éabli divers résulas d exisence sous les condiions () e si, λ (2) <K ± (2) e L + (2) ou L (2) <λ 2 (2) Cions par exemple : Mawhin, Ward e Willem [M-W-W], Cosa-Olivera [C-O], Omari-Zanolin [O-Z] e Del Sano-Omari [D-O] Dans [N-Z], Njoku e Zanolin on prouvé unrésula d exisence en supposan : i) λ (2) <l + (2) L + (2) <λ 2 (2) (2) ii) λ (2) <K (2) k (2) <λ 2 (2) iii) sign(s) +, quand s + Le bu de ce papier es de présener un ensemble de résulas d exisence, permean de se passer de l inégalié gauche dans () e (2) c es à dire nous pouvons avoir la siuaion suivane (cf exemple 5) : inf s ± φ p (s) λ (p) sup s ± φ p (s) Théoreme Supposons que sign(s) +, quand s + λ (p) < sup s ± pf (s) s p, sup s + φ p (s) λ 2(p) e sup s φ p (s) <λ 2(p) Alors (P) adme au moins une soluion pour ou h L (a, b) Ensuie, nous nous ions à des condiions poran uniquemen sur le rappor pf (s) Noons par : s p A = u(p ) /p Π p (u) =2 0 ds ( sp p )/p, pour u [, ], p { ((s, ), (x, y)) ([λ (p),λ 2 (p)] 2 ) 2 s, x y e s /pπ p( s )/p +

3 Non-résonance enre valeurs propres d un problème quasi-linéaire 39 x /pπ p( x } y )/p = b a B = {((u, v), (w, z)) R 2 R 2 ((s, ), (x, y)) A avec (u, v) ]s, [ 2 e (w, z) ]x, y[ 2 } Théoreme 2 Supposons que ((L + (p),k + (p)), (L (p),k (p))) B e que sign(s) +, quand s + Alors(P) adme au moins une soluion pour ou h L (a, b) Dans{ le cas p = 2, l ensemble A es : A = ((s, ), (x, y)) ([λ,λ 2 ] 2 ) 2 2 x Arcsin(x /2 y )/2 = b a 2 e 2 x Arcsin(x /2 y )/2 = b a } 2 on a la représenaion suivane : λ 2 2λ λ y = x sin b a x B y = x λ λ 2 Donc si sign(s) + e (L + (2),K + (2)), (L (2),K (2)) B, alors pour ou h L,(P) es solvable La preuve de ces résulas uilise la méhode de Leray- Schauder e ceraines propriéés des oscillaions de la soluion d une équaion différenielle ordinaire 2 Lemmes echniques Considérons la famille de problèmes suivans : (P,λ) { (φp (u )) = f(λ, u)+λh(x) dans ]a, b[ (2) u(a) =u(b) = 0 où f(λ, ) es une foncion coninue quelconque pour λ [0] Posons y() =φ p (u )+λh() (22) avec H() = a h(s) ds e par suie y () = f(λ, u()) (23)

4 320 AREl Amrouss MMoussaoui Nous observons que oue soluion u()duproblème (P,λ) es de classe C avec φ p (u ) absolumen coninue Noons par u = u(x )=maxu() eu =minu() =u(x ), avec x (respx ) es le premier poin de [a, b] (resp le dernier poin ) où lemaximum (resp le minimum) de u() es aein Le lemme suivan généralise un lemme donné par Njoku e Zanolin dans [N-Z] Lemme 2 Supposons qu il exise c>0 el que f(λ, s) > 0 pour ou s c e λ [0] (24) Alors pour ou d 0 il exise R d >cel que pour chaque soluion u() de (P,λ) avec u >R d on a les propriéés suivanes : (a) il exise des paramères α +, β +, γ +, γ 2 + avec : α + <γ + x γ + 2 <β + els que u(α + )=u(β + )=c e u() >csur ]α +,β + [, y(γ + )=2M e y(γ 2 + )= 2M avec M = H (b) il exise une consane L>0, dépendan uniquemen de γ + e γ 2 +,elle que : u L<u(γ + ), u(γ 2 + ) <u, u() es croissane sur [α +,γ + ] e décroissane sur [γ 2 +,β + ] 2 Si u R d alors : u + β+ α + = b a uniformémen en λ (25) Preuve : Prenons α + =max{x [a, x ]:u(x) =c} e β + =min{x [x,b]:u(x) =c} alors u() >csur ]α +,β + [ De (22), y es sricemen décroissane sur ]α +,β + [, alors pour ou [α +,γ + ]: φ p (u )=y() λh() y(γ + ) M = M (26) donc u () > 0sur[α +,γ + ], par suie u() es sricemen croissane sur [α +,γ + ]e de même on monre que u() es sricemen décroissane sur [γ 2 +,β + ] Pour un 0 ]γ +,x [elquey( 0 )= 3 M, on monre de même que dans (25) u() es sricemen 2 croissane sur [α +, 0 ] D où u(γ + ) <u( 0 ) u e de la même manière nous prouvons que u(γ 2 + ) <u e d après (26) on monre l exisence d un L>0elque: u L<u(γ + ),u(γ 2 + ) 2 En inégran (22) sur [, α + ] pour ou [a, α + ]alors: y(α + )+ De (24) il vien : α + f(λ, u(s))χ [u(s) c] ds + y(α + )+ α + α + f(λ, u(s))χ [u(s) c] ds y() donc il exise une consane K(c) dépendane de c elle que : f(λ, u(s))χ [u(s)>c] ds = y()

5 Non-résonance enre valeurs propres d un problème quasi-linéaire 32 y(α + ) K(c) y() [a, α + ] (27) D aure par, pour ou [α +,x ]nousavons: u () p y() + M (28) e comme y es décroissane alors y(x ) y() y(α + ), d où y() y(α + ) + y(x ) y(α + ) + M [α +,x ] (29) Or y(γ + ) y(α + )eparsuiey(α + ) M En combinan (28) e (29) il vien : Puis, en inégran sur [α +,x ]ilrésule : u () (y(α + )+M) /p ( u ) c p M y(α + ) b a e en veru de (27) il sui que pour ou [a, α + ]: Pour u saisfaisan On a u () > 0, donc ( u ) c p 2M K(c) u () p u () b a ( u ) c p > 2M + K(c) b a [( u c b a )p (2M + K(c))] /p u () D où, en inégran cee dernière sur [a, α + ]nousavons: α + c a [( u c b a )p (2M + K(c))] /p e par suie, u + α+ a = 0 uniformémen en λ [0, ] De même on monre que u + b β+ = 0 uniformémen en λ [0, ] d où u + β+ α + = b a uniformémen en λ [0, ] Remarque : i) Une version duale du lemme 2 peu êre obenue en remplaçan (24) par f(λ, s) < 0 pour ou s c e λ [0] Dans cee siuaion on change le symbole + desparamères α +, β +, γ +, γ + 2 par le symbole ii) Considérons

6 322 AREl Amrouss MMoussaoui A = {u C[a, b] u() soluionde(p,λ)avecλ [0]} Si A es uniformémen borné alors il exise S, T deux consanes elles que max u() S e min u() T pour oue soluion u() de(p,λ)avecλ [0, ] Dans ou ce qui sui on va supposer que A es non uniformémen borné Lemme 22 Supposons qu il exise k,k 2 > 0 els que : k u + β+ α + <b a uniformémen en λ e k 2 u β α <b a uniformémen en λ avec b a<k + k 2,alors(P) adme au moins une soluion pour ou h L Preuve La preuve de ce lemme se fai en deux éapes : ére éape Nous monrons l exisence de deux consanes S, T > 0 elles que : max u() S e min u() T pour oue soluion u() de(pλ) avecλ [0, ] Affirmaion : il exise une consane K>0 indépendane de u() e λ elle que max u() K ou K min u() pour oue u() soluion de (Pλ) En effe, Supposons par l absurde qu il exise une suie u n () :soluionde(p,λ) pour λ = λ n elle que max u n () + e min u n (), quand n + Puisque b a<k + k 2 inf u + β+ α + + inf u β α, alors on peu passer à une sous-suie noée aussi u n () elle que : e comme il résule : b a< n + β+ n α+ n + β n α n n + β+ n α + n + βn α n b a, b a<b a Ce qui es absurde Pour achever la première éape, nous allons raier deux cas : er cas : Supposons min u() K Il exise S>0elquemaxu() S pour oue soluion u()de(p,λ)avecλ [0] ; car sinon, nous aurions pour ou S>0 l exisence d une soluion u S () de(p,λ) elle que max u S () =S, e comme inf u + β + α + <b a, alors il exisera une suie u n () soluionde(p,λ) elle que n + β + n α+ n <b a e max u n() + D aure par, min u n () K,alorsd après le lemme 2 il vien n + β+ n α + n = b a Ce qui es absurde En prenan T = K +, alors la conclusion de la première éape es saisfaie

7 Non-résonance enre valeurs propres d un problème quasi-linéaire ème cas : Supposons max u() K De la même manière que dans le er cas, on monre l exisence de deux consanes S, T > 0 elles que max u() S e min u() T pour oue soluion u()de(p,λ) 2ème éape : Nous prouvons que (P) adme au moins une soluion pour ou h L, pour ceci on va uiliser la héorie du degré deleray-schauder Considérons le problème { (φp (u (20) )) = e(x) dans ]a,b[ u(a) =u(b) = 0 où e L Dans [D-E-M], il es prouvé que (20) adme une soluion unique Soi H l opéraeur qui envoie e L en l unique soluion u() duproblème (20) Noons que H es un opéaeur borné econsidérons l opéraeur K défini comme sui : K : C([a, b]) C([a, b]) u() H(f(u()) + h()) Nous vérifions facilemen que K es un opéraeur compac Soi u() C([a, b]) elle que : u() =λk(u()) pour λ ]0, ] (E,λ) alors (E,λ) correspond au problème (Pλ) pour ou λ ]0, ] Considérons l ouver : O = {u() C([a, b]) T<u() <S [a, b]} D après la première éape, 0 / (I λk)( O)eainsi(E,λ) adme une soluion pour λ = 0 De l invariance par l homoopie de la héorie du degré de Leray-Schauder, on ire que (P) adme au moins une soluion 3 Preuve des héorèmes Dans ou ce qui sui nous allons supposer que f(λ, s) =( λ)νs + λ avec pf (s) λ [0, ] e ν es fixé elqueλ <ν< sup s ± Puisque sign(s) s p +, quand s, alors il exise une consane c > 0 elle que : sign(s)f(λ, s) > 0 pour ou s c 3 Preuve du héorème Pour la preuve du héorème nous avons besoin du lemme suivan : Lemme 3 i) b a 2 inf u + β + α + <b a uniformémen en λ [0, ]

8 324 AREl Amrouss MMoussaoui ii) b a inf u β + α <b a uniformémen en λ [0, ] 2 Preuve : Monrons i), puis ii) découle d une manière similaire ère pf (s) éape : nous allons monrer que si ν< sup s + alors s p inf u + β+ α + < Π p (ν) /p En effe, de l inégalié ν< sup s + pf (s) s p nous avons : sup(f (s) ν s + p sp )=+ (3) D où l exisence d une suie (s n ) n croissane qui end vers + elle que : (F (s) ν p sp ) (F (s n ) ν p sp n ) pour ou s [0,s n[ ou encore ν p (sp n s p ) F (s n ) F (s) pour ou s [0,s n [ (32) Muliplions l équaion (2) par u () einégrons sur [, x ]avec [α +,x ], il résule : x x x φ p (u (s)) u (s) ds = ( λ)ν φ p (u(s))u (s) ds + λ f(u(s))u (s) ds x + h(s)u (s) ds ou encore p p ( u () p ) = ( λ)ν(u p u() p )+λ(f (u ) F (u()) +λ x h(s)u (s)ds (33) En uilisan le fai que y() esdécroissane sur [, x ], φ p es un homéomorphisme croissan e u() es croissane sur [, γ + ], alors il exise deux consanes c, c 2 > 0 elles que : γ + h(s)u (s)ds c u ()+c 2 D aure par, on a y(x ) y() y(γ + )pourou [γ +,x ] e de (22) nous avons l exisence d une consane c 2 elle que : x γ + h(s)u (s) ds c 2

9 Non-résonance enre valeurs propres d un problème quasi-linéaire 325 D où ilvien: x h(s)u (s)ds c u ()+r (34) En enan compe de (32), (34) e en posan u = s n dans (33) alors après un calcul simple il vien : ν p p (sp n u() p ) (u ()+m) p où m es une consane qui dépend seulemen de h, ouencore (ν p p ((sp n u() p )) /p u ()+m pour ou [α+,γ + ] (35) D où, en inégran (35) sur [α +,γ + ]: (ν p p )/p (γ + α + ) On peu vérifier aisémen que : c/sn 0 u(γ + )/sn c/s n ds ( s p ) /p + γ + α + ds 0, quand n + ( s p ) /p D aure par, comme u(γ + ) <s n nous avons : γ + α + md (s p n u() p ) /p (36) md (s p n u() p ) /p (γ+ α+) m (s p n u(γ + quand n ) p ) /p Faisons endre n vers + dans (36), nous obenons : n + γ+ α + (p ) /p ds (ν) /p 0 ( sp ) = Π p (ν) p /p 2 De même on monre que : Mainenan nous allons monrer que : n + β+ γ 2 + Π p (ν) /p 2 n + γ+ 2 γ + =0 En effe, pour ou [γ +,γ + 2 ]nousavons: Inégrons (25) sur [γ +,γ + 2 ]ilvien: u L u() inf {f(λ, s)/s [s n L, s n ]} (γ + 2 γ + ) y(γ + ) y(γ + 2 )=4M e puisque s + f(λ, s) =+ uniformémen en λ, ilsui: n + γ+ 2 γ + =0

10 326 AREl Amrouss MMoussaoui Finalemen il résule : inf u + β+ α + <b a 2ème éape : Nous allons monrer que si sup s + Π p inf (ν ) /p u + β+ α + φ p (s) = ν alors Prenons η = ν + ε avec ε>0, on vérifie facilemen que la foncion s p ηsp F (s) escroissaneenonbornée pour s posiif assez grand, plus précisémen pour s c (où c donné plus hau) Uilisons ceci dans (33) e en veru de (3,4) nous avons pour ou [α +,γ + ]: (u ()) p p p max(ν, η)(u p u() p )+c u ()+c 2 Puis, en uilisan l inégalié de Young, nous obenons : (u () ε) p p p max(ν, η)(u p u() p )+b où b es une consane qui dépend de ε e de h, ouencore u () ( p p max(ν, η)(u p u() p )) /p + m e par le même argumen que précédemmen nous obenons que : Alors il sui : Π p inf (ν ) /p u + β+ α + pour ou ε>0 Π p inf (η) /p u + β+ α + uniformémen en λ [0, ] Comme ν λ 2 (p), il résule : b a 2 inf u + β+ α + Ce qui achève la preuve Finalemen, des lemmes 22 e 3 nous avons l exisence d une soluion du problème (P) 32 Preuve du héorème 2 Pour la preuve de ce héorème nous avons besoin du lemme suivan :

11 Non-résonance enre valeurs propres d un problème quasi-linéaire 327 Lemme 32 Pour ou (L +,K + ) [λ,ν[ ]K + (p),λ 2 ] e (L,K pf (s) ) [λ,ν[ ]K (p),λ 2 ] avec inf >νnous avons : s ± s p i) ii) (L + ) /pπ p( L+ K + (L ) /pπ p( L K ) < inf u + β+ α + <b a uniformémen en λ ) < inf u β α <b a uniformémen en λ Preuve Nous allons monrer le premier poin e le deuxième poin s obien de la même manière En noan g(λ, s) =λf (s)+ p ( λ)νsp,avecλ [0, ] e ν es fixé, (33)devien : p x p [u () p ]=p(f (λ, u ) F (λ, u())) + λp h(s)u (s)ds (37) pour ou [α +,γ + ], e nous avons L + pg(λ, s) < inf s + s p sup s + pg(λ, s) s p <K + D où pourunδ>0epours c on peu supposer L + + δ pg(λ, s) s p K + Ensuie il vien : p x p [u () p ] (K + u p (L + + δ)u() p )+λp h(s)u (s)ds (38) Par le même argumen uilisé danslapreuvedulemme3ilvien: u () p p (K+ u p (L + + δ)u()p ) /p + m En suivan les mêmes lignes que dans la preuve du lemme 3 il sui : (L + + δ) /pπ p( (L+ + δ) ) < inf u + β+ α + K + Puisque x Π x /p p (x) es croissane alors nous avons l inégalié gauche de i) pf (s) D aure par, puisque ν< sup s e en uilisan le résula du lemme 3 s nous avons p inf β + α + <b a Ce qui achève la preuve

12 328 AREl Amrouss MMoussaoui Puisque ((L + (p),k + (p)), (L (p),k (p))) B, ilexise((s, ), (x, y)) A el que (L + (p),k + (p)) ]s, [ 2 e (L (p),k (p)) ]x, y[ 2 Nous choisissons ((L +,K + ) e (L,K ) de elle sore que L + = s, L = x, K + [s, ] ek [x, y] D où nous obenons : (L + ) /pπ p( L+ K + )+ (L ) /pπ p( L K ) b a (39) Or d après les lemmes 22 e 32 on conclu que le problème (P) es solvable pour ou h L (a, b) 4 Remarques Remarque 2: Nous pouvons éablir d une manière duale à Celle du héorème le résula suivan : Théoreme 4 Supposons que sign(s) +, quand s + e λ (p) < sup s ± pf (s), sup s p s φ p (s) λ 2(p) sup s + φ p (s) <λ 2(p) Alors (P) adme au moins une soluion pour ou h L (a, b) Remarque 3: Considérons le problème suivan : (4) { (φp (u )) = f(x, u)+h(x) dans ]a, b[ u(a) = u(b) =0 où f :[a, b] R R saisfai à la condiion de Carahéodory (c es àdiref(x, ) es coninue pour pp dans [a,b], f(, s) es mesurable pour ou s R) epourchaque k>0ilexiseψ k dans L (a, b) elle que : f(x, s) ψ k (x) pour pp dans [a,b] e pour ou s <k En suivan les mêmes lignes que dans la preuve du héorème nous pouvons éablir le résula suivan : Théoreme 42 Supposons qu il exise deux foncions coninues f ± : R R elles que s ± = f ± (s) =+, f(x, s) f (s) pour ou s c 0 e pp dans [a,b], pf (s) f(x, s) f + (s) pour ou s c 0 e pp dans [a, b] e λ (p) < sup s ± s, p ou l une des deux condiions : f(x, s) sup s + φ p (s) λ f(x, s) 2(p) e sup s φ p (s) <λ 2(p) uniformémen en x [a, b]

13 Non-résonance enre valeurs propres d un problème quasi-linéaire 329 f(x, s) 2 sup s φ p (s) λ f(x, s) 2(p) e sup s + φ p (s) <λ 2(p) uniformémen en x [a, b] Alors le problème (4) es solvable pour ou h L (a, b) 5 Exemples Nous allons donner deux exemples d applicaion des héorèmes précédens dans le cas p =2 Exemple : soi f : R R une foncion définie par 2s( + sin(s)) + ln s si s = as + a si s s sin(ln( s)) s2 cos(ln( s)) +2s si s 2 s avec a = (( + sin ) sin(ln 2) cos(ln 2) 2 4 Par un calcul simple nous avons : s 2 2s cos s +sins + s 0 ln d si s F (s) = a s2 + as si s 2 s 2 sin(ln( s)) + s 2 si s Nous vérifions facilemen que 2F (s) inf s + = 0, s + = 2, sup s s 2 s + =4 s inf s = 2 s, inf 2F (s) 2F (s) s =, sup s 2 s = 3, s 2 sup s = 7 e sign(s) +, quand s + Doncd après s 2 le héorème, pour ou h L (0,π), le problème { u = f(u)+h(x) u(0) = u(π) =0 adme au moins une soluion Noons que ce exemple ne peu êre raié niparle résula de [D-O], ni par celui de [N-Z] Exemple 2: Soien a o =0,a n =2 n,b n =2 n,b 2 3n+ n =2n +,n,γ 2 3n+ ]λ,λ 2 [ soi f : R R une foncion impaire définie par s si s [0, 3/6] [b 2n+,b 2n+2 ] [b 2n+2,b 2n+3 ] e n 0 = ln a 2n+ si s = a 2n+ e n 0 (a 2n+2 ) 2 si s = a 2n+2 e n 0

14 330 AREl Amrouss MMoussaoui e en connecan les valeurs aux poins b n,a n,b n d une manière linéaire comme le décri la figure suivane : λ 2 s γs λs ln s b 2n+ b 2n+ b 2n+2 a 2n+2 b 2n+2 a 2n+ s 2 Nous avons : 2F (s) inf s ± = 0, s ± = γ, sup s s 2 s ± = s e sign(s) +, quand s + Donc d après le héorème2, leproblème (P) adme au moins une soluion Nous remercions Mr JPGOSSEZ pour diverses remarques liées à nore éude Références [C-O] DGCosa,AOliveira, Exisence of soluion for a class of semi linear ellipic problems a double resonance Boll Soc Bras Ma, 9() (988), 2-37

15 Non-résonance enre valeurs propres d un problème quasi-linéaire 33 [D-O] DDelSano e POmari, Nonresonance condiions on he poeniel for a semilinear ellepic problem, J Differenial Equaions, 08 (994) [D-E-M] MDelPino, MElguea e RManasevich, A homoopic deformaion along p of a Leray-Schauder degree resul and exisence for ( u p 2 u ) +f(, u) = 0, u(0) = u(t ) = 0, p > Preprin 989 [D] CLDolph, Nonlinear inegral equaions of he Hammerein ype, TransAmerMahSOC, 66(949), [M-W-W] JMawhin, JRWard, MWillem, Necessary and sufficien condiions for he solvabiliy of a non linear ow-poin boundary value problem, Proc Amer Mah Soc, 93, (985) [M-W] JMawhin, MWillem, Criical poins of convex perurbaions of some indefinie quadraic forms and semilinear boundary value problems a resonance, Ann Ins Herni Poincaré 6(986), [N-Z] FI Njoku e FZanolin, On he solvabiliy of a non linear Two-Poin BVP beween he firs wo eigenvalues, Differenial and Inegral Equaions, 3(990), [O-Z] P Omari, FZanolin, Nonresonance condiions on he poeniel for a second order periodic boundary value problems, (992) AR El Amrouss e MMoussaoui Universié Mohammed I Faculé des sciences Déparemen de mahémaiques e informaique Oujda, Maroc

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012

Théorème de Cauchy-Lipschitz et applications. Lefeuvre thomas & Ginguené franck 30 mars 2012 Théorème de Cauchy-Lipschiz e applicaions Lefeuvre homas & Ginguené franck 30 mars 01 1 Table des maières 1 Théorème du poin fixe 3 1.1 Énoncé.......................................... 3 1. Démonsraion.....................................

Plus en détail

Présentation groupe de travail

Présentation groupe de travail Présenaion groupe de ravail Sofiane Saadane jeudi 23 mai 2013 Résumé L aricle sur lequel on ravaille [LP09] présene un problème de bandi à deux bras comporan une pénalié. Nous commencerons par présener

Plus en détail

Exemples de résolutions d équations différentielles

Exemples de résolutions d équations différentielles Exemples de résoluions d équaions différenielles Table des maières 1 Définiions 1 Sans second membre 1.1 Exemple.................................................. 1 3 Avec second membre 3.1 Exemple..................................................

Plus en détail

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon

Solutions auto-similaires et espaces de données initiales. 2 ), l équation de Schrödinger. Introduction. Fabrice Planchon Soluions auo-similaires e espaces de données iniiales pour l équaion de Schrödinger Fabrice Planchon Résumé. On démonre que pour des peies données iniiales dans Ḃ 1, (R3 ), l équaion de Schrödinger non

Plus en détail

TD/TP : Taux d un emprunt (méthode de Newton)

TD/TP : Taux d un emprunt (méthode de Newton) TD/TP : Taux d un emprun (méhode de Newon) 1 On s inéresse à des calculs relaifs à des remboursemens d empruns 1. On noera C 0 la somme emprunée, M la somme remboursée chaque mois (mensualié), le aux mensuel

Plus en détail

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 +

Séries et intégrales généralisées - Approfondissement (2M261) Janvier-Juin 2015. Devoir Maison n o 1. ln 1 sh 1 sh t t sin(1/t 2 ) 1 + Universié Pierre e Marie Curie Licence de Mahéaiques Séries e inégrales généralisées - Approfondisseen (2M26) Janvier-Juin 25. Devoir Maison n o Exercice : Convergence e calcul d inégrales. Éudier la naure

Plus en détail

TD 20-21 : Modèles de marchés - Mouvement brownien

TD 20-21 : Modèles de marchés - Mouvement brownien Universié Paris VI Maser : Modèles sochasiques, applicaions à la finance (MM065) TD 20-2 : Modèles de marchés - Mouvemen brownien. Taux de change. Soi (Ω, P(Ω), P) un espace probabilisé fini non redondan

Plus en détail

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre.

2. Quelle est la valeur de la prime de l option américaine correspondante? Utilisez pour cela la technique dite de remontée de l arbre. 1 Examen. 1.1 Prime d une opion sur un fuure On considère une opion à 85 jours sur un fuure de nominal 18 francs, e don le prix d exercice es 175 francs. Le aux d inérê (coninu) du marché monéaire es 6%

Plus en détail

Troisième semaine de travail : Transformée de Fourier - Convolution

Troisième semaine de travail : Transformée de Fourier - Convolution Première Année à Disance - Module Analyse de Fourier - Transformée de Fourier Troisième semaine de ravail : Transformée de Fourier - Convoluion Exercices Type enièremen corrigés avec remarques e méhodologie.

Plus en détail

Corrigé CNC MP 2003, Math 1

Corrigé CNC MP 2003, Math 1 Corrigé CNC MP 3, Mah Parie I. a La foncion e es coninue sur ], α] prolongeable par coninuié en, elle es donc inégrable sur ],α] b La foncion e e es coninue sur [,+ [ e. + donc elle es inégrable sur [,

Plus en détail

Fonction dont la variable est borne d intégration

Fonction dont la variable est borne d intégration [hp://mp.cpgedpydelome.fr] édié le 1 jille 14 Enoncés 1 Foncion don la variable es borne d inégraion Eercice 1 [ 1987 ] [correcion] Soi f : R R ne foncion conine. Jsifier qe les foncions g : R R sivanes

Plus en détail

Intégrale fonction des bornes

Intégrale fonction des bornes [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Inégrale foncion des bornes Eercice [ 87 ] [correcion] On pourra à ou momen s aider du logiciel de calcul formel. a Résoudre sur l inervalle I = ],

Plus en détail

Texte Ruine d une compagnie d assurance

Texte Ruine d une compagnie d assurance Page n 1. Texe Ruine d une compagnie d assurance Une nouvelle compagnie d assurance veu enrer sur le marché. Elle souhaie évaluer sa probabilié de faillie en foncion du capial iniial invesi. On suppose

Plus en détail

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques.

Mesures de risque dynamiques, pricing d options vanilles et EDSR quadratiques. Mesures de risque dynamiques, pricing d opions vanilles e EDSR quadraiques. Cyrille Guillaumie 1 Thibau Masrolia 2 Rappor echnique rendu en juin 213 1. European Securiies and Markes Auhoriy, cyrille.guillaumie@esma.europa.eu

Plus en détail

Équations différentielles.

Équations différentielles. IS BTP, 2 année NNÉE UNIVERSITIRE 205-206 CONTRÔLE CONTINU Équaions différenielles. Durée : h30 Les calcularices son auorisées. Tous les exercices son indépendans. Il sera enu compe de la rédacion e de

Plus en détail

Réponse indicielle et impulsionnelle d un système linéaire

Réponse indicielle et impulsionnelle d un système linéaire PSI Brizeux Ch. E2: Réponse indicielle e impulsionnelle d un sysème linéaire 18 CHAPITRE E2 Réponse indicielle e impulsionnelle d un sysème linéaire Nous connaissons ou l inérê de l éude de la réponse

Plus en détail

Chapitre 4: Les modèles linéaires

Chapitre 4: Les modèles linéaires Chapire 4: Les modèles linéaires. Inroducion: Dans ce chapire on va voir successivemen les modèles linéaires saionnaires: auoregressifs (AR), de moyennes mobiles (MA) e mixes (ARMA) en pariculier. Finalemen,

Plus en détail

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t)

Concours Ecole Nationale de la Statistique et de l Analyse Informatique. Deuxième composition de Mathématiques PARTIE I. et comme la fonction t f(t) SESSION Concours Ecole Naionale de la Saisique e de l Analyse Informaique Deuième composiion de Mahémaiques PARTIE I. Soien f E e >. La foncion f( es coninue sur ], [ en an que quoien de foncions coninues

Plus en détail

Exercices d intégration et d analyse fonctionnelle

Exercices d intégration et d analyse fonctionnelle Exercices d inégraion e d analyse foncionnelle Agrégaion 29-2 Exercice : Monrez que si f : IR + IR es uniformémen coninue e que f() d converge alors f a pour limie en +. Donnez un exemple de foncion g

Plus en détail

Solutions auto-semblables pour des modèles avec conductivité thermique

Solutions auto-semblables pour des modèles avec conductivité thermique Soluions auo-semblables pour des modèles avec conducivié hermique Séphane DELLACHERIE e Olivier LAFITTE CRM-327 5 décembre 25 Cenre de Recherches Mahémaiques, Universié de Monréal, Case posale 628, Succursale

Plus en détail

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt

CCP PSI Math (t) = t sin(t) 0 sur R + cos(t) t t > 0; 0 1 Z +1. t 2 dt converge. Z. 1 cos(t) t 2 e xt 1 cos(t) t 2 e xt CCP PSI Mah 9. Eude de la foncion '... Pour > on a cos() e > donc cos(). d es C sur R e d () = sin(). d es donc croissane sur R on a donc pour : d() d() = Soi cos(). On divise par > 8 > ; cos() Remarque

Plus en détail

Les circuits électriques en régime transitoire

Les circuits électriques en régime transitoire Les circuis élecriques en régime ransioire 1 Inroducion 1.1 Définiions 1.1.1 égime saionnaire Un régime saionnaire es caracérisé par des grandeurs indépendanes du emps. Un circui en couran coninu es donc

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ

CONCOURS COMMUN POLYTECHNIQUE (ENSI) FILIERE PSI MATHEMATIQUES 1. Partie I : Étude de la fonction ϕ SESSION 9 CONCOURS COMMUN POLYTECHNIQUE ENSI FILIERE PSI MATHEMATIQUES 1 I1/ Éude des foncions d e δ Parie I : Éude de la foncion ϕ I11/ La foncion d es dérivable sur, + e pour, +, d = 1 sin La foncion

Plus en détail

arxiv:1003.6004v1 [math.sg] 31 Mar 2010

arxiv:1003.6004v1 [math.sg] 31 Mar 2010 OPTIMALITÉ SYSTOLIQUE INFINITÉSIMALE DE L OSCILLATEUR HARMONIQUE arxiv:1003.6004v1 [mah.sg] 31 Mar 2010 J.C. ÁLVAREZ PAIVA AND F. BALACHEFF Résumé. Nous éudions les aspecs infiniésimaux du problème suivan.

Plus en détail

Calcul Stochastique 2 Annie Millet

Calcul Stochastique 2 Annie Millet M - Mahémaiques Appliquées à l Économie e à la Finance Universié Paris 1 Spécialié : Modélisaion e Méhodes Mahémaiques en Économie e Finance Calcul Sochasique Annie Mille 15 14 13 1 11 1 9 8 7 6 5 4 3

Plus en détail

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction.

1 Corrections d exercices sur la feuille numéro 2 : différentielle d une fonction. Universié Claude Bernard Lyon I Licence roisième année : calcul différeniel Année 2004-2005 Quelques correcions. 1 Correcions d exercices sur la feuille numéro 2 : différenielle d une foncion. Correcion

Plus en détail

CONCOURS COMMUN 2002

CONCOURS COMMUN 2002 CONCOURS COMMUN DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) Problème d analyse.. f es coninue sur R en an que quoien de foncions coninues sur R don le dénominaeur

Plus en détail

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également.

6. Étude de courbes paramétrées (C) : Ces équations sont appelées équations paramétriques de (C). { x = x t. On note parfois également. ÉTUDE DE COURBES PARAMÉTRÉES 39 6. Éude de courbes paramérées 6.. Définiions Remarques La courbe (C) n es pas nécessairemen le graphe d une foncion ; c es pourquoi on parle de courbe paramérée e non pas

Plus en détail

Sur la résolution numérique de problèmes de contrôle optimal à solution bang-bang via les méthodes homotopiques. Joseph Gergaud

Sur la résolution numérique de problèmes de contrôle optimal à solution bang-bang via les méthodes homotopiques. Joseph Gergaud Sur la résoluion numérique de problèmes de conrôle opimal à soluion bang-bang via les méhodes homoopiques Joseph Gergaud Universié de Toulouse INP-ENSEEIHT-IRIT (UMR CNRS 555) Mémoire d Habiliaion à Diriger

Plus en détail

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC

Petit dictionnaire physique-chimie/maths des équations différentielles. Tension aux bornes du condensateur dans un circuit RC Pei dicionnaire physique-chimie/mahs des équaions différenielles On compare les différenes manières de présener la résoluion d une équaion différenielle dans les différenes disciplines. Le bu de cee fiche

Plus en détail

Traitement du Signal Déterministe

Traitement du Signal Déterministe Cours e ravaux Dirigés de raiemen du Signal Déerminise Benoî Decoux (benoi.decoux@wanadoo.fr) - s - ère parie : "Noions de base e éudes emporelles" Bases du raiemen de signal Calculer l ampliude de la

Plus en détail

BTS Mécanique et Automatismes Industriels. Fiabilité

BTS Mécanique et Automatismes Industriels. Fiabilité BTS Mécanique e Auomaismes Indusriels Fiabilié Lcée Louis Armand, Poiiers, Année scolaire 23 24 . Premières noions de fiabilié Fiabilié Dans ou ce paragraphe, nous nous inéressons à un disposiif choisi

Plus en détail

Groupe de travail master MASEF-Université Paris-Dauphine Optimisation d une fonction d utilité sous contraintes de risques

Groupe de travail master MASEF-Université Paris-Dauphine Optimisation d une fonction d utilité sous contraintes de risques Groupe de ravail maser MASEF-Universié Paris-Dauphine Opimisaion d une foncion d uilié sous conraines de risques Benedea Baroli Thibau Masrolia Eienne Pillin sous la direcion d Anhony Réveillac 13 sepembre

Plus en détail

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ;

MATHÉMATIQUES II. et x désigne alors la matrice à 1 ligne et n colonnes : x = [ x 1 x 2 x n ] ; MATHÉMATIQUES II Dans ce problème, nous éudions les propriéés de ceraines classes de marices carrées à coefficiens réels e cerains sysèmes linéaires de la forme Ax = b d inconnue x IR n, A éan une marice

Plus en détail

Corrigé du devoir surveillé de Mathématiques

Corrigé du devoir surveillé de Mathématiques Corrigé du devoir surveillé de Mahémaiques Eercice Soien a e b deu réels avec < a < b.. La foncion h : e a e b es coninue e posiive sur ], + [ a < b e a > e b. Au voisinage de, on a : h e a e b Ce calcul

Plus en détail

CONCOURS COMMUN 2007

CONCOURS COMMUN 2007 CONCOURS COMMUN 27 DES ECOLES DES MINES D ALBI, ALES, DOUAI, NANTES Epreuve de Mahémaiques (oues filières) PREMIER PROBLÈME Parie A - Généraliés. La foncion es de classe C sur R + àvaleursdansr e la foncion

Plus en détail

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique

INSTRUMENTATION ELECTRIQUE OSCILLOSCOPE NUMERIQUE GENERATEUR BASSE FREQUENCE UTILISE EN SINUSOIDAL Etude théorique 1 INSUMENAION ELEIQUE OSILLOSOPE NUMEIQUE GENEAEU BASSE FEQUENE UILISE EN SINUSOIDAL Eude héorique 1 Noions élémenaires 1.1 Masse e erre : Lorsqu on mesure une ension, on mesure en fai une différence de

Plus en détail

TRAITEMENT DU SIGNAL

TRAITEMENT DU SIGNAL Spé y -4 Devoir n TAITMNT D SIGNAL Parie I OMPOTMNT DYNAMIQ D N LAM D QATZ On considère une lame de quarz, cylindrique, de secion S consane, d axe Ox (de veceur uniaire r u X ), don les deux faces e en

Plus en détail

Potentiels ponctuels en dimension 1

Potentiels ponctuels en dimension 1 0 mon exe Poenies poncues en dimension 1 Séminaire du Maser 2 Recherche de Mahémaiques Universié de Rennes 1 mon exe Suje proposé par Dimiri Yafaev Lauren Paer janvier 2009 Cadre physique du probème On

Plus en détail

Correction Exercices Chapitre 10 - Intégrales impropres

Correction Exercices Chapitre 10 - Intégrales impropres Correcion Eercices Chapire - Inégrales impropres. Déerminer si les inégrales suivanes son convergenes, e le cas échéan, calculer leur valeur :.. 3. 4. e d. d ( + ) d e d 5. 6. 7. 8. d 3 d e d d +. Convergence

Plus en détail

Épreuve de Mathématiques

Épreuve de Mathématiques Épreuve de Mahémaiques La claré des raisonnemens e la qualié de la rédacion inerviendron pour une par imporane dans l appréciaion des copies. L usage d un insrumen de calcul e du formulaire officiel de

Plus en détail

F 2 = - T p K 0. ... F T = - T p K 0 - K 0

F 2 = - T p K 0. ... F T = - T p K 0 - K 0 Correcion de l exercice 2 de l assisana pré-quiz final du cours Gesion financière : «chéancier e aux de renabilié inerne d empruns à long erme» Quesion : rappeler la formule donnan les flux à chaque échéance

Plus en détail

2nde FICHE n 8 Utiliser les différents types de pourcentage

2nde FICHE n 8 Utiliser les différents types de pourcentage 2nde FICHE n 8 Uiliser les différens ypes de pourcenage Lorsque l on éudie un problème avec des pourcenages, il convien d abord de se poser la quesion du ype de pourcenage uilisé dans ce problème : le

Plus en détail

Procédé thermocyclique de régulation de température

Procédé thermocyclique de régulation de température - 1 - Innovaion echnologique dans le domaine de la régulaion de empéraure, le procédé hermocyclique foncionne selon un principe unique en son genre qui n a rien en commun avec les régulaions par hermosa

Plus en détail

Détermination de la primitive d une fonction trigonométrique à l aide de la V200

Détermination de la primitive d une fonction trigonométrique à l aide de la V200 Déerminaion de la primiive d une foncion rigonomérique à l aide de la V00. Formules élémenaires Dans les formules suivanes, u u ( ) es une foncion de. sin cos k u'sinu cosu cos sin k u'cosu sinu k k sin

Plus en détail

La rentabilité des investissements

La rentabilité des investissements La renabilié des invesissemens Inroducion Difficulé d évaluer des invesissemens TI : problème de l idenificaion des bénéfices, des coûs (absence de saisiques empiriques) problème des bénéfices Inangibles

Plus en détail

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE :

TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : TABLEAU DES REPONSES AU TEST DE MATH/PHYSIQUE : Afin de vous noer : - si vous avez oues les bonnes réponses à un QCM, vous avez poin, - si vous avez une erreur par eeple, une réponse que vous n avez pas

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. b) Etablir. 1 t. 2 dt. t dt. b) Etablir hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Calculs d inégrales Eercice 666 ] correcion] Calculer les inégrales suivanes : a d + + b e e e + e + ln + c ln + b Eablir + 4 + 4 c En facorisan + 4

Plus en détail

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt

CORRIGE DU SUJET 1. x x3 6 + o(x3 ) 1 6 x+o(x) ϕ (x) = 1 x 2 + cos(x) sin 2 (x) 3 x2 + o(x 2 ) = 1. x ) f (t)cos(nt)dt CORRIGE DU SUJET Problème. On écri le développemen limié à l ordre 3 de sin en : donc ϕx) x x x x sinx) x x x3 6 + ox3 ) 6 + ox ) ) x x x ) + x 6 + ox ) Ainsi ϕx) x 6 x+ox) La foncion ϕ possède un développemen

Plus en détail

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE

DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE UNIVERSITE DE TUNIS Faculé des sciences économiques e de gesion de Tunis MODELE DE PROJECTION ET DE SIMULATION DES REGIMES DE SECURITE SOCIALE Ezzeddine MBAREK 2010 1 INTRODUCTION Le modèle que je propose

Plus en détail

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance

MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Internationale, Monnaie, Finance UNIVERSITE DE PARIS-DAUPHINE Février 2004 MAITRISE ECONOMIE APPLIQUEE ECONOMETRIE II : EXAMEN TERMINAL (durée 2 h) Filières : Economie Inernaionale, Monnaie, Finance Noes de Cours Auorisées, seules les

Plus en détail

Chapitre 15 c Circuits RL et RC

Chapitre 15 c Circuits RL et RC Chapire 15 c Circuis L e C en régime impulsionnel Sommaire Circuis en régime impulsionnel Signal impulsionnel Mesure d'un circui C en régime impulsionnel Applicaion praique Eude du circui C en régime impulsionnel

Plus en détail

CHAPITRE I : TRANSFORMÉES DE LAPLACE

CHAPITRE I : TRANSFORMÉES DE LAPLACE CHAPITRE I : TRANSFORMÉES DE LAPLACE A. FONCTIONS CAUSALES Définiion : Une foncion f, définie sur IR es causale si : Pour ou

Plus en détail

Caractéristiques des signaux électriques

Caractéristiques des signaux électriques Sie Inerne : www.gecif.ne Discipline : Génie Elecrique Caracérisiques des signaux élecriques Sommaire I Définiion d un signal analogique page 1 II Caracérisiques d un signal analogique page 2 II 1 Forme

Plus en détail

EQUATIONS DIFFERENTIELLES

EQUATIONS DIFFERENTIELLES EQUATIONS DIFFERENTIELLES I DEFINITIONS (n) Une équaion différenielle es une équaion de la forme F(,,,,, ) 0 où es une foncion inconnue de e n fois dérivable n es l ordre de l équaion II EQUATIONS DU PREMIER

Plus en détail

Cinétique de l oxydation du sulfite de cuivre

Cinétique de l oxydation du sulfite de cuivre Cinéique de l oxydaion du sulfie de cuivre Grégory Vial 11 avril 2006 Résumé On s inéresse à l oxydaion du sulfie de cuivre : il s agi d une réacion d auocaalyse don l éude cinéique condui à un problème

Plus en détail

Corrigé CCP 1 PSI 2014

Corrigé CCP 1 PSI 2014 Parie Corrigé CCP PSI 4 Dans oues les quesions géomériques, le plan es muni d'un repère orhonormé ( O, i, ) j La courbe représenaive de f es le segmen [OA], où A es de coordonnées (, ) : sa longueur es

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Courbes paramérées Exercices de Jean-Louis Rouge. Rerouver aussi cee fiche sur www.mahs-france.fr * rès facile ** facile *** difficulé moyenne **** difficile ***** rès difficile I : Inconournable

Plus en détail

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2)

Corrigé du problème. e ikt. 1 eint. sin(n + 1/2)t sin(t/2) + sin(t/2) 2 sin(t/2) Parie I. 1. a) Soi / πz. On a alors : Corrigé du problème S n () + ic n () = 1 + n Si πz, S n () + ic n () = n + 1. b) Ainsi, si / πz : = 1 e ik 1 ein + ei = 1 sin(n/) + 1 e i ei(n+1)/ sin(/) S n () =

Plus en détail

1 Le hacheur série. 30 mars 2005

1 Le hacheur série. 30 mars 2005 e hacheur série A. Campo 30 mars 2005 1 e hacheur série 1.1 Généraliés e hacheur es un disposiif permean d obenir une ension coninue de valeur moyenne réglable à parir d

Plus en détail

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux

ECO434, Ecole polytechnique, 2e année PC 5 Flux de Capitaux Internationaux et Déséquilibres Mondiaux ECO434, Ecole polyechnique, 2e année PC 5 Flux de Capiaux Inernaionaux e Déséquilibres Mondiaux Exercice 1 : Flux de capiaux dans le modèle de croissance néoclassique Le modèle es en emps coninu. On considère

Plus en détail

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE

Chapitre III DÉRIVÉE D'UNE FONCTION COMPOSÉE Chapire III DÉRIVÉE DUNE FONCTION COMPOSÉE. RÈGLES DE DÉRIVATION DUNE FONCTION COMPOSÉE..... DÉFINITION DUNE FONCTION COMPOSÉE..... LOI DE DÉRIVATION DUNE FONCTION COMPOSÉE....3. DÉRIVATION DES FONCTIONS

Plus en détail

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices

Université Paris Nord-Institut Galilée Année 2015/2016. Exercices Universié Paris Nord-Insiu Galilée Année 5/6 Mahémaiques pour l'ingénieur. Exercices Suies adjacenes e récurrenes, résoluion d'équaions non linéaires Exercice. Déerminer si les suies suivanes convergen

Plus en détail

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1

KF.book Page 29 Vendredi, 1. août :21 12 Chapitre 1 Mécanique 1 Chapire Mécanique Exercice 0 0 Risque de collision au freinage. Une voiure roule à une viesse consane en ligne droie. Au emps = 0, le conduceur aperçoi un obsacle, mais il ne commence à freiner (avec une

Plus en détail

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan

Fiche de Biostatistique. Exercices d'algèbre. Solutions proposées par C. BAJARD et S. CHARLES. Plan Fiche de Biosaisique Exercices d'algèbre Soluions proposées par C. BAJARD e S. CHARLES Plan INDÉPENDANCE, GÉNÉRATEUR, DIMENSION, BASES... MÉTHODE DU PIVOT...4 PRODUITS SCALAIRES... 6 ORTHONORMALISATION...

Plus en détail

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0.

Page # $ %& +',- VAN = 30; F 2 = 50; F 3 = 140. = -200 ; F 1. Avec r = 3% => VAN = 4,38 > 0. Avec r = 5% => VAN = -5,14 < 0. # $ %& 1. La VAN. Les aures crières 3. Exemple. Choix d invesissemen à long erme 5. Exercices!" '* '( Un proje ne sera mis en œuvre que si sa valeur acuelle nee ou VAN, définie comme la somme acualisée

Plus en détail

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES

IRM fonctionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES IRM foncionnelle : QUELQUES IDEES SUR LE TRAITEMENT STATISTIQUE DES DONNEES Le principe général d'une éude IRMf consise à analyser le signal BOLD (Blood Oxygen Level Dependen) qui radui l'augmenaion d'afflux

Plus en détail

UN AUTRE PARADOXE : équation horaire du mouvement d un point

UN AUTRE PARADOXE : équation horaire du mouvement d un point UN AUTRE PARADOXE : équaion horaire du mouvemen d un poin. - INTRODUCTION La relaivié resreine es l obje de nombreu paradoes comme on a pu le consaer dans d aures ees proposés dans ce dossier. La majorié

Plus en détail

VIII Les gaz, partie F

VIII Les gaz, partie F VIII Les gaz, parie F Exercices de niveau A Le premier exercice de niveau A s appuie sur une analyse dimensionnelle vue dans le cours pour esimer une durée de diffusion. Le deuxième aide à apprendre l

Plus en détail

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1.

- PROBABILITE : c est le rapport (Nbr de cas favorable/nbr de cas possible). C est un nombre compris entre 0 et 1. Les premières consaaions sur l inapiude des produis indusriels à assurer les foncions qu ils éaien censés remplir pendan un emps suffisan remonen à la seconde guerre mondiale. En France cee prise de conscience

Plus en détail

Exercices sur les équations diérentielles : corrigé

Exercices sur les équations diérentielles : corrigé Eercices sur les équaions diérenielles : corrigé PCSI Lycée Paseur ocobre 7 Eercice. On résou l'équaion sur R. L'équaion homogène associée y y = a pour soluions les foncions de le forme y h () = Ke, avec

Plus en détail

Exercices de baccalauréat série S sur la loi exponentielle

Exercices de baccalauréat série S sur la loi exponentielle Eercices de baccalauréa série S sur la loi eponenielle (page de l énoncé/page du corrigé) La compagnie d'auocars (Bac série S, cenres érangers, 23) (2/) Durée de vie d'un composan élecronique (Bac série

Plus en détail

Fonction définie par une intégrale

Fonction définie par une intégrale [hp://mp.cpgedupuydelome.fr] édié le juille 4 Enoncés Foncion définie par une inégrale Eude de foncions définies par une inégrale Exercice [ 53 ] [correcion] Soi f : x d + x 3 + 3 a) Monrer que f es définie

Plus en détail

Un modèle de propagation d un nuage de fumée

Un modèle de propagation d un nuage de fumée Un modèle de propagaion d un nuage de fumée Gabriel Caloz & Grégory Vial 9 février 26 Résumé L obe de ce documen es de présener à l aide d ouils élémenaires le problème de ranspor dans R. Une modélisaion

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé numérisé par le CRDP de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Campagne 2013 Ce fichier numérique ne peu êre reprodui, représené, adapé ou radui

Plus en détail

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel.

Ce document a été mis en ligne par le Canopé de l académie de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Ce documen a éé mis en ligne par le Canopé de l académie de Bordeaux pour la Base Naionale des Sujes d Examens de l enseignemen professionnel. Base Naionale des Sujes d'examens de l'enseignemen professionnel

Plus en détail

VA(1+r) = C 1. VA = C 1 v 1

VA(1+r) = C 1. VA = C 1 v 1 Universié Libre de Bruxelles Solvay Business School La valeur acuelle André Farber Novembre 2005. Inroducion Supposons d abord que le emps soi limié à une période e que les cash flows fuurs (les flux monéaires)

Plus en détail

La définition naturelle de la transformée de Fourier d une distribution T, devrait

La définition naturelle de la transformée de Fourier d une distribution T, devrait Chapire 12 Transformée de Fourier des disribuions 12.1 Inroducion La définiion naurelle de la ransformée de Fourier d une disribuion T, devrai êre ϕ D, < F(T ), ϕ >= < T, F(ϕ) > Mais il y a un problème

Plus en détail

Recueil d exercices d analyse pour une remise à niveau

Recueil d exercices d analyse pour une remise à niveau Recueil d exercices d analyse pour une remise à niveau Suies e Séries numériques Exercice (Cesaro e sinus iéré). Théorème de Cesaro Soi (u n ) n une suie réelle convergene de limie l. Monrer que la suie

Plus en détail

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant :

L bien comment traduire cette définition informelle dans le cas d une variable aléatoire discrète X en posant : Chapire 7 Espérance 7. Inroducion espérance d une variable aléaoire es, lorsqu elle exise, la moyenne des valeurs de cee variable, pondérées par leurs probabiliés de réalisaion. On voi L bien commen raduire

Plus en détail

Le modèle de Black Scholes

Le modèle de Black Scholes Le modèle de Black Scholes Philippe Briand, Mars 3 1. Présenaion du modèle Les mahémaiciens on depuis longemps essayé de résoudre les quesions soulevées par le monde de la finance. Une des caracérisiques

Plus en détail

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques

CONCOURS COMMUNS POLYTECHNIQUES 2003 Corrigé de la seconde épreuve de mathématiques CONCOURS COMMUNS POLYTECHNIQUES 00 Corrigé de la seconde épreuve de mahémaiques 1. On obien direcemen : H = 6 5 5 5 6 5 = I + 5 J avec J = 1 1 1 1 1 1. 5 5 6 1 1 1 J e H son symériques à coefficiens réels,

Plus en détail

d'espace et eet régularisant.

d'espace et eet régularisant. Lois de conservaion scalaires : éude de soluions pariculières en dimension 1 d'espace e ee régularisan. ************** Mémoire de mahémaiques de Pierre Caselli, sous la direcion de Séphane Junca **************

Plus en détail

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à

Intégration et probabilités 2012-2013. TD3 Intégration, théorèmes de convergence Corrigé. 1 Petites questions. n hésitez pas à m envoyer un mail à Intégration et probabilités 212-213 TD3 Intégration, théorèmes de convergence Corrigé xercice ayant été voué à être préparé xercice 1 (Mesure image). Soient (, A, µ) un espace mesuré, (F, B) un espace

Plus en détail

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux

IUT GEII Nîmes. DUT 2 - Alternance Représentation fréquentielle - Séries de Fourier. Yaël Thiaux 1 héorie DU2-Al IU GEII Nîmes DU 2 - Alernance Représenaion fréquenielle - Séries de Fourier Yaël hiaux yael.hiaux@iu-nimes.fr Janvier 2015 2 DU2-Al héorie 1 héorie 2 3 3 DU2-Al Une somme de sinusoïdes?

Plus en détail

ÉLECTROCINÉTIQUE CHAP 00

ÉLECTROCINÉTIQUE CHAP 00 ÉLECTROCINÉTIQUE CHAP 00 Filrage d'une ension riangulaire par un passe-bande On considère un filre de foncion de ransfer : f 0 =2kHz e de coefficien de qualié Q=0.. Déerminer la naure du filre 2. Tracer

Plus en détail

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1.

TD 4 : correction. L3 Intégration Exercice 1. Fonctions presque nulles. On considère la suite d ensembles mesurables A n = x R f(x) 1. L3 Inégraion 1 212-213 TD 4 : correcion Eercice 1. Foncions presque nulles } On considère la suie d ensembles mesurables A n = Rf( 1. n Par hypohèse, ils son ous de mesure nulle : = f dλ 1 A n n µ(a n.

Plus en détail

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET

Finance 1 Université d Evry Val d Essonne. Séance 2. Philippe PRIAULET Finance 1 Universié d Evry Val d Essonne éance 2 Philippe PRIAULET Plan du cours Les opions Définiion e Caracérisiques Terminologie, convenion e coaion Les différens payoffs Le levier implicie Exemple

Plus en détail

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3.

Exercice 7. Soitf : R R + croissante telle que. Montrer que. Exercice 8. b. lim(f(x 0 +h) f(x 0 h)) = 0. lim. Exercice 3. Mahémaiques 05-06 Colle n o 5 Limies Lcée Charlemagne PCSI Eercice Eercice 5 Soi(u n) n 0 R N elle que les suies (u n) n 0, (u n+) n 0 e (u 3n) n 0 convergen Prouver que(u n) n 0 converge Eercice On considère

Plus en détail

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites

au taux d intérêt court. Pour cette raison, on applique souvent des modèles explicites Chapire 5 Modèles d Inensié Les deux approches dans la modélisaion de risque de crédi approche srucurel e approche d inensié ne son pas compaibles : dans les modèles d inensié, l exisence de l inensié

Plus en détail

SÉMINAIRE DE PROBABILITÉS (STRASBOURG)

SÉMINAIRE DE PROBABILITÉS (STRASBOURG) SÉMINAIRE DE PROBABILITÉS (STRASBOURG) STÉPHANE ATTAL PAUL-ANDRÉ MEYER Inerpréaion probabilise e exension des inégrales sochasiques non commuaives Séminaire de probabiliés (Srasbourg), ome 27 (1993), p

Plus en détail

STOCHASTIC CONTROL METHODS FOR OPTIMAL PORTFOLIO INVESTMENT

STOCHASTIC CONTROL METHODS FOR OPTIMAL PORTFOLIO INVESTMENT THÈSE DE DOCTORAT DE L ÉCOLE POLYTECHNIQUE Spécialié : MATHÉMATIQUES APPLIQUÉES Présenée par Gilles-Edouard ESPINOSA pour obenir le grade de DOCTEUR DE l ÉCOLE POLYTECHNIQUE Suje : MÉTHODES DE CONTRÔLE

Plus en détail

La conjugaison des endomorphismes de R n

La conjugaison des endomorphismes de R n La conjugaison des endomorphismes de R n TIPE 2006 Sous la direcion de Nicolas Tosel Plan 1 Inroducion 1 1.1 Posiion du problème......................... 1 1.2 Noaions............................... 1

Plus en détail

TB 352 TB 352. Entrée 1. Entrée 2

TB 352 TB 352. Entrée 1. Entrée 2 enrées série TB logiciel d applicaion 2 enrées à émission périodique famille : Inpu ype : Binary inpu, 2-fold TB 352 Environnemen Bouon-poussoir TB 352 Enrée 1 sories 230 V Inerrupeur Enrée 2 Câblage sur

Plus en détail

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC

Electricité n 1 : CONDENSATEUR ET CIRCUIT RC Physique - 6 ème année - Ecole Européenne Elecricié n 1 : CONDENSATEUR ET CIRCUIT RC I) Convenion d'algébrisaion des grandeurs élecriques : 1) Inensié e ension : L inensié i du couran élecrique e la ension

Plus en détail

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0

Devoir de physique-chimie n 5. Nom:... Exercice 1 : Quand Sébastien Loeb rencontre Isaac Newton /5,0 TS avril 04 Devoir de physique-chimie n 5 LES EXERCICES SNT INDEPENDANTS CALCULATRICE AUTRISEE Eercice : Quand Sébasien Loeb renconre Isaac Newon /5,0 "( ) Sébasien Loeb e son copiloe Daniel Elena on brillammen

Plus en détail

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit.

CONCOURS 2014 SECONDE ÉPREUVE DE MATHÉMATIQUES. Filière PSI. (Durée de l épreuve : trois heures) L usage d ordinateur ou de calculatrice est interdit. A 4 MATH II PSI ÉCOLE DES PONTS PARISTECH. SUPAERO (ISAE), ENSTA PARISTECH, TELECOM PARISTECH, MINES PARISTECH MINES DE SAINT ÉTIENNE, MINES DE NANCY, TÉLÉCOM BRETAGNE, ENSAE PARISTECH (Filière MP). ÉCOLE

Plus en détail

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0

Balistique. Nous étudions dans ce qui suit, le mouvement d'un projectile lancé à une vitesse initiale de norme v 0 Balisique Inroducion La balisique es l'éude du mouvemen des mobiles soumis à la force raviaionnelle. Galilée (1564-164) a éé le premier à décrire de façon adéquae le mouvemen des projeciles e à démonrer

Plus en détail

CCP PSI 1 un corrigé.

CCP PSI 1 un corrigé. CCP PSI n corrigé. I. Qelqes eemples de calcls de longers I.. Si f : [, ], le graphe de f es le segmen d origine (, ) e d eremié (, ) e sa longer es. C es cohéren avec I.. On a ici + sh () d = d = ch()

Plus en détail

Solutions entropiques des lois de conservation scalaires unidimensionnelles

Solutions entropiques des lois de conservation scalaires unidimensionnelles Soluions enropiques des lois de conservaion scalaires unidimensionnelles Version corrigée du 3 décembre 2008 Nicolas BONNOTTE Amaury FRESLON Suje proposé par Olivier GLASS Mémoire de maîrise 2008 Première

Plus en détail