Synthèse d analyse Avril 2011

Dimension: px
Commencer à balayer dès la page:

Download "Synthèse d analyse Avril 2011"

Transcription

1 Snthèse d analse Avril 20

2 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur civil Son objectif est de proposer une snthèse des définitions et propriétés utiles Aucun résultat énoncé n est démontré Si un étudiant souhaite obtenir une preuve des énoncés annoncés, nous le renvoons à ses cours de l enseignement secondaire Il ne faut pas considérer ce document comme une bible! D une part, il ne s agit pas de notes de cours Les notions ne sont pas toujours abordées dans le même ordre que lors de leur approche en classe C est ainsi que les fonctions logarithmiques et eponentielles sont présentées sur le même pied que les polnômes, fractions rationnelles, etc D autre part, il est certainement pourvu de nombreu défauts : lacunes, imprécisions, manque d eemples ou d eercices, illustrations omises, lapsus ou fautes de frappe, Une étude par coeur du contenu de ce recueil n est pas une bonne méthode pour se préparer et ne garantit en rien la réussite de l eamen La pratique de la résolution d eercices et de problèmes est également indispensable Nous renvoons le lecteur au questions/réponses publiées ailleurs Toutes nos ecuses pour ces défauts Nous espérons profiter des commentaires et remarques des utilisateurs pour perfectionner cette première version pour les années ultérieures Tous mes remerciements au Professeur Delhez pour ses relectures et ses nombreu conseils avisés Yvan Haine 2

3 Chapitre Notions de base Définitions Une fonction f réelle d une variable réelle est une loi qui à tout réel associe au plus un réel noté f() On dit que f() est l image du réel par la fonction f ou la valeur de la fonction f en L ensemble des valeurs de qui ont une image par f est le domaine de définition de la fonction f On le note généralement dom f L ensemble {f() : dom f} est appelé l ensemble image de f ou l ensemble des valeurs de f Certains l appellent aussi codomaine de f Dans le plan muni d un repère (généralement orthonormé ou au moins orthogonal), on représente l ensemble des points de coordonnées (, f()) On obtient ainsi une courbe d équation = f() C est le graphique de la fonction f Un zéro de la fonction f est une valeur de telle que f() = 0 2 Lecture de graphique On peut facilement lire plusieurs caractéristiques d une fonction sur son graphique Un point de l ae des abscisses appartient au domaine de définition d une fonction si la perpendiculaire à l ae des abscisses issue de ce point rencontre le graphique de la fonction en un point 3

4 2 LECTURE DE GRAPHIQUE CHAPITRE NOTIONS DE BASE Eemple Soit une fonction dont le graphique est ci-dessous : = f() dom f Le point = 2 appartient au domaine de f Par contre la fonction n est pas définie au point = Le domaine de définition de f est [0, + [ Remarque Si une perpendiculaire à l ae des abscisses rencontre un graphique en plus d un point, alors ce graphique n est pas celui d une fonction Eemple Un point de l ae des ordonnées appartient à l ensemble des valeurs d une fonction si la perpendiculaire à l ae des ordonnées issue de ce point rencontre le graphique de la fonction en au moins un point 4

5 CHAPITRE NOTIONS DE BASE 2 LECTURE DE GRAPHIQUE Eemple Soit une fonction dont le graphique est ci-dessous : = f() ens val f La valeur = 2 appartient à l ensemble des valeurs de f, au contraire de la valeur = L ensemble des valeurs de f est [0, + [ Les zéros d une fonction sont les abscisses des points d intersection du graphique avec l ae des abscisses Eemple Soit la fonction f dont le graphique est ci-dessous : = f() 3 3 Les zéros de f sont = 3, = 0 et = 3 Une fonction est positive (négative) sur un intervalle I ssi son graphique est au-dessus (en-dessous) de l ae des lorsque I 5

6 3 FONCTIONS PAIRES ET IMPAIRES CHAPITRE NOTIONS DE BASE Eemple La fonction f de l eemple précédent est positive sur ] 3, 0[ ] 3, [ et négative sur ], 3[ ]0, 3[ 3 Fonctions paires et impaires 3 Définition Une fonction f est paire si dom f, dom f et f( ) = f() Une fonction f est impaire si dom f, dom f et f( ) = f() Remarque Une condition nécessaire pour qu une fonction soit paire ou impaire est donc que son domaine de définition soit smétrique par rapport à l origine Insistons sur le fait qu il s agit d une condition nécessaire, mais pas suffisante Il eiste des fonctions dont le domaine est smétrique par rapport à 0 mais qui ne sont ni paires, ni impaires Eemple Le domaine de définition de la fonction f() = + est R Mais comme f( ) = +, la fonction n est ni paire (f( ) f()) ni impaire (f( ) f()) Par contraposition, si le domaine de définition d une fonction n est pas smétrique par rapport à 0, la fonction n est ni paire, ni impaire Eemple Le domaine de définition de la fonction f() = est [0, + [ Cet ensemble n est pas smétrique par rapport à 0 Par conséquent, la fonction n est ni paire, ni impaire 6

7 CHAPITRE NOTIONS DE BASE 3 FONCTIONS PAIRES ET IMPAIRES 32 Propriétés du graphique Le graphique d une fonction paire est smétrique par rapport à l ae des ordonnées Eemple f() = 2 f() = f( ) Le graphique d une fonction impaire est smétrique par rapport à l origine des aes Eemple f() = 3 f() f( ) 7

8 4 VARIATIONS ET EXTREMA CHAPITRE NOTIONS DE BASE 33 Fonctions fondamentales Si n Z et k R, les fonctions f() = 2n, f() = cos, f() = et f() = k sont des fonctions paires Si n Z, les fonctions f() = 2n+, f() = sin, f() = tg sont des fonctions impaires 34 Propriétés Si f est impaire et définie en = 0, alors f(0) = 0 La somme ou différence de deu fonctions paires (impaires) est paire (impaire) Le produit ou quotient de deu fonctions de même parité (de parités différentes) est paire (impaire) Conséquences Toute fonction dont l epression est un polnôme ne contenant que des puissances paires (impaires) de est une fonction paire (impaire) 4 Variations et etrema 4 Croissance et décroissance Une fonction réelle f est croissante sur un intervalle [a, b] si, 2 [a, b], < 2 f( ) f( 2 ) Une fonction réelle f est décroissante sur un intervalle [a, b] si, 2 [a, b], < 2 f( ) f( 2 ) 8

9 CHAPITRE NOTIONS DE BASE 4 VARIATIONS ET EXTREMA Eemple La fonction f() = 2 est croissante sur [0, + ] f( ) 2 f( 2 ) Une fonction réelle f est strictement croissante sur un intervalle [a, b] si, 2 [a, b], < 2 f( ) < f( 2 ) Une fonction réelle f est strictement décroissante sur un intervalle [a, b] si, 2 [a, b], < 2 f( ) > f( 2 ) 42 Etrema d une fonction Appelons voisinage de 0 un intervalle (non réduit à 0 ) contenant 0 Soit une fonction f réelle, définie sur un ensemble I et 0 I On dit que f admet un maimum local en 0 si il eiste un voisinage V I de 0 tel que V, f() f( 0 ) On dit que f admet un minimum local en 0 si il eiste un voisinage V I de 0 tel que V, f() f( 0 ) 9

10 4 VARIATIONS ET EXTREMA CHAPITRE NOTIONS DE BASE Eemple La fonction f() = sin admet un maimum local en = π 2 f() = sin π 2 On dit que f admet un maimum global en 0 si I, f() f( 0 ) On dit que f admet un minimum global en 0 si I, f() f( 0 ) Eemple La fonction f() = 2 admet un minimum global en = 0 Remarque La maimum ou minimum est dit strict si V, 0, f() < f( 0 ) ou f() > f( 0 ) 0

11 CHAPITRE NOTIONS DE BASE 5 TRANSFORMATIONS GRAPHIQUES 5 Transformations graphiques 5 f() + k Si k R, le graphique de la fonction f() + k est obtenu en translatant le graphique de la fonction f() de k unités selon l ae des ordonnées Eemple f() = sin f() = sin e 2 52 f( + k) Si k R, le graphique de la fonction f( + k) est obtenu en translatant le graphique de la fonction f() de k unités selon l ae des abscisses Eemple f() = sin f() = sin( + 3π 4 ) 3π 4 e

12 5 TRANSFORMATIONS GRAPHIQUES CHAPITRE NOTIONS DE BASE 53 k f() Si k R, le graphique de la fonction k f() est obtenu en multipliant les ordonnées des points du graphique de la fonction f() par k Cette transformation géométrique s appelle une affinité Cela a pour effet d «étirer»le graphique de f parallèlement à l ae O si k > ou de l «aplatir»si k < Eemple f() = sin f() = 3 sin() 54 f(k ) Si k R, le graphique de la fonction f(k ) est obtenu en «étirant»le graphique de f parallèlement à l ae O si k < ou en «compressant»le graphique de f parallèlement à l ae O si k > Cette transformation géométrique s appelle une affinité 2

13 CHAPITRE NOTIONS DE BASE 5 TRANSFORMATIONS GRAPHIQUES Eemple f() = sin f() = sin(3) 55 f() Le graphique de la fonction f() est obtenu par l union du graphique de f lorsque f() est positif et du graphique de f lorsque f() est négatif Eemple f() f() 3

14 5 TRANSFORMATIONS GRAPHIQUES CHAPITRE NOTIONS DE BASE 4

15 Chapitre 2 Limites La notion de limite est fort compliquée et toute en nuances Définir cette notion avec rigueur (définitions en ε, η) demande beaucoup de temps et de précision tant le nombre de cas à envisager est important Nous omettons donc volontairement ces définitions rigoureuses dans cette snthèse Par contre, nous en donnerons des définitions "intuitives" et les illustrerons par des eemples et des interprétations graphiques Maitriser le concept de limite demande deu choses : interpréter la limite obtenue pour comprendre comment la fonction se comporte au "voisinage" des bornes ouvertes de son domaine de définition, être capable de calculer une limite Ces deu aspects sont abordés dans cet ordre dans cette snthèse 2 Point adhérent Un point est adhérent à un ensemble s il appartient à cet ensemble ou s il est une borne ouverte de cet ensemble Par etension intuitive de cette définition, nous admettrons de dire que + ( ) est adhérent à un intervalle du tpe ]a, + [ (], b[) 5

16 22 DÉFINITIONS INTUITIVES CHAPITRE 2 LIMITES 22 Définitions intuitives 22 Limite finie à l infini Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, + [ et α R La limite de f quand tend vers + est égale à α si la différence f() α prend des valeurs aussi petites que l on veut pour autant que soit suffisamment grand On note lim + f() = α On dit aussi que f tend vers α lorsque tend vers + Eemple Soit la fonction f() = + On peut prouver (voir paragraphe relatif au calcul des limites) que lim + f() = Graphiquement, on a f() = f() Interprétation graphique Dans ce cas, la différence f() représente la différence entre l ordonnée d un point du graphique de f d abscisse et le nombre Cette différence devient aussi petite que l on veut pour autant que s éloigne suffisamment de l origine vers la droite 6

17 CHAPITRE 2 LIMITES 22 DÉFINITIONS INTUITIVES Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ], b[ et α R La limite de f quand tend vers est égale à α si la différence f() α prend des valeurs aussi petites que l on veut pour autant que soit négatif, suffisamment grand en valeur absolue On note lim f() = α On dit aussi que f tend vers α lorsque tend vers Eemple Soit la fonction f = + On peut prouver (voir paragraphe relatif au calcul des limites) que lim f() = Graphiquement, on a f() = f() Interprétation graphique Dans ce cas, la différence f() représente la différence entre l ordonnée d un point du graphique de f d abscisse et l ordonnée du point de la droite d équation = qui a la même abscisse Cette différence d ordonnées devient aussi petite que l on veut pour autant que s éloigne suffisamment de l origine vers la gauche Remarques Il est possible -comme dans l eemple ci-dessus- que les limites de la fonction quand 7

18 22 DÉFINITIONS INTUITIVES CHAPITRE 2 LIMITES tend vers + et quand tend vers soient égales Dans ce cas, on utilisera couramment la notation lim f() = α ± en étant conscient que l on écrit deu limites en même temps Il est indispensable que + (- ) soit une borne ouverte du domaine de définition de f pour que la notion de limite en + ( ) ait un sens Eemple n a pas de sens puisque dom = [0, + [ lim 222 Limite infinie à l infini Limite en + Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, + [ La limite de f quand tend vers + est égale à + si f() prend des valeurs aussi grandes que l on veut pour autant que soit suffisamment grand On note lim f() = + + On dit aussi que f tend vers + lorsque tend vers + Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, + [ La limite de f quand tend vers + est égale à si f() est négative et f() prend des valeurs aussi grandes que l on veut pour autant que soit suffisamment grand On note lim f() = + On dit aussi que f tend vers lorsque tend vers + 8

19 CHAPITRE 2 LIMITES 22 DÉFINITIONS INTUITIVES Eemple Soit la fonction f() = 2 2 On peut prouver que lim + f() = + Graphiquement, on a f() lim + f() = + Interprétation graphique Si lim + f() = +, alors le graphique de f "se dirige" vers le coin supérieur droit du plan Limite en Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ], b[ La limite de f quand tend vers est égale à + si f() prend des valeurs aussi grandes que l on veut pour autant que soit négatif et suffisamment grand On note lim f() = + On dit aussi que f tend vers + lorsque tend vers Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ], b[ La limite de f quand tend vers + est égale à si f() est négative et f() prend des valeurs aussi grandes que l on veut pour autant que soit négatif et suffisamment grand On note lim f() = 9

20 22 DÉFINITIONS INTUITIVES CHAPITRE 2 LIMITES On dit aussi que f tend vers lorsque tend vers Eemple Soit la fonction f() = 2 2 On peut prouver que lim f() = + Graphiquement, on a f() lim f() = + Interprétation graphique Si lim f() = +, alors le graphique de f "se dirige" vers le coin supérieur gauche du plan 223 Limite infinie en un réel Limite à droite et à gauche Limite à droite Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, b[, a R La limite à droite de f quand tend vers a est égale à + si f() prend des valeurs aussi grandes que l on veut pour autant que > a soit suffisamment proche de a On note lim a + f() = + On dit aussi que f tend vers + lorsque tend vers a par la droite 20

21 CHAPITRE 2 LIMITES 22 DÉFINITIONS INTUITIVES La limite à droite de f quand tend vers a est égale à si f() prend des valeurs négatives, en valeur absolue aussi grandes que l on veut pour autant que > a soit suffisamment proche de a On note lim f() = a + On dit aussi que f tend vers lorsque tend vers a par la droite Limite à gauche Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, b[, b R La limite à gauche de f quand tend vers b est égale à + si f() prend des valeurs aussi grandes que l on veut pour autant que < b soit suffisamment proche de b On note lim f() = + b On dit aussi que f tend vers + lorsque tend vers b par la gauche La limite à gauche de f quand tend vers b est égale à si f() prend des valeurs négatives, en valeur absolue aussi grandes que l on veut pour autant que < b soit suffisamment proche de a On note lim f() = b On dit aussi que f tend vers lorsque tend vers b par la gauche 2

22 22 DÉFINITIONS INTUITIVES CHAPITRE 2 LIMITES Eemple Soit f() = 2 4 On peut prouver que lim 2 + lim ( 2) = = + lim 2 lim ( 2) 2 4 = 2 4 = lim ( 2) f() = + lim f() = f() lim ( 2) f() = + lim f() = 2 Limite infinie en un réel Si f une fonction définie sur un ensemble contenant un ensemble du tpe ]a, b[ ]b, c[, la limite de f quand tend vers b est égale à + ( ) si les limites de f quand tend vers b à gauche et à droite sont égales à + ( ) 22

23 CHAPITRE 2 LIMITES 22 DÉFINITIONS INTUITIVES Eemple Soit f() = 2 On peut prouver que lim 0 f() = + f() lim 0 + f() = + lim 0 f() = + Si les limites de f à droite et à gauche de b eistent et sont différentes, la limite de f quand tend vers b n eiste pas Eemple Soit f() = On peut prouver que lim 0 ± f() = ± Donc lim 0 f() n eiste pas car les limites à gauche et à doite eistent mais sont différentes f() Si f est une fonction définie à droite (à gauche) d un réel b et pas à gauche (pas à droite), alors la limite de f quand tend vers b est égale à la limite de f quand tend vers b par la droite (gauche) 23

24 22 DÉFINITIONS INTUITIVES CHAPITRE 2 LIMITES Eemple Soit f() = ln On sait que que lim 0 + f() = La limite à gauche n a pas de sens Donc lim 0 f() = f() 224 Limite finie en un réel Limite à droite Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, b[, a R La limite à droite de f quand tend vers a est égale à α, α R si f() prend des valeurs aussi proches que l on veut de α pour autant que > a soit suffisamment proche de a On note lim a + f() = α On dit aussi que f tend vers α lorsque tend vers a par la droite Limite à gauche Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, b[, b R La limite à gauche de f quand tend vers b est égale à β si f() prend des valeurs aussi proches que l on veut de β pour autant que < b soit suffisamment proche de a On note lim b f() = β On dit aussi que f tend vers β lorsque tend vers b par la gauche Limite finie en un réel Si f est une fonction définie sur un ensemble contenant un ensemble du tpe ]a, b[ ]b, c[ La 24

25 CHAPITRE 2 LIMITES 22 DÉFINITIONS INTUITIVES limite de f quand tend vers b est égale à α(α R) si les limites de f quand tend vers b à gauche et à droite sont égales à α Si f est une fonction définie à droite (à gauche) d un réel b et pas à gauche (droite), alors la limite de f quand tend vers b est égale à la limite de f quand tend vers b par la droite (gauche) Dans les deu cas, on dit aussi que f tend vers α lorsque tend vers b Eemple Soit f() = Cette fonction est définie sur R On a lim 0 ± = 0 Les limites à gauche et à doite de 0 sont égales Donc lim 0 = 0 f() Eemple Soit f() = Cette fonction est définie sur [0, + [ On a lim 0 + = 0 La limite à gauche de 0 n a pas de sens Donc lim 0 = 0 f() 25

26 23 CALCUL DE LIMITES CHAPITRE 2 LIMITES 23 Calcul de limites Le calcul de la limite d une fonction se fait à l aide de deu éléments : des limites de fonctions fondamentales des théorèmes relatifs au limites de somme, produit, quotient et composition de fonctions 23 Limites fondamentales Limites à l infini Lorsqu on calcule la limite d une fonction en ±, on est souvent amené à envisager les mêmes limites Il est donc indispensable de connaître les résultats suivants (qui sont tous démontrables) lim k = k, k R ± + si n est pair lim ± n = lim ± = 0, n N n ± si n est impair lim p q = +, p > 0, q > 0 + lim p q = 0, p < 0, q > 0 + lim ln = + + lim + e = + lim e = 0 + ( π ) lim arctg = ± ± 2, n N 26

27 CHAPITRE 2 LIMITES 23 CALCUL DE LIMITES Limites infinies lim = si n N est impair a ( a) n lim = + si n N est pair a ( a) n lim = + pour tout n naturel a + ( a) n lim a + ( a) = + pour tout q q Q+ 0 lim ln = 0 + Limites finies Pour tout polnôme P (), lim P () = P (a) a a R +, lim = a a a R, lim e = e a a a R + 0, lim ln = ln a a a R, lim sin = sin a a a R, lim cos = cos a a a [, ], lim arcsin = arcsin a a a [, ], lim arcos = arcos a a a R, lim arctg = arctg a a 232 Limites et opérations Pour évaluer la limite d une fonction en ±, on peut utiliser les théorèmes suivants Ils permettent de donner la valeur de la limite d une somme, d un produit, de deu fonctions Certaines configurations ne donnent cependant pas toujours le même résultat Ce sont les cas dits "d indétermination" Ils figurent entre [ et ] dans les énoncés suivants 27

28 23 CALCUL DE LIMITES CHAPITRE 2 LIMITES Deu limites finies Si lim f() = α et lim g() = β, α, β R alors ± ± lim (f() + g()) = α + β ± lim (f() g()) = α β ± lim ± (f() g()) = α β f() lim ± g() = α β si β 0 si α 0 et β = 0 [ ] 0 si α = 0 et β = 0 0 Une limite finie et une limite infinie Si lim f() = α et lim g() = +, α R alors ± ± lim (f() + g()) = + ± lim ± lim (f() g()) = ± f() lim ± lim ± (f() g()) = g() = 0 g() f() = si α 0 [0 ] si α = 0 Deu limites infinies Si lim f() = + et lim g() = + alors ± ± lim (f() + g()) = + ± lim (f() g()) = [ ] ± lim ± lim ± (f() g()) = + f() [ ] g() = 28

29 CHAPITRE 2 LIMITES 24 CAS D INDÉTERMINATION 233 Limite d une fonction de fonction Si f est une fonction définie sur un ensemble contenant un intervalle du tpe ]a, + [ telle que lim f() = α et si g est une fonction définie sur un intervalle dont α est + adhérent est telle que lim g() = A, alors lim g(f()) = A α a Eemple La fonction f() = + 2 La fonction g est définie sur R\{ 2} et est la composée des fonctions g() = + 2 lim + La fonction h est définie sur R + et lim = 0 + (A = 0) 0 + Donc lim = Cas d indétermination et h() = + 2 = 0+ (a = + et α = 0) Trouver la vraie valeur d une limite lorsque celle-ci est une indétermination s appelle "lever l indétermination" Il n est pas possible d epliquer ici toutes les configurations possibles et toutes les méthodes correspondantes Nous nous contenterons d epliquer les plus fréquentes 24 Polnômes : cas [ ] La limite à l infini d un polnôme P () = suivant n a k k où a n 0 se calcule à l aide du théorème k=0 La limite à l infini d un polnôme est égale à la limite de son terme de plus haute puissance lim P () = lim a n n ± ± Les cas d indétermination nécessitant le théorème de l Hospital sont abordés dans le chapitre des dérivées 29

30 24 CAS D INDÉTERMINATION CHAPITRE 2 LIMITES Eemple lim = [ ] = lim + 3 = Fonction rationnelle : [ ] La limite à l infini d une fonction rationnelle P () Q() = à l aide du théorème suivant n a k k k=0 p b k k k=0 où a n 0 et b p 0 se calcule La limite à l infini d une fonction rationnelle est égale à la limite du quotient des termes de plus haute puissance du numérateur et du dénominateur P () lim ± Q() = lim a n n ± b p p Conséquence La limite à l infini d une fonction rationnelle est égale à 0 si le degré du numérateur est inférieur au degré du dénominateur a n si le degré du numérateur est égal au degré du dénominateur b n ± si le degré du numérateur est supérieur au degré du dénominateur Eemple lim + lim + lim + [ = [ ] 3 3 = [ ] 3 2 = ] = lim + = lim + = lim = = = + 30

31 CHAPITRE 2 LIMITES 24 CAS D INDÉTERMINATION 243 Fonctions irrationnelles [ cas ] [ Si une indétermination apparaît dans une epression faisant apparaître une ] fonction irrationnelle, l indétermination peut généralement être levée en mettant en évidence la plus haute puissance du radicand Eemple Soit f() = 2 On a lim 2 [ = ± ] = lim ± = ± { }} { 2 cas [ ] Les cas d indétermination [ ] faisant apparaître une epression irrationnelle se lèvent généralement en multipliant et en divisant l epression par le binôme conjugué Eemple Soit f() = 2 On a ( lim 2 ) = [ ] + ( = lim 2 )( 2 + ) ± 2 + = lim ± = Remarque Si le cas d indétermination [ ] se présente avec une epression irrationnelle faisant intervenir une racine cubique, c est par le "trinôme conjugué" qu il faut multiplier afin d utiliser 3

32 24 CAS D INDÉTERMINATION CHAPITRE 2 LIMITES le produit remarquable a ± b = a3 ± b 3 a 2 ab + b Fonction rationnelle : [ ] 0 0 La limite quand tend vers a d une fonction rationnelle P () présente l indétermination [ ] Q() 0 lorsque a est à la fois un zéro de P () et de Q() 0 On en déduit la méthode de levée de l indétermination : on factorise P () et Q() en divisant ces deu polnômes par a, puis on simplifie la fonction rationelle Eemple lim 2 3 = [ ] 0 ( )( + ) = lim 0 ( )( ) = lim ( + ) ( ) = 2 3 Remarque Comme le montre l eemple ci-dessus, la limite d une fonction rationnelle en un des zéros du dénominateur peut donc être finie Il est donc fau de dire qu une fonction rationnelle admet une asmptote verticale au() zéro(s) de son dénominateur 245 Fonctions irrationnelles cas [ ] 0 0 [ ] 0 Si une indétermination apparaît dans une epression faisant apparaître une 0 fonction irrationnelle, l indétermination peut généralement être levée soit en multipliant et divisant la fraction par le binôme conjugué de l (les) epression(s) irrationnelle(s) soit par simplification 32

33 CHAPITRE 2 LIMITES 25 LIMITES ET INÉGALITÉS Eemple Soit f() = [ ] 0 On a lim = 0 + = lim + ( )( + ) = lim = lim ( + ) = 2 Soit f() = On a lim 0 + = lim = Limites et inégalités Si f et g sont deu fonctions telles que f() < g() dans un voisinage de a (sauf éventuellement en a) admettant chacune une limite quand tend vers a, alors lim f() lim g() a a Eemple Soient f() = et g() = 2 Ces deu fonctions vérifient g() < f() pour tout > Par suite lim + 2 lim + De même, les deu fonctions vérifient f() < g() pour tout ]0, [ Par suite lim 0 + lim

34 25 LIMITES ET INÉGALITÉS CHAPITRE 2 LIMITES Théorème de l étau a Si f, g et h sont trois fonctions telles que f() g() h() dans un voisinage de a (sauf éventuellement en a), et si lim f() = lim h() = α, a a alors lim g() = α a a Les bricoleurs l appellent "théorème de l étau", les gourmands "théorème du sandwich" et les autres "théorème des gendarmes" Eemple Soient les fonctions f() = sin, g() = et h() = Pour tout > 0, on a f() g() h() De plus, lim f() = lim h() = Par conséquent, sin lim + = 0 On peut faire le même raisonnement en h() g() f() 34

35 Chapitre 3 Asmptotes 3 Asmptote horizontale Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, + [ (], b[) et α R On dit que la droite d équation = α est une asmptote horizontale au graphique de f en + ( ) lorsque lim f() = α ( lim f() = α) + 35

36 32 ASYMPTOTE OBLIQUE CHAPITRE 3 ASYMPTOTES Eemple Soit la fonction f() = +, comme lim ± f() =, le graphique de f admet la droite d équation = comme asmptote horizontale f() AH = La droite d équation = est une asmptote horizontale au graphique de f aussi bien en + qu en 32 Asmptote oblique 32 Définition Soit une fonction f définie sur un ensemble contenant un intervalle du tpe ]a, + [ (], b[) On dit que la droite d équation = m + p est une asmptote oblique au graphique de f en + ( ) ssi il eiste m et p réels tels que lim + (f() (m + p)) = 0 ( lim (f() (m + p)) = 0) 36

37 CHAPITRE 3 ASYMPTOTES 32 ASYMPTOTE OBLIQUE 322 Critère d eistence d une asmptote oblique Le graphique de la fonction f admet une asmptote oblique en + ( ) ssi il eiste m et p réels tels que et p = m = f() lim + lim (f() m) + Eemple Soit la fonction f = 2 + Comme et m = p = f() lim + = lim f() = 0, + le graphique de f admet la droite d équation = comme asmptote oblique Graphiquement, on a f() = f() ) Interprétation graphique Dans ce cas, la différence f() représente la différence entre l ordonnée d un point du graphique de f d abscisse et l ordonnée du point de la droite d équation = qui a la même abscisse Cette différence d ordonnées devient aussi petite que l on veut pour autant que s éloigne suffisamment de l origine vers la droite 37

38 33 ASYMPTOTE VERTICALE CHAPITRE 3 ASYMPTOTES Ici, la même droite est également asmptote au graphique de f en Remarques L eistence d un m réel tel que m = tel que p = lim (f() m) + f() lim + ne garantit pas l eistence d un p réel Eemple Soit la fonction f() = On a lim = 0, mais lim = Une asmptote horizontale est un cas particulier d asmptote oblique Elle correspond au cas m = 0 Le graphique d une fonction ne peut admettre une asmptote oblique (non horizontale) en + que si lim f() = ± La réciproque n est pas vraie : il eiste des fonctions + admettant une limite infinie et dont le graphique n admet pas d asmptote oblique Eemple f() = Asmptote verticale Soit f une fonction définie sur un ensemble contenant un intervalle du tpe ]a, b[, alors la droite d équation = a est asmptote verticale à droite au graphique de f si lim f() = et a + la droite d équation = b est asmptote verticale à gauche au graphique de f si lim f() = b 38

39 CHAPITRE 3 ASYMPTOTES 33 ASYMPTOTE VERTICALE Eemple Soit f() = Comme lim = et lim + = +, la droite d équation = est une asmptote verticale au graphique de f f() = AV : = Remarques Une droite d équation = a peut être asmptote verticale au graphique d une fonction à droite, à gauche ou des deu côtés Eemple Comme ln est définie uniquement sur ]0, + [ et lim 0 + ln =, la droite d équation = 0 est asmptote verticale à droite au graphique de la fonction f() = ln f() = ln 39

40 34 CO-EXISTENCE D ASYMPTOTES CHAPITRE 3 ASYMPTOTES 34 Co-eistence d asmptotes 34 Asmptotes horizontales et obliques Soit f une fonction dont le domaine contient un intervalle du tpe ]a, + [ (], b[) Le graphique d une fonction ne peut admettre aucune des configurations suivantes une asmptote horizontale et une asmptote oblique en + ( ), deu horizontales en + ( ), deu obliques en + ( ) Par contre, le graphique d une fonction peut admettre deu asmptotes horizontales différentes en + et, f() = arctg = π 2 = π 2 deu asmptotes obliques différentes en + et f() = 2 une smptote oblique d un côté et une asmptote horizontale de l autre 40

41 CHAPITRE 3 ASYMPTOTES 34 CO-EXISTENCE D ASYMPTOTES f() = une asmptote d un côté et pas de l autre f() = e 342 Asmptotes verticales Le graphique d une fonction peut admettre plusieurs asmptotes verticales Eemple Le graphique de la fonction f() = 2 4, admet les deu droites d équation = 2 et = 2 comme asmptotes verticales tant à gauche qu à droite f() = 2 4 AV : = 2 AV : = 2 4

42 35 VALEURS SUPÉRIEURES ET INFÉRIEURES CHAPITRE 3 ASYMPTOTES Le graphique de la fonction f() = tg en admet une infinité d asmptotes verticales d équations = π 2 + kπ, k Z 3π 2 π 2 π 2 3π 2 35 Limites par valeurs supérieures et inférieures 35 Définitions Si lim f() = α et que f() > α, suffisamment grand (en valeur absolue), on dit ± que f tend vers α par des valeurs supérieures On note lim f() = ± α+ Si lim f() = α et que f() < α, suffisamment grand (en valeur absolue), on dit ± que f tend vers α par des valeurs inférieures On note lim f() = ± α 352 Interprétation graphique Graphiquement, le graphique de f est au-dessus de l asmptote horizontale d équation = α lorsque lim f() = ± α+ et le graphique de f est en-dessous de l asmptote horizontale d équation = α lorsque lim f() = ± α 42

43 CHAPITRE 3 ASYMPTOTES 35 VALEURS SUPÉRIEURES ET INFÉRIEURES Eemple Soit la fonction f() = +, on a lim + f() = + et lim f() = Donc le graphique de f est au-dessus de la droite d équation = en + et endessous en f() AH = Remarques Il eiste des fonctions telles que lim ± f() = α sans qu on ne puisse préciser si elles tendent par des valeurs supérieures ou inférieures à α Eemple Soit la fonction f() = sin On a lim + sin = 0, mais f change périodiquement de signe Le graphique oscille de part et d autre de l ae des abscisses f() = sin Il est fau de dire que le graphique d une fonction ne peut pas avoir de point d intersection avec une asmptote horizontale 43

44 35 VALEURS SUPÉRIEURES ET INFÉRIEURES CHAPITRE 3 ASYMPTOTES Eemple La fonction f() = ln admet la droite d équation = 0 comme asmptote horizontale en + et f() = 0 f() = ln 353 Position d un graphique par rapport à une asmptote oblique Si le graphique d une fonction admet une asmptote oblique, on peut déterminer la position du graphique par rapport à cette asmptote oblique de la même façon que pour les asmptotes horizontales Si lim ± (f() m) = p+, le graphique de f est au-dessus de l asmptote oblique Si lim ± (f() m) = p, le graphique de f est en-dessous de l asmptote oblique Remarque Il est parfois difficile de prouver que la limite lim ± (f() m) = p± Dans ce cas, on peut utiliser les conditions équivalentes suivantes Si lim ± (f() (m + p)) = 0+, le graphique de f est au-dessus de l asmptote oblique Si lim ± (f() (m + p)) = 0, le graphique de f est en-dessous de l asmptote oblique 44

45 CHAPITRE 3 ASYMPTOTES 35 VALEURS SUPÉRIEURES ET INFÉRIEURES Eemple Soit la fonction f() = Comme f() m = lim ± = et p = lim f() = lim ± = 2, la droite d équation = + 2 est asmptote oblique au graphique de f Pour déterminer la position du graphique de f par rapport à l asmptote oblique, on calcule p = lim f() ( + 2) = lim ( 2 + 2) = lim ± ± ± = 0± Le graphique de f est situé au-dessus de l asmptote en + et en-dessous de l asmptote en Graphiquement, on a f() = 45

46 35 VALEURS SUPÉRIEURES ET INFÉRIEURES CHAPITRE 3 ASYMPTOTES 46

47 Chapitre 4 Fonctions continues 4 Définitions Une fonction f est continue en un point 0 de son domaine si lim 0 f() = f( 0 ) Une fonction f est continue sur un intervalle [a, b] si elle est continue en tout point de [a, b] L ensemble des points où la fonction est continue est le domaine de continuité de la fonction Remarque Pour qu une fonction soit continue en un point 0, il faut donc que 3 conditions soient réalisées : f( 0 ) doit eister La fonction f doit être définie en 0 lim 0 f() doit eister et être finie lim 0 f() doit être égale à f( 0 ) Notation Soit un intervalle I L ensemble des fonctions continues sur I est noté C 0 (I) Une fonction continue sur I appartient donc à C 0 (I) 47

48 4 DÉFINITIONS CHAPITRE 4 FONCTIONS CONTINUES Eemple La fonction f() = E() (fonction partie entière) n est pas continue en chaque entier En effet, comme lim E() = 0 et lim + E() =, lim E() n eiste pas Eemple La fonction f() = + 2 si 4 si = n est pas continue en = En effet, comme lim f() = 3 et f() = 4, lim f() f() f() 48

49 CHAPITRE 4 FONCTIONS CONTINUES 42 PROPRIÉTÉS 42 Propriétés 42 Opérations sur les fonctions continues Si f et g sont deu fonctions continues en 0, alors αf + βg est continue en 0, α, β R f g est continue en 0 si g( 0 ) 0, f g est continue en Continuité d une fonction de fonction Si f est une fonction continue en 0 et si g est une fonction continue en f( 0 ) alors g(f()) est continue en 0 43 Eemples fondamentau Tout polnôme est continu sur R Toute fonction rationnelle est continue sur son domaine de définition Les fonctions,, ln et e sont continues sur leur domaine de définition Les fonctions sin, cos et tg sont continues sur leur domaine de définition Les fonctions arcsin, arcos et arctg sont continues sur leur domaine de définition 49

50 44 THÉORÈMES CHAPITRE 4 FONCTIONS CONTINUES 44 Théorèmes des fonctions continues 44 Théorème des bornes atteintes Une fonction f réelle, continue sur un intervalle fermé borné [a, b] réalise ses bornes supérieures et inférieures sur [a, b] Si f C 0 [a, b], m et M [a, b] tels que f(m) f() f(m), [a, b] f(m) f(b) f(a) a m M b f(m) Remarque f(m) et f(m) sont respectivement les bornes inférieure et supérieure de f sur [a, b] On traduit aussi ce théorème en disant Une fonction f continue sur un intervalle [a, b] est bornée 50

51 CHAPITRE 4 FONCTIONS CONTINUES 44 THÉORÈMES 442 Théorème des valeurs intermédiaires Si f est une fonction réelle, continue sur l intervalle [a, b] et telle que f(a) f(b), alors, pour tout réel α compris entre f(a) et f(b), il eiste un point c [a, b] tel que f(c) = α f(b) a α c b f(a) Remarques Le point c n est pas nécessairement unique Le point c est unique ssi la fonction f est strictement monotone (croissante ou décroissante) Toute fonction continue qui change de signe entre a et b s annule au moins une fois entre a et b Cette propriété est à la base de la méthode de résolution d une équation f() = 0 par la méthode de dichotomie Cette version du théorème des valeurs intermédiaires peut être élargie : 5

52 44 THÉORÈMES CHAPITRE 4 FONCTIONS CONTINUES Si f est une fonction réelle, continue sur l intervalle ]a, b[ et telle que lim f() et a + lim f() eistent et sont différentes, alors, pour tout réel α compris entre lim f() b a + et lim f(), il eiste un point c ]a, b[ tel que f(c) = α b Cet énoncé a pour conséquence la propriété suivante : Tout polnôme de degré impair admet au moins un zéro réel En effet, les limites d un polnôme de dégré impair en + et sont de signes différents et tout polnôme est continu sur R 52

53 Chapitre 5 Fonctions dérivables 5 Définitions Le nombre dérivé de la fonction f au point 0 (appartenant au domaine de définition de f) est le nombre noté f ( 0 ) tel que f ( 0 ) = lim h 0 f( 0 + h) f( 0 ) h si cette limite eiste et est finie On le note aussi df d ( 0) La fonction f est dérivable en 0 si f ( 0 ) eiste f( 0 + h) f( 0 ) Si lim n eiste pas ou si elle est infinie, la fonction est dite non h 0 h dérivable en 0 Si f est dérivable en chacun des points d un ensemble E, elle est dite dérivable sur E Si f est dérivable sur E, la fonction f qui à chaque point de E associe son nombre dérivé f () est appelée fonction dérivée de f Si cette fonction dérivée est continue, on dit que f est continument dérivable Remarques Pour que f ( 0 ) eiste, il faut évidemment que f soit définie en 0 mais aussi dans un voisinage de 0 (pour que f( 0 + h) eiste) On ne peut donc pas calculer la dérivée d une fonction en un point isolé de son domaine de définition 53

54 52 FORMULES DE DÉRIVABILITÉ CHAPITRE 5 FONCTIONS DÉRIVABLES On utilise aussi la définition équivalente f ( 0 ) = lim 0 f() f( 0 ) 0 Une fonction f définie sur [a, b] est dérivable à droite en = a si f(a + h) f(a) lim h 0 + h eiste et est finie On appelle cette limite le nombre dérivé à droite de f en = a De même, f est dérivable à gauche en = b si f(b + h) f(b) lim h 0 h eiste et est finie On appelle cette limite le nombre dérivé à gauche de f en = b L epression f( 0 + h) f( 0 ) h est appelée quotient différentiel ou tau d accroissement de f entre 0 et 0 + h 52 Formules de dérivabilité Le calcul des dérivées des fonctions peut se faire à l aide des formules et propriétés suivantes : 54

55 CHAPITRE 5 FONCTIONS DÉRIVABLES 52 FORMULES DE DÉRIVABILITÉ 52 Dérivées immédiates ( n ) = n n, n N, R (sin ) = cos, R (cos ) = sin, R (ln ) =, R+ 0 (ep ) = ep(), R (arcsin ) =, ], [ 2 (arcos ) =, ], [ 2 (arctg ) = +, R 2, R + ( ) 0 =, R 0 Remarque La formule de dérivation d une puissance ( n ) = n n peut être étendue au eposants entiers à condition alors que R 0 Eemple ( ) = 2 De même, elle peut être étendue au eposants rationnels q = m p où m, p Z 0 sont premiers entre eu Suivant les valeurs de m et p, la formule est alors vraie dans R 0 ou R + 0 Eemple En particulier, ( ) = 2, R+ 0 ( 3 ) = 3 3 2, R 0 55

56 52 FORMULES DE DÉRIVABILITÉ CHAPITRE 5 FONCTIONS DÉRIVABLES 522 Propriétés Dérivée d une somme, d un produit et d un quotient de deu fonctions Si f et g sont dérivables en, alors α f + β g est dérivable en, quels que soient α et β R et (α f + β g) () = α f () + β g () Si f et g sont dérivables en, alors f g est dérivable en et (f g) () = f () g() + f() g () Si f et g sont dérivables en tel que g() 0, alors f g est dérivable en et ( ) f () = f () g() f() g () g g 2 () Eemple ( ) 2 = 3( 2 ) 2 ( 2) = 3(2) 2( 2) 3 = ( e ) = () e + (e ) = e + e = ( + )e (tg ) = ( ) sin cos cos sin ( sin ) = cos cos 2 = cos 2 Conséquences Tout polnôme est dérivable sur R Toute fonction rationnelle est dérivable sur son domaine de définition Dérivation d une fonction composée Si f est une fonction dérivable en, si g est dérivable en u = f(), alors la fonction g(f()) est dérivable en et (g(f())) = g (f()) f () 56

57 CHAPITRE 5 FONCTIONS DÉRIVABLES 52 FORMULES DE DÉRIVABILITÉ Conséquences Les fonctions sin, cos, ep sont dérivables sur le domaine de dérivabilité de leur argument Les fonctions irrationnelles sont dérivables sur leur domaine de définition sauf les zéros du radicand Les fonctions valeur absolue sont dérivables sur leur domaine de définition sauf les zéros de l argument Les fonctions arcsin et arcos sont dérivables sur leur domaine de définition, sauf les valeurs de qui donnent à l argument une valeur égale à ou - Eemple La fonction h() = (3 2 ) 5 est la composée de la fonction f() = 3 2, définie et dérivable sur R et de la fonction g() = 5, définie et dérivable sur R La fonction h() est donc dérivable sur R et ( (3 2 ) 5) = 5(3 2 ) 4 (3 2 ) = 5(3 2 ) 4 6 = 30(3 2 ) 4 La fonction h() = e est la composée de la fonction f() =, définie et dérivable sur R + 0 et de la fonction g() = e, définie et dérivable sur R La fonction h() est donc dérivable sur R + 0 et ( e ) = e ( ) = e 2 57

58 52 FORMULES DE DÉRIVABILITÉ CHAPITRE 5 FONCTIONS DÉRIVABLES La fonction h() = arcsin( 2 ) est la composée de la fonction f() = 2, définie et dérivable sur R et de la fonction g() = arcsin définie et dérivable sur ], [ La fonction h() est donc dérivable sur { : < 2 < } Comme < 2 < 2 < 2 < 0 0 < 2 < 2 2 < < 0 ou 0 < < 2, la fonction h() est dérivable sur ] 2, 0, [ ]0, 2[ et ( arcsin( 2 ) ) = ( 2 ) 2 ( 2 ) = = Par suite, et ( arcsin( 2 ) ) = 2 2 2, sur ]0, 2[ ( arcsin( 2 ) ) = 2 2 2, sur ] 2, 0[ Remarque Il arrive qu une fonction soit dérivable en un point alors qu une des epressions qui interviennent ne soit pas dérivable Eemple Soit f() = sin et étudions la dérivabilité de f en = 0 On a et Par conséquent, f est dérivable en = 0 f(h) f(0) h sin h lim = lim = 0 + h 0 + h h 0 + h f(h) f(0) h sin h lim = lim = 0 + h 0 h h 0 h 58

59 CHAPITRE 5 FONCTIONS DÉRIVABLES 53 INTERPRÉTATION GÉOMÉTRIQUE 53 Interprétation géométrique du nombre dérivé 53 Tangente au graphique d une fonction en un de ses points Soit f une fonction dérivable sur un intervalle ]a, b[ et 0 ]a, b[ Si h est suffisamment petit, 0 + h ]a, b[ Les points de coordonnées ( 0, f( 0 )) et ( 0 +h, f( 0 +h)) sont des points du graphique de f f( 0 + h) f( 0 ) h La droite qui les unit a pour équation f( 0 ) = f( 0 + h) f( 0 ) ( 0 ) h Si h tend vers 0, la droite "pivote" autour du point ( 0, f( 0 )) On appelle tangente au graphique de f au point d abscisse 0 la droite d équation f( 0 ) = f ( 0 )( 0 ) 59

60 53 INTERPRÉTATION GÉOMÉTRIQUE CHAPITRE 5 FONCTIONS DÉRIVABLES Eemple Soit f() = 2 2 On a f(2) = 2, f () = et f (2) = 2 L équation de la tangente au graphique de f au point d abscisse = 2 est donc f 2 = 2( 2) = 2 2 Le nombre dérivé d une fonction en un point est donc le coefficient directeur de la tangente au graphique de la fonction en ce point Par conséquent, si la dérivée d une fonction f est un point 0 est nulle, alors la tangente au graphique de f au point d abscisse 0 est horizontale Remarque Si le graphique de f est représenté dans un repère orthonormé, on peut appeler aussi le coefficient directeur "coefficient angulaire" ou "pente" 532 Points de non dérivabilité Point à tangente verticale Le graphique d une fonction admet une tangente verticale au point ( 0, f( 0 )) si 0 appartient au domaine de définition de f f n est pas dérivable en 0 lim 0 f () = ± 60

61 CHAPITRE 5 FONCTIONS DÉRIVABLES 53 INTERPRÉTATION GÉOMÉTRIQUE Eemple La fonction f() = 2 est définie sur [, ] et dérivable sur ], [ Sa dérivée vaut f () = 2 Les points (, 0) et (, 0) sont des points à tangente verticale car lim 2 = + et lim ( ) + 2 = f() = 4 2 = 2 = 2 Eemple La fonction f() = 3 est définie sur R et dérivable sur R 0 Sa dérivée vaut f () = Le point (0, 0) est un point à tangente verticale car lim 0 ± f () = + f() = 3 Point anguleu Le graphique d une fonction admet un point anguleu au point ( 0, f( 0 )) si 0 appartient au domaine de définition de f f n est pas dérivable en 0 les limites lim + 0 f () et lim 0 f () eistent, sont finies et différentes 6

62 53 INTERPRÉTATION GÉOMÉTRIQUE CHAPITRE 5 FONCTIONS DÉRIVABLES Eemple La fonction f() = ( 2) 2 est définie sur R + et dérivable sur ]0, 2[ ]2, + [ Sa dérivée vaut f () = ( 2)(3 2) 2 ( 2) 2 Le point (2, 0) est un point anguleu car lim 2 + f () = 2 et lim 2 f () = 2 f() = ( 2) 2 Le graphique de f admet une tangente à gauche d équation = 2( 2) et une tangente à droite d équation = 2( 2) Remarque Le point (0,0) est un point à tangente verticale Remarque Une deuième possibilité pour avoir un point anguleu est qu une des deu limites soit finie et l autre infinie Mais il est peu fréquent avec des fonctions "conventionnelles" Point de rebroussement Le graphique d une fonction admet un point de rebroussement au point ( 0, f( 0 )) si 0 appartient au domaine de définition de f f n est pas dérivable en 0 les limites lim + 0 f () et lim 0 f () eistent et sont infinies et différentes 62

63 CHAPITRE 5 FONCTIONS DÉRIVABLES 54 THÉORÈMES Eemple La fonction f() = 3 2 ( 2) est définie sur R et dérivable sur ], 0[ ]0, 2[ ]2, + [ Sa dérivée vaut f () = (3 4) 3 ( 2 ( 2)) 2 Le point (0, 0) est un point de rebroussement car lim 0 + f () = et lim 0 f () = + f() = 3 2 ( 2) Remarque Le point (2,0) est un point à tangente verticale 54 Théorèmes des fonctions dérivables 54 Lien entre continuité et dérivabilité Toute fonction dérivable sur un intervalle est continue sur cet intervalle Remarque La réciproque n est pas vraie La fonction est continue en = 0, mais pas dérivable en ce point 63

64 54 THÉORÈMES CHAPITRE 5 FONCTIONS DÉRIVABLES 542 Condition nécessaire pour avoir un etremum Si f est réelle, dérivable sur ]a, b[ et si il eiste 0 ]a, b[ tel que f( 0 ) f() ( ou f( 0 ) f()), ]a, b[, alors f ( 0 ) = 0 Remarques On peut formuler cette énoncé de façon plus littéraire : Si une fonction f dérivable sur un intervalle ]a, b[ admet un maimum ou un minimum en 0 ]a, b[, alors le nombre dérivé de f en 0 est nul Cela a pour conséquence que si f admet un maimum ou un minimum en un point 0 où f est dérivable, la tangente au graphique de f en ( 0, f( 0 )) est horizontale = f( 0 ) = f() a 0 b Ce n est pas une condition suffisante : une fonction peut admettre un maimum ou un minimum en un point où la fonction n est pas dérivable Eemple f() = admet un minimum en = 0, mais n est pas dérivable en = 0 Donc sa dérivée n est pas nulle! La réciproque de cette propriété n est pas vraie Il eiste des points où la dérivée d une fonction est nulle sans que la fonction n admette un etremum 64

65 CHAPITRE 5 FONCTIONS DÉRIVABLES 54 THÉORÈMES Eemple La fonction f() = 3 est telle que f (0) = 0 Pourtant la fonction n admet ni maimum, ni minimum en = Théoreme de Rolle Si f est réelle, continue sur [a, b], dérivable sur ]a, b[ telle que f(a) = f(b), alors il eiste ξ ]a, b[ tel que f (ξ) = 0 f (ξ) = 0 f(a) = f(b) = f() a ξ b Cela veut donc dire que si une fonction vérifie les hpothèses du théorème de Rolle, son graphique admet une tangente horizontale en (au moins) un de ses points dont l abscisse est dans l intervalle 544 Théorème des accroissements finis Si f est réelle, continue sur [a, b] et dérivable sur ]a, b[, alors il eiste ξ ]a, b[ tel que f (ξ) = f(b) f(a) b a 65

66 54 THÉORÈMES CHAPITRE 5 FONCTIONS DÉRIVABLES g f(b) f(a) a ξ b Remarques La thèse peut aussi s écrire f() = f(a) + ( a)f (ξ) Cela veut donc dire que si une fonction vérifie les hpothèses du théorème des accroissements finis (TAF), son graphique admet une tangente parallèle à la droite joignant les points (a, f(a)) et (b, f(b)) en (au moins) un de ses points dont l abscisse est dans l intervalle 545 Théorème de l Hospital Si f et g sont réelles et dérivables sur ]a, b[, si g () 0 sur ]a, b[, si lim f() = lim g() = 0 ou a + a + f () si lim a + g () = L f() alors lim a + g() = L Eemple lim 0 sin = [ ] 0 (sin ) = lim 0 0 cos = lim = 0 66

67 CHAPITRE 5 FONCTIONS DÉRIVABLES 54 THÉORÈMES Remarques Plusieurs applications successives du théorème peuvent être nécessaires pour lever certaines indéterminations Eemple e [ ] lim + 2 = [ = ] (e ) = lim + = lim + ( 2 ) = lim + (e ) (2) = lim + = + [ Le théorème de l Hospital ne s applique que pour des indéterminations de tpe [ ] ] 0 ou Cependant, il permet aussi de lever des indéterminations de tpe [0 ] à 0 condition de transformer l epression e 2 e 2 Eemple lim + e = [0 ] = lim + [ ] (e ) = = lim + e = 0 Le théorème de l Hospital donne la bonne valeur de la limite de la fonction, mais pas nécessairement la façon dont la fonction converge vers sa limite Eemple ln( + ) [ lim = = lim + ln() ] + + = lim + + = ln( + ) On constate cependant que comme >, la limite initiale est supérieure à ln(), alors que comme < +, la limite du quotient des dérivées est inférieure à Si les hpothèses ne sont pas vérifiées, le théorème de l Hospital peut donner un résultat fau 67

68 54 THÉORÈMES CHAPITRE 5 FONCTIONS DÉRIVABLES Eemple lim + e = = 0 n est pas un cas d indétermination 0 Si on lui applique erronément le théorème de l Hospital, on obtient lim + e = lim = + e 68

69 Chapitre 6 Variations et etrema d une fonction 6 Lien entre dérivée et croissance 6 Définition Etudier les variations d une fonction, c est déterminer les ensembles sur lesquels la fonction est croissante ou décroissante Généralement, le but est de déterminer ensuite les etrema de la fonction 62 Propriétés La fonction f réelle est croissante (décroissante) sur l intervalle I ssi le tau d accroissement est positif (négatif) pour tous, 2 I f( ) f( 2 ) 2 69

70 6 LIEN ENTRE DÉRIVÉE ET CROISSANCE CHAPITRE 6 VARIATIONS Eemple La fonction f() = + est strictement croissante sur R f( 2 ) = f() 2 f( ) Si f désigne une fonction réelle, dérivable sur l intervalle ouvert I, alors f est monotone croissante (décroissante) sur I ssi f 0(f 0) sur I Si f désigne une fonction réelle, dérivable sur l intervalle ouvert I et si f > 0(f < 0) sur I alors f est strictement croissante (décroissante) sur I Eemple La fonction f() = ln est dérivable sur R + 0 et (ln ) = Comme > 0 sur R+ 0, ln est strictement croissante sur R+ 0 Remarque La réciproque de cette propriété n est pas vraie Eemple La fonction f() = 3 est strictement croissante sur R, mais sa dérivée f () = 3 2 n est pas strictement positive sur R 70

71 CHAPITRE 6 VARIATIONS 62 EXTREMA 62 Etrema 62 Point stationnaire On appelle point stationnaire d une fonction f dérivable un zéro de f Eemple Soit la fonction f() = 2 Sa dérivée est f () = 2 f n admet qu un seul point stationnaire en = Condition suffisante pour avoir un etremum local Si f est réelle, dérivable sur un intervalle ouvert I et s il eiste 0 I tel que f () 0(f 0) à droite de 0 et f () 0(f 0) à gauche de 0, alors la fonction admet un maimum (minimum) local en 0 et f ( 0 ) = 0 Par conséquent, si f présente un etremum local en un point, sa dérivée est nulle La recherche des etrema d une fonction se fera donc en cherchant les points stationnaires de f Eemple Soit la fonction f() = 3 3 Sa dérivée est f () = Les points stationnaires de f sont donc situées en = et = On peut alors construire le tableau de signe de f et de variation de f suivant f () = 3( 2 ) f() Ma min 7

72 62 EXTREMA CHAPITRE 6 VARIATIONS Ma min Remarques Si 0 est un point stationnaire de f, cela ne signifie pas que 0 est un etremum de f Pour cela, il faut que f change de signe de part et d autre de 0 Eemple 0 = 0 est un point stationnaire de f() = 3, mais pas un etremum f() = La condition n est pas nécessaire : une fonction peut admettre un etremum en un point où elle n est pas dérivable 72

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Correction de l examen de la première session

Correction de l examen de la première session de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3

Définition 0,752 = 0,7 + 0,05 + 0,002 SYSTÈMES DE NUMÉRATION POSITIONNELS = 7 10 1 + 5 10 2 + 2 10 3 8 Systèmes de numération INTRODUCTION SYSTÈMES DE NUMÉRATION POSITIONNELS Dans un système positionnel, le nombre de symboles est fixe On représente par un symbole chaque chiffre inférieur à la base, incluant

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables

Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications

Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications Optimisation non linéaire Irène Charon, Olivier Hudry École nationale supérieure des télécommunications A. Optimisation sans contrainte.... Généralités.... Condition nécessaire et condition suffisante

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :

Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique : Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

Représentation des Nombres

Représentation des Nombres Chapitre 5 Représentation des Nombres 5. Representation des entiers 5.. Principe des représentations en base b Base L entier écrit 344 correspond a 3 mille + 4 cent + dix + 4. Plus généralement a n a n...

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Texte Agrégation limitée par diffusion interne

Texte Agrégation limitée par diffusion interne Page n 1. Texte Agrégation limitée par diffusion interne 1 Le phénomène observé Un fût de déchets radioactifs est enterré secrètement dans le Cantal. Au bout de quelques années, il devient poreux et laisse

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU)

10 leçon 2. Leçon n 2 : Contact entre deux solides. Frottement de glissement. Exemples. (PC ou 1 er CU) 0 leçon 2 Leçon n 2 : Contact entre deu solides Frottement de glissement Eemples (PC ou er CU) Introduction Contact entre deu solides Liaisons de contact 2 Contact ponctuel 2 Frottement de glissement 2

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Licence Sciences et Technologies Examen janvier 2010

Licence Sciences et Technologies Examen janvier 2010 Université de Provence Introduction à l Informatique Licence Sciences et Technologies Examen janvier 2010 Année 2009-10 Aucun document n est autorisé Les exercices peuvent être traités dans le désordre.

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP.

Union générale des étudiants de Tunisie Bureau de l institut Préparatoire Aux Etudes D'ingénieurs De Tunis. Modèle de compte-rendu de TP. Union générale des étudiants de Tunisie Modèle de compte-rendu de TP Dipôle RC Ce document a été publié pour l unique but d aider les étudiants, il est donc strictement interdit de l utiliser intégralement

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques

Cours3. Applications continues et homéomorphismes. 1 Rappel sur les images réciproques Université de Provence Topologie 2 Cours3. Applications continues et homéomorphismes 1 Rappel sur les images réciproques Soit une application f d un ensemble X vers un ensemble Y et soit une partie P de

Plus en détail

Raisonnement par récurrence Suites numériques

Raisonnement par récurrence Suites numériques Chapitre 1 Raisonnement par récurrence Suites numériques Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Raisonnement par récurrence. Limite finie ou infinie d une suite.

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2014 Corrigé EXERCICE 1 5 points Commun à tous les candidats 1. Réponse c : ln(10)+2 ln ( 10e 2) = ln(10)+ln ( e 2) = ln(10)+2 2. Réponse b : n 13 0,7 n 0,01

Plus en détail

Terminale SMS - STL 2007-2008

Terminale SMS - STL 2007-2008 Terminale SMS - STL 007-008 Annales Baccalauréat. STL Biochimie, France, sept. 008. SMS, France & La Réunion, sept 008 3 3. SMS, Polynésie, sept 008 4 4. STL Chimie de laboratoire et de procédés industriels,

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

Développer, factoriser pour résoudre

Développer, factoriser pour résoudre Développer, factoriser pour résoudre Avec le vocabulaire Associer à chaque epression un terme A B A différence produit A+ B A B inverse quotient A B A opposé somme Écrire la somme de et du carré de + Écrire

Plus en détail

Chapitre 2 Les ondes progressives périodiques

Chapitre 2 Les ondes progressives périodiques DERNIÈRE IMPRESSION LE er août 203 à 7:04 Chapitre 2 Les ondes progressives périodiques Table des matières Onde périodique 2 2 Les ondes sinusoïdales 3 3 Les ondes acoustiques 4 3. Les sons audibles.............................

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument

Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Glossaire des nombres

Glossaire des nombres Glossaire des nombres Numérisation et sens du nombre (4-6) Imprimeur de la Reine pour l'ontario, 008 Nombre : Objet mathématique qui représente une valeur numérique. Le chiffre est le symbole utilisé pour

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

F1C1/ Analyse. El Hadji Malick DIA

F1C1/ Analyse. El Hadji Malick DIA F1C1/ Analyse Présenté par : El Hadji Malick DIA dia.elmalick1@gmail.com Description sommaire du cours Porte sur l analyse réelle propose des outils de travail sur des éléments de topologie élémentaire

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t

n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t 3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire

Plus en détail

Capes 2002 - Première épreuve

Capes 2002 - Première épreuve Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : mathweb@free.fr Mots-clés : équation fonctionnelle, série

Plus en détail

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ

L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ L ANALYSE EN COMPOSANTES PRINCIPALES (A.C.P.) Pierre-Louis GONZALEZ INTRODUCTION Données : n individus observés sur p variables quantitatives. L A.C.P. permet d eplorer les liaisons entre variables et

Plus en détail

Intégration et probabilités TD1 Espaces mesurés Corrigé

Intégration et probabilités TD1 Espaces mesurés Corrigé Intégration et probabilités TD1 Espaces mesurés Corrigé 2012-2013 1 Petites questions 1 Est-ce que l ensemble des ouverts de R est une tribu? Réponse : Non, car le complémentaire de ], 0[ n est pas ouvert.

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail