CALCUL VECTORIEL et GEOMETRIE DANS L ESPACE
|
|
|
- Camille Bénard
- il y a 9 ans
- Total affichages :
Transcription
1 CALCUL VECTORIEL et GEOMETRIE DANS L ESPACE I) Rappels : - Droites orthogonales : Droites sécantes et orthogonales = perpendiclaires Dex droites sont parallèles, si ne droite à l ne est à l atre Attention : Dans l espace : dex droites à ne même troisième ne sont pas forcement parallèles. Droite à n plan (P) est orthogonale à tote droite contene dans (P) Dex droites à n même plan sont parallèles - Plan médiater : Plan médiater à AB = à AB et passant par I = AB 2 Ensemble de points éqidistants de A et B. - Vecters de l espace : Si A est confond en B : AB = 0 AB et CD égax même sens, même longer et même direction. AB + BC = AC Soit et dex ecters et λ R : Si = 0 o λ = 0 alors λ. = 0 et colinéaire = λ. = AB ; = AC ; w = AD.,, w sont coplanaires si A,B,C et D sont coplanaires.,, w sont coplanaires = α. + β. w Soit ( i ; j ; k ) ne base de l espace : x ; y ; z = x. i + y. j + z. k + (x + x ; y + y ; z + z ) α. (αx ; αy ; αz) Base (i ; j ; k ) orthonormale, si i = j = k = 1 et i j k = x² + y² + z² ; AB = x B x A 2 + y A y B 2 + z A + z B 2 - Droites et plans : A, B et C sont alignées AB = k. AC ; Aec k R. (D) de ecter directer passant par A. M D AM = k. ; Aec k R. Soit (, ) base d plan (P) : Si (α, β) R² tels qe : w = α. + β. alors w (P) Si (d) : de ecter directer w tel qe (d) à P alors,, w sont coplanaires. Si (d) : w tel qe (d) (P) alors w (; )
2 Dex plans dans l espace sel (E) peent être : Confonds, parallèles o sécant selon ne droite de E Une droite de E est donnée par : 2 points A et B : D = M AM = λ. AB 1 point A et n ecter directer () : D = M x = x A + λ. x Eqation paramétriqe y = y A + λ. y z = z A + λ. z AM = λ. AB Intersection de 2 plans : D = M x; y; z ax + by + cz + d = 0 a x + by + cz + d = 0 - Eqation d ensemble de points : Soit (D) : ( b, a) passant par A : Eqation cartésienne : ax + by + c = O c = ax A by A Vecter normal : (a, b) Soit l éqation de la droite y = m. x + p, le ecter directer de la droite (1; m) Soit (C) de centre Ω et de rayon R = AB 2 : M C : ΩM² = R² M C : MA. MB = 0 Soit (O ; i ; j ; k ) orthonormal : Eqation cartésienne d ne sphère de centre Ω (α, β, γ) et de rayon R : x α 2 + y β 2 + z γ 2 = R² Eqation cartésienne d n cylindre de réoltion d axe (O; k) : x² + y² = R² Eqation cartésienne d n cône de sommet O et de réoltion d axe (O; k) : x² + y² + β². z² = 0 ; Aec β = tan (α) II) Géométrie dans l espace (E) : Soit (P) n plan de ecter normale n (a, b, c) passant par A : Eqation cartésienne : ax + by + cz + d = 0 aec d = (a. x A + b. y A + c. z A ) - Combinaisons linéaires, ecters libres et liés : Dans l espace sel : il existe des familles libres de 3 ecters (admis) Totes familles de 4 ecters, o pls est liées, c-à-d q a moins n des ecters de cette famille pet s écrire en fonction des atres. Ainsi 3, le nombre maximal de ecters libre, est la dimension.
3 - Conséqence : Totes familles de 3 ecters libres est ne Base de E. Et tot ecter de E s écrit de façon niqe, comme combinaison linéaire de ces 3. Soit (e 1 ; e 2 ; e 3 ) Base de E il existe 3 réel (x; y; z) tels qe : = x. e 1 + y. e 2 + z. e 3 Et (x; y; z) sont les composantes (= coordonnées) d ecter dans la Base (e 1 ; e 2 ; e 3 ). Si e 1 = e 2 = e 3 = 1 : Base normée Si, en pls, ces ecters sont dex à dex : Base orthonormée - Orientation : (; ; w) trièdre est dit direct si : Et indirect si : w w - Repère : Fixons ne origine 0 à partir de laqelle on représente les ecters : pt M tel qe OM = Ainsi (0 ; e 1 ; e 2 ; e 3 ) est n repère de l espace (E) Alors M de E, nos faisons correspondre (x; y; z) ses coordonnées tels qe : OM = x. e 1 + y. e 2 + z. e 3 Et si le repère est orthonormé ( N) alors : OM² = x² + y² + z² - Prodits scalaires : 1.. =.. cos (, ) 2.. = = xx + yy + zz, ne marche qe si (O ; i ; j ; k ) orthonormal 4.. =. 5.. = ² = ² 6. ( + ). w =. w +. w 7. ( + ). = ² ² 8. ( + )² = ² + ² = 0 Por ne base ( N) : Prodit scalaire i j k i j k Donc :. = x. i + y. j + z. k. x. i + y. j + z. k. = x. x + y. y + z. z Conséqence :. cos ; =.
4 III) Prodit ectoriel (dans l espace) : Soit = w : w a plan ( ; ) ( ; ; w) forme n trièdre direct. w =.. sin ( ; ) - Propriétés : Si = 0 o = 0 alors = 0 Si est colinéaire à alors = 0 Il est anticommtatif : Il est bilinéaire : a + bw = a. + b. ( w) Il n est pas associatif : w ( ) w - Interprétation : : h Donc :. sin ; = h et = b = base d parallélogramme (P) D où :. sin ; = b. h = aire de (P) - Expression analytiqe (aec base N) : i j k i 0 k j j k 0 i k j i 0 Donc : = x. i + y. j + z. k x. i + y. j + z. k = y. z y. z. i + z. x z. x. j + x. y x. y. k y. z y. z Par site : z. x z. x x. y x. y Techniqe : + + x y z x y z = y. z y. z z. x z. x x. y x. y IV) Prodit mixte : Le prodit mixte de ; et w (dans cet ordre!!) at :. w = w. ( ) - Interprétation : Le prodit mixte permet de donner le olme d parallélépipède constrit sr, et w. Signe + si direct et signe si indirect
5 V) Système de coordonnées sel : - Coordonnées polaires : y r ϴ 0 - Dans l espace : M x Cartésiennes : M(x; y) aec x R et y R Polaires : M r; Θ aec r 0 et Θ π; π Por l origine : r = 0 et Θ = indéfinie La transition entre polaire et cartésienne et la même qe por les complexes. Soit E mni de (0 ; i; j; k) N et n point M tel qe : Coordonnées cartésiennes (x; y; z) : OM = x. i + y. j + z. k Coordonnées cylindriqes r; Θ; z : r = Om ; Aec m le projeté orthogonal de M sr le plan (0 ; i; j) Θ = (i; Om) et z = OM. k = hater Donc x = r. cos Θ ; y = r. sin Θ ; z = z Coordonnées sphériqes :(r; θ; φ) : Θ : angle (i; Om) et φ : angle (k, OM) et r = OM Donc : x = r. cos Θ. sin φ ; y = r. sin φ. sin Θ ; z = r. cos Θ - Démonstration : Plan (P) passant par A(x 0 ; y 0 ) et dex ecters non-colinéaires et représentant l ensemble des points M tels qe : AM = λ. + μ. Aec (λ, μ) R². Dans n repère : x x 0 y y 0 z z 0 x = λ. y z x + μ. y z Soit x = x 0 + λ. y + μ. x y = y 0 + λ. y + μ. y z = z 0 + λ. z + μ. z N.B : x = x(λ; μ) y = y(λ; μ) z = z(λ; μ) Fonction des paramètres λ et μ Atre caractérisation : M P AM AM n AM. n = 0 Donc : x x 0 y y 0 z z 0. n x n y n z = 0 x x 0. n x + y y 0. n y + z z 0. n z = 0 M P M(x; y; z) Vérifiant ne éqation d type : ax + by + cz + d = 0 Aec d = (x 0. n x + y 0. n y + z 0. n z ) et a = n x, b = n y, c = n z
6 VI) Fonction ectorielles (d ne ariable R) : - Définition : Une fonction ectorielle fait correspondre à n R (x, t, ect) n ecter : x E(x) Ex : temps position t OM(t) - Tradction analytiqe (dans n repère) : x t t x(t) t E t = y t est définie par 3 fonctions nmériqes : t y(t) z t t z(t) - Dériée : Définition classiqe : Soit (t 0 ) ne aler, h n accroissement : Considérons : E t 0 +h E t 0 t 0 +h t 0 = 1 h. (E t 0 + h E t 0 ) C est n ecter dépendant de h : Si lim h 0 1 h. (E t 0 + h E t 0 ) existe, on la note : E (t 0 ) o dx (E) t t 0 Donc : (h) w qand h 0 signifie : lim h 0 ( h w ) = 0 La fonction ectorielle : t E (t) est la dériée de la fonction : t E(t) Or E t = x t ; y t ; z t Donc E t = x t ; y t ; z t - Formles : d. = d. + d. d = d + d
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1
Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes
Étudier si une famille est une base
Base raisonnée d exercices de mathématiqes (Braise) Méthodes et techniqes des exercices Étdier si ne famille est ne base Soit E n K-espace vectoriel. Comment décider si ne famille donnée de vecters de
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Séquence 10. Géométrie dans l espace. Sommaire
Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Calcul intégral élémentaire en plusieurs variables
Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Chapitre 1 Cinématique du point matériel
Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
F411 - Courbes Paramétrées, Polaires
1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié [email protected] http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013
Angles orientés et fonctions circulaires ( En première S )
Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble
STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE
ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point
Cours de Mécanique du point matériel
Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.
Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles
Repérage d un point - Vitesse et
PSI - écanique I - Repérage d un point - Vitesse et accélération page 1/6 Repérage d un point - Vitesse et accélération Table des matières 1 Espace et temps - Référentiel d observation 1 2 Coordonnées
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Chapitre 0 Introduction à la cinématique
Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
Capes 2002 - Première épreuve
Cette correction a été rédigée par Frédéric Bayart. Si vous avez des remarques à faire, ou pour signaler des erreurs, n hésitez pas à écrire à : [email protected] Mots-clés : équation fonctionnelle, série
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)
FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
Microphones d appels Cloud avec message pré-enregistrés intégré
Microphones d appels Clod avec message pré-enregistrés intégré Clearly better sond Modèles PM4-SA et PM8-SA Description générale Les microphones d appels nmériqes Clod de la gamme PM-SA ont été développés
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Formes quadratiques. 1 Formes quadratiques et formes polaires associées. Imen BHOURI. 1.1 Définitions
Formes quadratiques Imen BHOURI 1 Ce cours s adresse aux étudiants de niveau deuxième année de Licence et à ceux qui préparent le capes. Il combine d une façon indissociable l étude des concepts bilinéaires
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe le nombre ax + b
I Définition d une fonction affine Faire l activité 1 «une nouvelle fonction» 1. définition générale a et b étant deux nombres relatifs donnés, une fonction affine est une fonction qui a un nombre x associe
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
Propriétés électriques de la matière
1 Propriétés électriques de la matière La matière montre des propriétés électriques qui ont été observées depuis l antiquité. Nous allons distinguer les plus fondamentales de ces propriétés. 1 Propriétés
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
OM 1 Outils mathématiques : fonction de plusieurs variables
Outils mathématiques : fonction de plusieurs variables PCSI 2013 2014 Certaines partie de ce chapitre ne seront utiles qu à partir de l année prochaine, mais une grande partie nous servira dès cette année.
LES GRAPHIQUES SOUS MAPLE
LES GRAPHIQUES SOUS MAPLE 1 Graphiques en 2D Maple permet de tracer des graphiques grâce à la fonction plot et ses nombreuses options. 1.1 Une seule courbe > plot (nomfn, a.. b); # tracé sur [a,b] de la
Fonctions de plusieurs variables
UNIVERSITÉ DE POITIERS Parcours Renforcé Première Année 2009/2010 Paul Broussous Fonctions de plusieurs variables Seconde version corrigée Table des matières 1. Un peu de topologie. 1.1. Distance euclidienne,
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
LBC 341x/0 - Enceintes
Systèmes de commnications LBC 41x/ - Enceintes LBC 41x/ - Enceintes www.boschsecrity.fr Reprodction vocale et msicale hate fidélité Plage de fréqences étende Entrées 8 ohms et 1 V réglables Enceinte compacte
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie
Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
INFORMATIONS DIVERSES
Nom de l'adhérent : N d'adhérent :.. INFORMATIONS DIVERSES Rubrique Nom de la personne à contacter AD Date de début exercice N BA Date de fin exercice N BB Date d'arrêté provisoire BC DECLARATION RECTIFICATIVE
L ALGORITHMIQUE. Algorithme
L ALGORITHMIQUE Inspirée par l informatique, cette démarche permet de résoudre beaucoup de problèmes. Quelques algorithmes ont été vus en 3 ième et cette année, au cours de leçons, nous verrons quelques
TRANSLATION ET VECTEURS
TRNSLTION ET VETEURS 1 sr 17 ctivité conseillée ctivités de grope La Translation (Partie1) http//www.maths-et-tiqes.fr/telech/trans_gr1.pdf La Translation (Partie2) http//www.maths-et-tiqes.fr/telech/trans_gr2.pdf
Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN.
TD 6 corrigé - PFS Résolution analytique (Loi entrée-sortie statique) Page 1/1 Corrigé Exercice 1 : BRIDE HYDRAULIQUE AVEC HYPOTHÈSE PROBLÈME PLAN. Question : Réaliser le graphe de structure, puis compléter
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Cours de mathématiques
DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Votre expert en flux documentaires et logistiques. Catalogue des formations
Votre expert en flx docmentaires et logistiqes Cataloge des formations Qelles qe soient les entreprises, les salariés pevent sivre, a cors de ler vie professionnelle, des actions de formation professionnelle
Fonctions de plusieurs variables
Maths MP Exercices Fonctions de plusieurs variables Les indications ne sont ici que pour être consultées après le T (pour les exercices non traités). Avant et pendant le T, tenez bon et n allez pas les
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
= 1 si n = m& où n et m sont souvent des indices entiers, par exemple, n, m = 0, 1, 2, 3, 4... En fait,! n m
1 épartement de Physique, Université Laval, Québec Pierre Amiot, 1. La fonction delta et certaines de ses utilisations. Clientèle Ce texte est destiné aux physiciens, ingénieurs et autres scientifiques.
NOMBRES COMPLEXES. Exercice 1 :
Exercice 1 : NOMBRES COMPLEXES On donne θ 0 un réel tel que : cos(θ 0 ) 5 et sin(θ 0 ) 1 5. Calculer le module et l'argument de chacun des nombres complexes suivants (en fonction de θ 0 ) : a i( )( )(1
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
Géométrie dans l espace
Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en
Michel Henry Nicolas Delorme
Michel Henry Nicolas Delorme Mécanique du point Cours + Exos Michel Henry Maître de conférences à l IUFM des Pays de Loire (Le Mans) Agrégé de physique Nicolas Delorme Maître de conférences à l université
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS. Un nouveau service pour faciliter les paiements
La DGFiP AU SERVICE DES COLLECTIVITÉS TERRITORIALES ET DES USAGERS TIPI Titres Payables par Internet Un novea service por faciliter les paiements Un moyen de paiement adapté à la vie qotidienne TIPI :
CHAPITRE 10. Jacobien, changement de coordonnées.
CHAPITRE 10 Jacobien, changement de coordonnées ans ce chapitre, nous allons premièrement rappeler la définition du déterminant d une matrice Nous nous limiterons au cas des matrices d ordre 2 2et3 3,
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Fonctions Analytiques
5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
Corrigé du baccalauréat S Pondichéry 13 avril 2011
Corrigé du baccalauréat S Pondichéry avril EXERCICE Commun à tous ls candidats Parti I points. L ax ds ordonnés st asymptot à C au voisinag d ; la fonction étant décroissant sur ] ; + [, la limit quand
Exercices de géométrie
Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente
MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE
MINISTÈRE DE L'ÉCOLOGIE, DE L'ÉNERGIE DU DÉVELOPPEMENT DURABLE ET DE L'AMÉNAGEMENT DU TERRITOIRE MINISTÈRE DE L'INTÉRIEUR, DE L'OUTRE-MER ET DES COLLECTIVITÉS TERRITORIALES Connaître Rédire Aménager Informer
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
= constante et cette constante est a.
Le problème Lorsqu on sait que f(x 1 ) = y 1 et que f(x 2 ) = y 2, comment trouver l expression de f(x 1 )? On sait qu une fonction affine a une expression de la forme f(x) = ax + b, le problème est donc
Séries numériques. Chap. 02 : cours complet.
Séris méris Cha : cors comlt Séris d réls t d comlxs Défiitio : séri d réls o d comlxs Défiitio : séri corgt o dirgt Rmar : iflc ds rmirs trms d séri sr la corgc Théorèm : coditio écssair d corgc Théorèm
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Mathématiques Algèbre et géométrie
Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches Daniel FREDON Myriam MAUMY-BERTRAND Frédéric BERTRAND Mathématiques Algèbre et géométrie en 30 fiches
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE
Diocèses de Paris, Nanterre, Créteil et Saint-Denis JE LÈGUE À L ŒUVRE DES VOCATIONS POUR FORMER NOS FUTURS PRÊTRES NOS RÉPONSES À VOS QUESTIONS SUR LES LEGS, DONATIONS, ASSURANCES VIE FAITES DE VOS BIENS
Cours 7 : Utilisation de modules sous python
Cours 7 : Utilisation de modules sous python 2013/2014 Utilisation d un module Importer un module Exemple : le module random Importer un module Exemple : le module random Importer un module Un module est
Un K-espace vectoriel est un ensemble non vide E muni : d une loi de composition interne, c est-à-dire d une application de E E dans E : E E E
Exo7 Espaces vectoriels Vidéo partie 1. Espace vectoriel (début Vidéo partie 2. Espace vectoriel (fin Vidéo partie 3. Sous-espace vectoriel (début Vidéo partie 4. Sous-espace vectoriel (milieu Vidéo partie
Analyse en Composantes Principales
Analyse en Composantes Principales Anne B Dufour Octobre 2013 Anne B Dufour () Analyse en Composantes Principales Octobre 2013 1 / 36 Introduction Introduction Soit X un tableau contenant p variables mesurées
PRÉSENTATION DU CONTRAT
PRÉSENTATION DU CONTRAT 2 L ASSURANCE VIE UN FANTASTIQUE OUTIL DE GESTION PATRIMONIALE Le fait qe l assrance vie soit, depis plsiers décennies, le placement préféré des Français n est certes pas le frit
3 Approximation de solutions d équations
3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle
3. Conditionnement P (B)
Conditionnement 16 3. Conditionnement Dans cette section, nous allons rappeler un certain nombre de définitions et de propriétés liées au problème du conditionnement, c est à dire à la prise en compte
Solutions de Verrouillage Électronique et Monnayeurs
Soltions de Verroillage Électroniqe et Monnayers MONNAYEURS OMEGA 100 Boîtier en acrylonitrile btadiène styrène (ABS) Utilisation en environnement sec Fonction retor de pièce 2 clés nickelées Jsq à 3000
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Etude de fonctions: procédure et exemple
Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons
La complémentaire santé. des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ. adaptée à vos besoins pour faciliter votre accès aux soins :
La complémentaire santé des 16-30 ans CHEZ NOUS PAS DE PROFIT SUR VOTRE SANTÉ la réponse santé adaptée à vos besoins por faciliter votre accès ax soins : avec le tiers payant por ne pls avancer vos frais
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
mettez le casque et savourez votre calme! Réduction active des bruits de fond (ANC):
& pls03/ 2014 Une conversation de vive voix en dit pls qe mille corriers électroniqes Page 3 Série Jabra Evolve Pages 4 5 Micros-casqes UC Pages 6 7 freevoice SondPro 355 Page 8 Jabra PRO925/935 Page 9
Thème 17: Optimisation
OPTIMISATION 45 Thème 17: Optimisation Introduction : Dans la plupart des applications, les grandeurs physiques ou géométriques sont exprimées à l aide d une formule contenant une fonction. Il peut s agir
C1 : Fonctions de plusieurs variables
1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions
annexes circulaire interministérielle n DGUHC 2007-53 du 30 novembre 2007
annexes circlaire interministérielle n DGUHC 2007-53 d 30 novembre 2007 relative à l accessibilité des établissements recevant d pblic, des installations overtes a pblic et des bâtiments d habitation Annexes
