Transformation de Fourier
|
|
|
- Zoé Blanchard
- il y a 9 ans
- Total affichages :
Transcription
1 Transformation de Fourier IV 1 - Convolution a. Système de convolution. b. Principe de la convolution. c. Définition. d. Exemples. IV - Transformation de Fourier a. Définition. Théorème d inversion. b. Exemples. c. Convolution. 1. d. TF dans L L Transformation de Fourier 1
2 IV 1 a - Système de convolution. X : e f s Définition : Un système de convolution X est * linéaire. * continue. * invariant par translation. Inconnue Théorème : Tout système de convolution vérifie s = e * f ( ) = ( ) ( ) s t e t u f u du Sous réserve d existence e * f = f * e. f est dite réponse impulsionnelle car f * δ = f. Dirac Transformation de Fourier
3 IV 1 b - Principe de la convolution. La transformation de Fourier de de Laplace opérent les transformations suivantes : e f s E F S de telle manière que : s = e * f S = E F Principe : S = EF F = S / E s = e f f * Réponse impulsionnelle Transformation de Fourier 3
4 IV 1 c - Définition. f * g t = f t u g u du t R. ( )( ) ( ) ( ) Théorème : f * g existe et appartient à L 1 si f et g sont dans ou dans. L 1 L Ce résultat est obtenu à l aide de l inégalité de Cauchy Schwarz et du théorème de Fubini. Transformation de Fourier 4
5 IV -1 d : Exemples. Exercice Calculer les carrés de convolution des signaux 1. f ( t) = e t. f ( t) 1 = 1 + t 3. f ( t) = 1 0 si ailleurs t T Transformation de Fourier 5
6 > f :=t -> exp(-t^); f := t e t > Int( f(t-u) * f(u), u=-infinity..infinity ) : "=value("); ( t u ) u π e e du = e 1 t Transformation de Fourier 6
7 > f := t -> 1 / (1+t^) : > Int( f(t-u)*f(u), u=-infinity..infinity) : value( " ) ; 1 ( 1 ( ) )( + t u 1 + u ) du pas de réponse > Int( f(t-u)*f(u), u=0..infinity) : value( " ) ; π 4 + t ln ( 1 + ) + ( t 4 + t ) t t arctan t > Int( f(t-u)*f(u), u=-infinity..0) + " : value( " ) ; π 4 + t Transformation de Fourier 7
8 > assume( T > 0) : f := t -> piecewise( t<t/ and t>-t/, 1, 0 ) ; T T f : = t piecewise t < and < t, 1, 0 > convert( f(t), piecewise, t ) ; T t T t T < t ATTENTION il faut décoder Transformation de Fourier 8
9 > Int( f(t-u)*f(u), u=-infinity..infinity ) ; 1 0 u T 0 T < and u < 0 otherwise 1 t u T < 0 and T t + u < 0 otherwise 0 du Nous exprimons ce produit selon la valeur de t. Les valeurs utiles sont : t = -T et t = T. Transformation de Fourier 9
10 > assume( t> T ) : Int(f(u)*f(t-u), u=-infinity..infinity ) : value( " ) ; 0 > assume( t<- T ) : Int(f(u)*f(t-u), u=-infinity..infinity ) : value( " ) ; 0 > assume( t< T, t>0 ) : Int(f(u)*f(t-u), u=-infinity..infinity ) : value( " ) ; T ~ t ~ > assume( t>- T, u<0 ) : Int(f(u)*f(t-u), u=-infinity..infinity ) : value( " ) ; T ~ + t ~ Transformation de Fourier 10
11 > assume( T>0 ) : g := t -> piecewise(t<-t, 0, t<=0, t+t, t<t, -t+t, 0 ) ; ( ) g: = t piecewise t < T, 0, t < 0, t + T, t < T, t + T, 0 > convert( g(t), piecewise, t) ; 0 t T ~ t + T ~ t 0 t + T ~ t < T ~ 0 T ~ t ATTENTION il faut décoder Transformation de Fourier 11
12 > T := : plot(g(t), t=-3..3, thickness=) ; Transformation de Fourier 1
13 IV a - Définition - Théorème d inversion. Définition : La TF F f du signal f L 1 est [ ] i π ν t [ ]( ν) = ( ) ( 1) F f f t e dt Théorème d inversion : La TFI f du signal F[ f ] L 1 est Nous admettons que : f t F f ν e d ν i π ν t ( ) = [ ]( ) ( ) [ f ]( ν) Lim F = 0 ν ± Transformation de Fourier 13
14 IV - b : Exemples. Exercice Déterminer les TF des signaux 1. f ( t) = 1 T 0 si ailleurs t T. g( t) t = e π 3. h( t) = sin t t Transformation de Fourier 14
15 Exemple 1 > assume( T>0 ) : f := t -> piecewise(t<-t/, 0, t<t/, 1/T, 0) ; f : = t piecewise t < T, 0, t < T,, 0 T > subs( T=Pi, f(t)) : plot( f(t), t=-pi.. Pi ) ; f est appelée fonction porte ou rectangle et est notée 1 t f ( t ) = rect T T Transformation de Fourier 15
16 > Int( f(t)*cos(*pi*t*nu), t=-t/..t/) : "=value( " ) ; f est paire et nulle à l extérieur 1 0 t < T ~ 1/ T ~ 1 1 sin t < T ~ cos( π t ν) dt = 1/ T ~ T ~ πt 0 otherwise > F := nu -> sin (Pi*T*nu) / (T*Pi*nu) ; ( πt ν) sin F := ν = sinc πt ν ( T ν) ( πt ~ ν) ~ ν Transformation de Fourier 16
17 > subs( T=Pi, F(nu)) : plot( F(nu), nu=-pi.. Pi ) ; Transformation de Fourier 17
18 > Int(F(nu)*cos(*Pi*t*nu), nu = -infinity.. infinity) : " = value( " ) ; ( πt ~ ν) cos( π t ν) sin dν = πt ~ ν 1 signum T ~ ( T ~ t) signum( T ~ t) > convert(-1/*(-signum(t+*t)+signum(-t+*t)) / T, piecewise, t) : Comparer la réponse au signal de départ. Transformation de Fourier 18
19 Exemple > g := t -> exp(-pi*t^) ; g:= t e - π t > plot( g(t), t= ) ; Remarquable > Int(g(t)*cos(*Pi*t*nu), t=-infinity..infinity) : " = value(") ; π t ( π ν) e cos t dt = e π ν Transformation de Fourier 19
20 IV c - Convolution. Théorème de Convolution : Si f et g sont dans f * g L 1 et L 1 alors [ f * g] = [ f ] [ g] ( 3) F F F Si de plus f g, F[ f ] F[ g] et L 1 alors [ f g] = [ f ]* [ g] ( 4) F F F La relation (3) permet de résoudre les équations de convolution cf IV 1 b. Transformation de Fourier 0
21 > assume( T > 0) : f := t -> piecewise( t<t/ and t>-t/, 1, 0 ) : T T f : = t piecewise t < and < t, 1, 0 > Int( f(t)*cos(*pi*t*nu), t=-t/..t/) : "=value( " ) ; T ~ T 1 t ~ 0 T ~ T ~ < 0 and t < 0 cos otherwise sin ( πt ~ ν) = π ν ( π t ν) dt Transformation de Fourier 1
22 > assume( T>0 ) : g := t -> piecewise(t<-t, 0, t<=0, t+t, t<t, -t+t, 0 ) ; ( ) g: = t piecewise t < T, 0, t < 0, t + T, t < T, t + T, 0 > Int( g(t)*cos(*pi*t*nu), t=-t..t) : "=value( " ) ; T ~ T ~ 0 t T ~ t + T ~ t 0 t + T ~ t < T ~ cos 0 T ~ t cos = ( π t ν) ( πt ~ ν) π ν dt 1 Transformation de Fourier
23 IV d - Transformée de Fourier dans L 1 L. Théorème de Parseval : Si f et g sont dans L 1 L F [ ] F[ ] f, g = f, g En particulier l énergie est alors [ ]( ) ( ) W f = F f ν dν = f t dt F[ f ] est le spectre du signal f. F[ f ]( ν) est la densité spectrale d énergie du signal f. Transformation de Fourier 3
24 IV - d : Vérifier pour les exemples du IV - b le théorème de Parseval ( ) = F[ f ]( ν) f t 1 T 0 si ailleurs t T ( ) e F[ g]( ν) g t = π t = e π ν = ( πt ν) sin πt ν Exercice ( ) F[ h]( ν) h t sin t = = t 0 π π 1 ν > π 1 ν < π 1 ν = π Transformation de Fourier 4
25 > Int( f(t)^, t = -infinity.. infinity) : " = value( " ) ; 1 0 t < T ~ 1 1 t < T ~ dt T ~ 0 otherwise = 1 T ~ > Int(F(nu), nu = -infinity.. infinity) : " = value( " ) ; ( T ) sin π ν 1 = π T ~ ν T ~ Transformation de Fourier 5
26 > Int( g(t)^, t = -infinity.. infinity) : " = value( " ) ; ( ) t e dt = > Int( h(t)^, t = -infinity.. infinity) : " = value( " ) ; π sin t ( t) > Int(H(nu), nu = -infinity.. infinity) : " = value( " ) ; 1 0 ν < π + 1/ π 1 π ν < dt = π 1/ π π 0 otherwise dt = π Transformation de Fourier 6
TD1 Signaux, énergie et puissance, signaux aléatoires
TD1 Signaux, énergie et puissance, signaux aléatoires I ) Ecrire l'expression analytique des signaux représentés sur les figures suivantes à l'aide de signaux particuliers. Dans le cas du signal y(t) trouver
Chapitre 7 : Intégration sur un intervalle quelconque
Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 2013-2014 Chapitre 7 : Intégration sur un intervalle quelconque 1 Fonctions intégrables Définition 1 Soit I R un intervalle et soit f : I R + une fonction
Systèmes de communications numériques 2
Systèmes de Communications Numériques Philippe Ciuciu, Christophe Vignat Laboratoire des Signaux et Systèmes cnrs supélec ups supélec, Plateau de Moulon, 9119 Gif-sur-Yvette [email protected] Université
CHAPITRE V. Théorie de l échantillonnage et de la quantification
CHAPITRE V Théorie de l échantillonnage et de la quantification Olivier FRANÇAIS, SOMMAIRE I INTRODUCTION... 3 II THÉORIE DE L ÉCHANTILLONNAGE... 3 II. ACQUISITION DES SIGNAUX... 3 II. MODÉLISATION DE
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
BTS Groupement A. Mathématiques Session 2011. Spécialités CIRA, IRIS, Systèmes électroniques, TPIL
BTS Groupement A Mathématiques Session 11 Exercice 1 : 1 points Spécialités CIRA, IRIS, Systèmes électroniques, TPIL On considère un circuit composé d une résistance et d un condensateur représenté par
Développements limités. Notion de développement limité
MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un
Partie 1 - Séquence 3 Original d une fonction
Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)
Les travaux doivent être remis sous forme papier.
Physique mathématique II Calendrier: Date Pondération/note nale Matériel couvert ExercicesSérie 1 : 25 septembre 2014 5% RH&B: Ch. 3 ExercicesSérie 2 : 23 octobre 2014 5% RH&B: Ch. 12-13 Examen 1 : 24
Traitement du signal avec Scilab : la transformée de Fourier discrète
Traitement du signal avec Scilab : la transformée de Fourier discrète L objectif de cette séance est de valider l expression de la transformée de Fourier Discrète (TFD), telle que peut la déterminer un
8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2
Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R
n N = u N u N+1 1 u pour u 1. f ( uv 1) v N+1 v N v 1 1 2 t
3.La méthode de Dirichlet 99 11 Le théorème de Dirichlet 3.La méthode de Dirichlet Lorsque Dirichlet, au début des années 180, découvre les travaux de Fourier, il cherche à les justifier par des méthodes
Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point (x 0,y 0,z 0 ) donné :
Enoncés : Stephan de Bièvre Corrections : Johannes Huebschmann Exo7 Plans tangents à un graphe, différentiabilité Exercice 1 Trouver l équation du plan tangent pour chaque surface ci-dessous, au point
5. Analyse des signaux non périodiques
5. Analyse des signaux non périodiques 5.. Transformation de Fourier 5... Passage de la série à la transformation de Fourier Le passage d'un signal périodique à un signal apériodique peut se faire en considérant
Traitement numérique du signal. Première partie : Bases mathématiques
1 Traitement numérique du signal. Première partie : Bases mathématiques J.Idier H. Piet-Lahanier G. Le Besnerais F. Champagnat Première version du document : 1993 Date de la dernière remise à jour : mars
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
Correction de l examen de la première session
de l examen de la première session Julian Tugaut, Franck Licini, Didier Vincent Si vous trouvez des erreurs de Français ou de mathématiques ou bien si vous avez des questions et/ou des suggestions, envoyez-moi
Fonctions de plusieurs variables. Sébastien Tordeux
Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................
Développements limités, équivalents et calculs de limites
Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables
Notes du cours MTH1101 Calcul I Partie II: fonctions de plusieurs variables Guy Desaulniers Département de mathématiques et de génie industriel École Polytechnique de Montréal Automne 2014 Table des matières
Communications numériques
Communications numériques 1. Modulation numérique (a) message numérique/signal numérique (b) transmission binaire/m-aire en bande de base (c) modulation sur fréquence porteuse (d) paramètres, limite fondamentale
Christian JUTTEN Théorie du signal
Christian UTTEN Théorie du signal Cours de deuxième année (3i4) du département 3i Université oseph Fourier - Polytech Grenoble novembre 2009 1 Table des matières 1 Introduction à la théorie du signal 6
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
I. Polynômes de Tchebychev
Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire
M1107 : Initiation à la mesure du signal. T_MesSig
1/81 M1107 : Initiation à la mesure du signal T_MesSig Frédéric PAYAN IUT Nice Côte d Azur - Département R&T Université de Nice Sophia Antipolis [email protected] 15 octobre 2014 2/81 Curriculum
4. Martingales à temps discret
Martingales à temps discret 25 4. Martingales à temps discret 4.1. Généralités. On fixe un espace de probabilités filtré (Ω, (F n ) n, F, IP ). On pose que F contient ses ensembles négligeables mais les
Chapitre 11. Séries de Fourier. Nous supposons connues les formules donnant les coefficients de Fourier d une fonction 2 - périodique :
Chapitre Chapitre. Séries de Fourier Nous supposons connues les formules donnant les coefficients de Fourier d une fonction - périodique : c c a0 f x dx c an f xcosnxdx c c bn f xsinn x dx c L objet de
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours
Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****
Limites finies en un point
8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,
Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer
Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy
C1 : Fonctions de plusieurs variables
1er semestre 2012/13 CPUMP 3 U 11 : Abrégé de cours Compléments Analyse 3 : fonctions analytiques Les notes suivantes, disponibles à l adresse http://www.iecn.u-nancy.fr/~bertram/, contiennent les définitions
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre
IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables
Développements limités usuels en 0
Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n
aux différences est appelé équation aux différences d ordre n en forme normale.
MODÉLISATION ET SIMULATION EQUATIONS AUX DIFFÉRENCES (I/II) 1. Rappels théoriques : résolution d équations aux différences 1.1. Équations aux différences. Définition. Soit x k = x(k) X l état scalaire
P1PY7204 Acquisition de données Cours
ANNEE 2012-2013 Semestre d Automne 2012 Master de Sciences, Technologies, Santé Mention Physique- Spécialité Instrumentation P1PY7204 Acquisition de données Cours Denis Dumora [email protected]
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
Estimation: intervalle de fluctuation et de confiance. Mars 2012. IREM: groupe Proba-Stat. Fluctuation. Confiance. dans les programmes comparaison
Estimation: intervalle de fluctuation et de confiance Mars 2012 IREM: groupe Proba-Stat Estimation Term.1 Intervalle de fluctuation connu : probabilité p, taille de l échantillon n but : estimer une fréquence
MATHS FINANCIERES. [email protected]. Projet OMEGA
MATHS FINANCIERES [email protected] Projet OMEGA Sophia Antipolis, septembre 2004 1. Introduction : la valorisation de contrats optionnels Options d achat et de vente : Call et Put Une option
Théorie de la Mesure et Intégration
Ecole Nationale de la Statistique et de l Administration Economique Théorie de la Mesure et Intégration Xavier MARY 2 Table des matières I Théorie de la mesure 11 1 Algèbres et tribus de parties d un ensemble
On ne peut pas entendre la forme d un tambour
On ne peut pas entendre la forme d un tambour Pierre Bérard Institut Fourier Laboratoire de Mathématiques Unité Mixte de Recherche 5582 CNRS UJF Université Joseph Fourier, Grenoble 1 Introduction 1.1 Position
UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE. Le Traitement du Signal aléatoire
UNIVERSITE DE TECHNOLOGIE DE COMPIEGNE Le Traitement du Signal aléatoire SY06 partie II - Printemps 2009 P.Simard 12 mai 2009 2 Table des matières 1 Besoins de modèles aléatoires pour les signaux 5 2 Principaux
Atelier C TIA Portal CTIA04 : Programmation des automates S7-300 Opérations numériques
Atelier C TIA Portal CTIA04 : Programmation des automates S7-300 Opérations numériques CTIA04 Page 1 1. Les types de données sous S7 300 Il existe plusieurs types de données utilisées pour la programmation
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
Différentiabilité ; Fonctions de plusieurs variables réelles
Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2
CCP PSI - 2010 Mathématiques 1 : un corrigé
CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Chapitre VI Fonctions de plusieurs variables
Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements
Dérivées et intégrales non entières
que "non entière". Dérivées et intégrales non entières. Notations. Outils Robert Janin La terminologie est plutôt "fractionnaire" On notera f (k) ou k x k f la érivée orre k e la fonction f et nous pourrons
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
MODELES DE DUREE DE VIE
MODELES DE DUREE DE VIE Cours 1 : Introduction I- Contexte et définitions II- Les données III- Caractéristiques d intérêt IV- Evènements non renouvelables/renouvelables (unique/répété) I- Contexte et définitions
Le modèle de Black et Scholes
Le modèle de Black et Scholes Alexandre Popier février 21 1 Introduction : exemple très simple de modèle financier On considère un marché avec une seule action cotée, sur une période donnée T. Dans un
Fonctions de plusieurs variables et applications pour l ingénieur
Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie
de calibration Master 2: Calibration de modèles: présentation et simulation d
Master 2: Calibration de modèles: présentation et simulation de quelques problèmes de calibration Plan de la présentation 1. Présentation de quelques modèles à calibrer 1a. Reconstruction d une courbe
Data first, ou comment piloter l analyse par les données
CNRS & Patrick Flandrin École Normale Supérieure de Lyon Data first, ou comment piloter l analyse par les données M2 de Physique Cours 2012-2013 1 Table des matières 1 Introduction 4 2 Rappel sur les analyses
Continuité d une fonction de plusieurs variables
Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles
Tests non-paramétriques de non-effet et d adéquation pour des covariables fonctionnelles Valentin Patilea 1 Cesar Sanchez-sellero 2 Matthieu Saumard 3 1 CREST-ENSAI et IRMAR 2 USC Espagne 3 IRMAR-INSA
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)
Programme Pédagogique National du DUT «Génie Électrique et Informatique Industrielle» Présentation de la formation
Programme Pédagogique National du DUT «Génie Électrique et Informatique Industrielle» Présentation de la formation Sommaire 2 1 Préambule... 3 2 Présentation générale de la formation... 3 2.1 Compétences
Introduction aux Communications Numériques
Université de Cergy-Pontoise - 01 - Communications numériques Introduction aux Communications Numériques Master M1 ISIM March 19, 01 Iryna ANDRIYANOVA [email protected] 1 Contenu du cours 1
Transmission des signaux numériques
Transmission des signaux numériques par Hikmet SARI Chef de Département d Études à la Société Anonyme de Télécommunications (SAT) Professeur Associé à Télécom Paris. Transmission en bande de base... E
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Fonctions Analytiques
5 Chapitre Fonctions Analytiques. Le plan complexe.. Rappels Soit z C, alors!(x,y) IR 2 tel que z = x + iy. On définit le module de z comme z = x 2 + y 2. On peut aussi repérer z par des coordonnées polaires,
Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques.
14-3- 214 J.F.C. p. 1 I Exercice autour de densité, fonction de répatition, espérance et variance de variables quelconques. Exercice 1 Densité de probabilité. F { ln x si x ], 1] UN OVNI... On pose x R,
Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation
Programme Pédagogique National du DUT «Réseaux et Télécommunications» Présentation de la formation PPN Réseaux et Télécommunications publié par arrêté du 24 juillet 2008 Sommaire 1 Présentation générale
TP: Représentation des signaux binaires. 1 Simulation d un message binaire - Codage en ligne
Objectifs : Ce TP est relatif aux différentes méthodes de codage d une information binaire, et à la transmission en bande de base de cette information. Les grandes lignes de ce TP sont l étude des méthodes
Calcul fonctionnel holomorphe dans les algèbres de Banach
Chapitre 7 Calcul fonctionnel holomorphe dans les algèbres de Banach L objet de ce chapitre est de définir un calcul fonctionnel holomorphe qui prolonge le calcul fonctionnel polynômial et qui respecte
Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004. Cours de Génie Electrique G.
Licence Professionnelle de Génie Industriel Université Paris VI-Jussieu ; CFA Mecavenir Année 2003-2004 Cours de Génie Electrique G. CHAGNON 2 Table des matières Introduction 11 1 Quelques mathématiques...
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION
LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION LES CARACTERISTIQUES DES SUPPORTS DE TRANSMISSION ) Caractéristiques techniques des supports. L infrastructure d un réseau, la qualité de service offerte,
- Automatique - Modélisation par fonction de transfert et Analyse des systèmes linéaires continus invariants
- Automatique - Modélisation par fonction de transfert et Analyse des systèmes linéaires continus invariants M1/UE CSy - module P2 (1ère partie) 214-215 2 Avant-propos 3 Avant-propos Le cours d automatique
1 Démarrer... 3 1.1 L écran Isis...3 1.2 La boite à outils...3 1.2.1 Mode principal... 4 1.2.2 Mode gadget...4 1.2.3 Mode graphique...
1 Démarrer... 3 1.1 L écran Isis...3 1.2 La boite à outils...3 1.2.1 Mode principal... 4 1.2.2 Mode gadget...4 1.2.3 Mode graphique... 4 2 Quelques actions... 5 2.1 Ouvrir un document existant...5 2.2
4 Distributions particulières de probabilités
4 Distributions particulières de probabilités 4.1 Distributions discrètes usuelles Les variables aléatoires discrètes sont réparties en catégories selon le type de leur loi. 4.1.1 Variable de Bernoulli
Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples
45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et
Contexte. Pour cela, elles doivent être très compliquées, c est-à-dire elles doivent être très différentes des fonctions simples,
Non-linéarité Contexte Pour permettre aux algorithmes de cryptographie d être sûrs, les fonctions booléennes qu ils utilisent ne doivent pas être inversées facilement. Pour cela, elles doivent être très
Licence de Mathématiques 3
Faculté des sciences et techniques Département de mathématiques 2004-2005 Licence de Mathématiques 3 M62 : Fonctions réelles de plusieurs variables Laurent Guillopé www.math.sciences.univ-nantes.fr/~guillope/m62/
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Méthodes de quadrature. Polytech Paris-UPMC. - p. 1/48
Méthodes de Polytech Paris-UPMC - p. 1/48 Polynôme d interpolation de Preuve et polynôme de Calcul de l erreur d interpolation Étude de la formule d erreur Autres méthodes - p. 2/48 Polynôme d interpolation
Entiers aléatoires et analyse harmonique
Entiers aléatoires et analyse harmonique Jean-Pierre Kahane et Yitzhak Katznelson Introduction. Il s agit dans cet article d ensembles de Sidon et de processus de Poisson ponctuels. Les ensembles de Sidon
Dualité dans les espaces de Lebesgue et mesures de Radon finies
Chapitre 6 Dualité dans les espaces de Lebesgue et mesures de Radon finies Nous allons maintenant revenir sur les espaces L p du Chapitre 4, à la lumière de certains résultats du Chapitre 5. Sauf mention
Correction du baccalauréat S Liban juin 2007
Correction du baccalauréat S Liban juin 07 Exercice. a. Signe de lnx lnx) : on fait un tableau de signes : x 0 e + ln x 0 + + lnx + + 0 lnx lnx) 0 + 0 b. On afx) gx) lnx lnx) lnx lnx). On déduit du tableau
Utiliser des fonctions complexes
Chapitre 5 Utiliser des fonctions complexes Construire une formule conditionnelle avec la fonction SI Calculer un remboursement avec la fonction VPN Utiliser des fonctions mathématiques Utiliser la fonction
6 Equations du première ordre
6 Equations u première orre 6.1 Equations linéaires Consiérons l équation a k (x) k u = b(x), (6.1) où a 1,...,a n,b sont es fonctions continûment ifférentiables sur R. Soit D un ouvert e R et u : D R
- Instrumentation numérique -
- Instrumentation numérique - I.Présentation du signal numérique. I.1. Définition des différents types de signaux. Signal analogique: Un signal analogique a son amplitude qui varie de façon continue au
EXERCICE 4 (7 points ) (Commun à tous les candidats)
EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat
Quantification Scalaire et Prédictive
Quantification Scalaire et Prédictive Marco Cagnazzo Département Traitement du Signal et des Images TELECOM ParisTech 7 Décembre 2012 M. Cagnazzo Quantification Scalaire et Prédictive 1/64 Plan Introduction
Méthodes d ondelettes pour la segmentation d images. Applications à l imagerie médicale et au tatouage d images
INSTITUT NATIONAL POLYTECHNIQUE DE GRENOBLE THESE pour obtenir le grade de DOCTEUR DE L INPG Spécialité : Mathématiques Appliquées préparée au Laboratoire de Modélisation et Calcul (LMC / IMAG) dans le
Dérivées d ordres supérieurs. Application à l étude d extrema.
Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une
Fonctions de plusieurs variables
UNIVERSITÉ DE POITIERS Parcours Renforcé Première Année 2009/2010 Paul Broussous Fonctions de plusieurs variables Seconde version corrigée Table des matières 1. Un peu de topologie. 1.1. Distance euclidienne,
Introduction. aux équations différentielles. et aux dérivées partielles
Université Claude Bernard, Lyon I Licence Sciences, Technologies & Santé 43, boulevard 11 novembre 1918 Spécialité Mathématiques 69622 Villeurbanne cedex, France L. Pujo-Menjouet [email protected]
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE. EQUATIONS DIFFERENTIELLES.
CHAPITRE V SYSTEMES DIFFERENTIELS LINEAIRES A COEFFICIENTS CONSTANTS DU PREMIER ORDRE EQUATIONS DIFFERENTIELLES Le but de ce chapitre est la résolution des deux types de systèmes différentiels linéaires
Onveutetudierl'equationdierentiellesuivante
Quelques resultats sur l'equation des ondes Onveutetudierl'equationdierentiellesuivante (Ondes) @tu xu=f surr Rd: C'est dratique une equation +jj designature(;d).cettenoteestorganiseedela hyperbolique
Simulation de variables aléatoires
Chapter 1 Simulation de variables aléatoires Références: [F] Fishman, A first course in Monte Carlo, chap 3. [B] Bouleau, Probabilités de l ingénieur, chap 4. [R] Rubinstein, Simulation and Monte Carlo
Mini_guide_Isis.pdf le 23/09/2001 Page 1/14
1 Démarrer...2 1.1 L écran Isis...2 1.2 La boite à outils...2 1.2.1 Mode principal...3 1.2.2 Mode gadgets...3 1.2.3 Mode graphique...3 2 Quelques actions...4 2.1 Ouvrir un document existant...4 2.2 Sélectionner
Intégrales doubles et triples - M
Intégrales s et - [email protected] 1/27 - Intégrales (rappel) Rappels Approximation éfinition : Intégrale définie Soit f définie continue sur I = [a, b] telle que f (x) > 3 2.5 2 1.5 1.5.5 1 1.5
Equations différentielles linéaires à coefficients constants
Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I
