FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

Dimension: px
Commencer à balayer dès la page:

Download "FONCTIONS. Fonctions usuelles. I.1 Fonctions affines"

Transcription

1 BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique est la droite d équation y = a + b, où : Le réel a est le coefficient directeur de cette droite. Le réel b est l ordonnée à l origine. Une fonction affine est dérivable sur R de dérivée f () = a. D où les tableau de variation suivants : a > 0 b a + signe de f () + variations + de f signe de f 0 + a < 0 b a + signe de f () variations + de f signe de f

2 BTS Fonctions 0-0 Eemple Le graphique ci-contre représente les droites d équation : d : y = + d : y = d : y = d d 0 d : = d d 5 d 5 : y = d I. Fonction logarithme Définition La fonction logarithme népérien, notée ln, est l unique primitive de la fonction définie sur ] 0 ; + [ qui s annule en. Conséquences directes : ln() = 0, la fonction logarithme népérien est dérivable sur ] 0 ; + [ et pour tout > 0, ln () =. Propriété Soient a et b deu réels strictement positifs et n est un entier naturel, alors : ln(ab) = ln(a) + ln(b). ( ln = ln(a). a) ( ) a ln = ln(a) ln(b). b ln(a n ) = n ln(a). ln ( a) = ln(a). En résumé, le logarithme népérien a la particularité de transformer les produits en sommes, les quotients en différences et les puissances en multiplications. Eemple Transformations d epressions numériques et algébriques : ( ) ( ) 9 6 ln = ln = ln(6) ln(9) = ln( ) ln( ) = ln() ln() ln( 96) = ln(96) = ln(5 ) = [5 ln() + ln()]. ln( + ) + ln( + ) = ln[( + )( + )] = ln( ) pour ] [ ; +. --

3 BTS Fonctions 0-0 Propriété On a les ites importantes suivantes : ln =. ln = Conséquence : La droite = 0 est donc asymptote verticale à la courbe représentative de la fonction ln. D où le tableau de variations et la courbe : 0 + f () + + f signe y = ln() e I. Fonction eponentielle Définition La fonction eponentielle, est la fonction définie sur R par ep() = e, e étant l unique nombre réel positif dont le logarithme vaut. Remarque On dit que la fonction eponentielle est la fonction réciproque de la fonction logarithme, ce qui signifie que graphiquement, les courbes sont symétriques par rapport à la première bissectrice (y = ) dans un repère othonormal. Conséquences directes : ep() > 0. ep() = e = e, 78. ln(e ) =. e ln = pour > 0. R et y = e y R + et ln(y) =. --

4 BTS Fonctions 0-0 Propriété Soient a et b deu réels et n est un entier relatif, alors : e a+b = e a e b e a = e a. ea e b = ea b. (e a ) n = e an. En résumé, l eponentielle à la particularité de transformer les sommes en produits, les différences en quotients et les multiplications en puissances. (inversement au logarithme!). Eemple Transformations d epressions numériques et algébriques : e e e (e ) = e + +6 = e 7. e + e + = e (+)+(+) = e +. (e ) = e. Propriété On a les ites importantes suivantes : e = 0. e = +. Conséquence : La droite d équation y = 0 est donc une asymptote horizontale à la courbe représentative de la fonction ep. Propriété 5 La fonction eponentielle est dérivable sur R de dérivée (e ) = e. D où le tableau de variations et la courbe : f () + + f 0 y = ep() signe

5 de f α 0 de f α 0 BTS Fonctions 0-0 I. Fonctions puissance Définition Soit α un nombre réel, la fonction puissance (d eposant) α, notée f α est la fonction qui, à tout nombre R + associe f α () = α = e α ln Eemple Dans le cas où α =, on a f () = = e ln =. Propriété 6 Pour tout α, la fonction f α est dérivable sur R + de dérivée f α() = α α. Sens de variation : Dans le cas où α = 0, la fonction f 0 () = 0 = est constante sur R +. Dans le cas où α 0, f α () = αα est du signe de α sur R +. D où les tableau de variation suivants : α < signe de f α () variations + α > signe de f α () + variations + signe de f α + signe de f α + Allure des courbes représentatives des fonctions puissance : y = 0.5 y = y = y = y = y =

6 BTS Fonctions 0-0 II ites Interprétation graphique Limite en un point : 6 5 f() = Il n y a pas d asymptote. Limite en + : f() = + La courbe admet une asymptote verticale d équation = f() = La courbe admet une asymptote verticale d équation =. 6 5 f() = La courbe admet une asymptote horizontale d équation y =. Limite en : 6 5 f() = + Il n y a pas d asymptote. 5 6 f() = Il n y a pas d asymptote. 6 5 f() = La courbe admet une asymptote horizontale d équation y =. 6 5 f() = + Il n y a pas d asymptote. 5 6 f() = Il n y a pas d asymptote. -6-

7 BTS Fonctions 0-0 Définition 5 Soit f une fonction et d la droite d équation y = a + b tel que : [f() (a + b)] = 0 ± on dit alors que la droite d est une asymptote oblique à la courbe représentative C f en ±. Eemple 5 Soit f la fonction définie sur R par f() = [ ( )] ( ) f() + = = 0. La courbe admet une asymptote oblique d équation y = +. II. Limites des fonctions usuelles Voici un tableau qui résume les différentes ites des fonctions de référence (la notation signifie qu il faut appliquer la «règle des signes»). f() n n N n n N α α R + α ln ep cos sin α R + 0 indéfini indéfini indéfini 0 + aucune aucune 0 0 indéfini indéfini indéfini aucune aucune -7-

8 BTS Fonctions 0-0 II. Opérations sur les ites Dans tout ce qui suit, la notation «FI» désigne une Forme Indéterminée, c est à dire qu on ne sait pas calculer par une opération élémentaire. II.. Limite d une somme f l l + g l ± + + (f + g) l + l ± + FI Eemple 6 Calcul de «sommes» de ites : 0 e = 0 = 0 = 0 = + ln = + = = 0 = + = + = ( e + ) =. ( ) + = + ( ) ln + = +. ( ) + =. ( + ) est une forme indéterminée du type. II.. Limite d un produit f l l 0 ± 0 g l ± ± ± (f g) l l FI Eemple 7 Calcul de «produit» de ites : 0 (e + ) = 0 (e ) = ( ) = = + ( ) = = ( + ) = + = 0 0 [(e + ) (e )] =. [ ( ) ] = 0 + [( ) ] = +. [ ( + ) ] est une forme indéterminée du type

9 BTS Fonctions 0-0 II.. Limite d un quotient f l l l ± ± 0 g l 0 ± 0 l ± 0 ( ) f l g l 0 FI FI Eemple 8 Calcul de «quotients» de ites : 0 (e + ) = 0 e ) = = 0 + = ( ) = = + ln = 0 + ( ) = 0 + ( ) = = 0 0 = 0 = ( e ) + e = e 5. ( ) = 0. ( ) =. ( ) ln = ( ) ( ) est une forme indéterminée. est une forme indéterminée. II.. Compositions Propriété 7 Soient deu fonctions : f définie de I dans J et g de J dans R. a Si f() = b g() = c alors (g f)() = g[f()] = c. a a b Eemple 9 Calcul de "composition" de ites : ( + ) = X ex = 0 ( + ) = + ln X = + 0 X ( + ) = X = 0 e+ = 0. + =. ln( + ) =

10 BTS Fonctions 0-0 II. Calcul de ites dans les cas de formes indéterminées Dans ce cas, toutes les situations sont a priori possibles : eistence d une ite finie, nulle ou non ; eistence d une ite infinie ; absence de ite. Seule une étude particulière permet de lever l indétermination. Eemple 0 Indétermination du type : = + = On met en facteur : f() = = ( ( ) est une forme indéterminée du type. = + ( ) = d où ). f() = +. Remarque De manière générale, le comportement d une fonction polynomiale en ± est dictée par le comportement de son terme de plus haut degré en ±. Eemple Indétermination du type : f() = + + = ( + + ) = + ( ) = + Pour 0, on factorise par( la puissance de maimale et on simplifie : + + ) ( + + ) ( ) ( ) = = = ( ) + + est une forme indéterminée du type f() =. Remarque De manière générale, le comportement d une fraction rationnelle en ± est dictée par le comportement du quotient des deu termes de plus haut degré. Eemple Indétermination du type «0» : = 0 ( + ) = + [ ] ( + ) est une forme indéterminée du type «0». On développe : f() = ( + ) = +. d où = + = 0+ f() =

11 BTS Fonctions 0-0 Eemple Indétermination du type «0 0» : ( ) = 0 ( ) = 0 On factorise : f() = ( )( + ) = ( ) = 0 donc : f() = 0. ( ) est une forme indéterminée du type 0 0. = +. II. Croissance comparée de l eponentielle, du logarithme et des fonctions puissance Propriété 8 Pour tout nombre réel α strictement positif : ( ) ( ln e ) α = 0. α = +. L idée à retenir : Au voisinage de +, les fonctions ln, α et e prennent des valeurs qui se classent dans cet ordre de la plus petite à la plus grande. III Dérivation Dans cette partie, f est une fonction numérique définie sur un intervalle I, C sa courbe représentative dans un repère. a et sont deu réels distincts de I On souhaite trouver une fonction affine (droite) qui réalise une bonne approimation de la fonction f au voisinage d un point d une courbe. Interprétation graphique : Lorsque h se rapproche de 0, le point M se rapproche du point A. Ainsi, la droite (AM) se rapproche de la tangente T au point A f (a) correspond au coefficient directeur de la tangente T au point d abscisse a. f(a + h) f(a) A T M a a + h --

12 BTS Fonctions 0-0 III. Fonction dérivée Définition 6 Soit f une fonction dérivable en tout point d un intervalle I, alors la fonction qui à associe f () est appelé fonction dérivée de f sur I. On obtient le tableau de dérivation suivant : Fonction f Fonction f Ensemble de définition de f k 0 R a + b a R R R + α α α R si α N ou R si α Z ou R + si α R ln() R + e e R sin() cos() R cos() sin() R Eemple Calcul de la dérivée des fonctions suivantes : f() = π f () = 0 f() = f () = f() = f () = f() = 007 f () = III. Opérations u et v sont deu fonctions définies et dérivables sur un même intervalle I. Opération Fonction Dérivée Addition u + v u + v Multiplication par un nombre k u avec k R k u Multiplication u v u v + u v Puissance u n n u u n u u v u v Division v v Inverse v v v Fonction composée f g f g g eponentielle e u u e u logarithme ln(u) u u sinus sin(u) u cos(u) cosinus cos(u) u sin(u) --

13 BTS Fonctions 0-0 Eemple 5 Calcul de dérivées : f() = + + : On utilise la formule (u + v) = u + v avec u() = et v() = +. on obtient f () = +. f() = ( + ) : on utilise la formule (ku) = ku avec k = et u() = +. on obtient f () = 6. f() = ( + )(5 ) : On utilise la formule (uv) = u v + uv avec u() = + et v() = 5. on obtient f () = 0 +. f() = ( 7) : on utilise la formule (u ) = uu avec u() = 7. on obtient f () = ( 7). f() = ( u ) + : On utilise la formule u v uv = v v avec u() = et v() = +. on obtient f () = ( + ). f() = : On utilise la formule + on obtient f () = ( + ). ( ) = v avec v() = +. v v f() = e + : On utilise la formule (e u ) = u e u avec u() = +. on obtient f () = e +. f() = ln( + 5) : On utilise la formule (ln u) = u u on obtient f () = + 5. avec u() = + 5. f() = cos( + ) : On utilise la formule cos (u) = u sin(u) avec u() = +. on obtient f () = sin( + ). III. Équation de la tangente Propriété 9 Soit f une fonction numérique définie sur un intervalle I et dérivable en a I. La tangente T a en a à la courbe C f a pour équation : T a : y = f (a)( a) + f(a). Eemple 6 Soit f() = +. Les équations des tangentes en 0 et en sont : f () = f (0) = 0 donc T 0 : y = 0 ( 0) + f(0) =. f ( ) = donc T : y = ( + ) + f( ) = +. --

14 BTS Fonctions 0-0 IV IV. Étude des variations d une fonction Lien entre dérivation et sens de variation d une fonction L idée est qu il y a un lien entre le signe du coefficient directeur de la tangente de la courbe C et le sens de variation de la fonction f. Propriété 0 On suppose que f est dérivable sur I. f est croissante sur I f () 0 pour tout I. f est décroissante sur I f () 0 pour tout I. f est constante sur I f () = 0 pour tout I. Il est donc possible de déterminer les variations d une fonction à partir du signe de sa dérivée. Eemple 7 Étude d une fonction polynôme : Soit f() =, définie et dérivable sur R. Déterminons son sens de variation : Pour tout réel on a f () = 6 6 = 6( ). On détermine le signe de en cherchant ses racines et on trouve et. f () = 6( + )( ) est positive sauf entre ses racines et. On peut déterminer le signe de la dérivée et en déduire les variations de la fonction f : + signe de f () variations de f ր ց ր f est croissante sur ] ; ] et sur [ ; + [ et décroissante sur [ ; ]. Eemple 8 Etude d une fonction logarithme : Soit g() = + ln, définie et dérivable sur R +. Déterminons son sens de variation : Pour tout réel > 0 on a g () = = ( + )( ) =. On peut déterminer le signe de la dérivée grâce à un tableau de signes puis en déduire les variations de la fonction g : signe de g () variations de g ց ր + ln --

15 BTS Fonctions 0-0 [ g est décroissante sur 0 ; [ [ [ et croissante sur ; +. Eemple 9 Etude d une fonction eponentielle : Soit h() = ( + ) e, définie et dérivable sur R. Déterminons son sens de variation : Pour tout réel on a h () = e + ( + ) ( e ) = ( ) e = ( ) e. On peut déterminer le signe de la dérivée grâce à un tableau de signes puis en déduire les variations de la fonction h : + + e + + signe de h () + 0 e variations de h ր ց 0 h est croissante sur [ ; ] et décroissante sur [ ; + [. IV. Etremum d une fonction Propriété f est une fonction dérivable sur l intervalle I. Si f admet un etremum (minimum ou maimum) en a distinct des etrémités de I, alors f (a) = 0. Remarque Attention, la réciproque n est pas vraie : le fait que f (a) = 0 n implique pas forcément qu il eiste un etremum en a. y = Eemple 0 La fonction f() = est définie et dérivable sur R. f () = donc, f (0) = 0 mais f n admet ni minimum, ni maimum en 0. Remarque 5 La tangente à la courbe en un point a où f (a) = 0 est parallèle à l ae des abscisses. IV. Résolution de l équation f() = λ -5-

16 BTS Fonctions 0-0 Propriété Si f est une fonction continue, dérivable et strictement croissante [resp. décroissante] sur un intervalle [ a; b ] alors, pour tout λ [ f(a); f(b) ] [resp. [ f(b); f(a) ]], l équation f() = λ admet une solution unique sur l intervalle [ a; b ]. f(b) B λ f(a) A a b Eemple Soit f() = + + = 0, f est définie et dérivable sur R. Résolvons l équation f() = 0 à 0 près. Pour tout réel on a f () = +. f est strictement positive sur R, on en déduit que f est strictement croissante sur R. on calcule f( ) = et f(0) =. D après le théorème, 0 [ f( ); f(0) ] = [ ; ], l équation f() = 0 admet donc une solution unique dans l intervalle [ ; ]. A la calculatrice, on trouve f( 0, 7) = 0, 0 < 0 et f( 0, 6) = 0, 8 > 0. La racine vaut donc 0, 7 à 0 près. -6-

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Mathématiques I Section Architecture, EPFL

Mathématiques I Section Architecture, EPFL Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre

Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre IUFM du Limousin 2009-10 PLC1 Mathématiques S. Vinatier Rappels de cours Fonctions de plusieurs variables, intégrales multiples, et intégrales dépendant d un paramètre 1 Fonctions de plusieurs variables

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

Partie 1 - Séquence 3 Original d une fonction

Partie 1 - Séquence 3 Original d une fonction Partie - Séquence 3 Original d une fonction Lycée Victor Hugo - Besançon - STS 2 I. Généralités I. Généralités Définition Si F(p) = L [f(t)u (t)](p), alors on dit que f est l original de F. On note f(t)

Plus en détail

Cours Fonctions de deux variables

Cours Fonctions de deux variables Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

C f tracée ci- contre est la représentation graphique d une

C f tracée ci- contre est la représentation graphique d une TLES1 DEVOIR A LA MAISON N 7 La courbe C f tracée ci- contre est la représentation graphique d une fonction f définie et dérivable sur R. On note f ' la fonction dérivée de f. La tangente T à la courbe

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Table des matières. I Mise à niveau 11. Préface

Table des matières. I Mise à niveau 11. Préface Table des matières Préface v I Mise à niveau 11 1 Bases du calcul commercial 13 1.1 Alphabet grec...................................... 13 1.2 Symboles mathématiques............................... 14 1.3

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

Théorème du point fixe - Théorème de l inversion locale

Théorème du point fixe - Théorème de l inversion locale Chapitre 7 Théorème du point fixe - Théorème de l inversion locale Dans ce chapitre et le suivant, on montre deux applications importantes de la notion de différentiabilité : le théorème de l inversion

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Cours d Analyse I et II

Cours d Analyse I et II ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE Cours d Analyse I et II Sections Microtechnique & Science et génie des matériaux Dr. Philippe Chabloz avril 23 Table des matières Sur les nombres. Les nombres

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Continuité d une fonction de plusieurs variables

Continuité d une fonction de plusieurs variables Chapitre 2 Continuité d une fonction de plusieurs variables Maintenant qu on a défini la notion de limite pour des suites dans R n, la notion de continuité s étend sans problème à des fonctions de plusieurs

Plus en détail

Maple: premiers calculs et premières applications

Maple: premiers calculs et premières applications TP Maple: premiers calculs et premières applications Maple: un logiciel de calcul formel Le logiciel Maple est un système de calcul formel. Alors que la plupart des logiciels de mathématiques utilisent

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2

8.1 Généralités sur les fonctions de plusieurs variables réelles. f : R 2 R (x, y) 1 x 2 y 2 Chapitre 8 Fonctions de plusieurs variables 8.1 Généralités sur les fonctions de plusieurs variables réelles Définition. Une fonction réelle de n variables réelles est une application d une partie de R

Plus en détail

Pour l épreuve d algèbre, les calculatrices sont interdites.

Pour l épreuve d algèbre, les calculatrices sont interdites. Les pages qui suivent comportent, à titre d exemples, les questions d algèbre depuis juillet 003 jusqu à juillet 015, avec leurs solutions. Pour l épreuve d algèbre, les calculatrices sont interdites.

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée

Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen

Plus en détail

INTRODUCTION. 1 k 2. k=1

INTRODUCTION. 1 k 2. k=1 Capes externe de mathématiques : session 7 Première composition INTRODUCTION L objet du problème est l étude de la suite (s n n définie par : n, s n = Dans une première partie, nous nous attacherons à

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

IV- Equations, inéquations dans R, Systèmes d équations

IV- Equations, inéquations dans R, Systèmes d équations IV- Equations, inéquations dans R, Systèmes d équations 1- Equation à une inconnue Une équation est une égalité contenant un nombre inconnu noté en général x et qui est appelé l inconnue. Résoudre l équation

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Développements limités usuels en 0

Développements limités usuels en 0 Développements limités usuels en 0 e x sh x ch x sin x cos x = + x! + x! + + xn n! + O ( x n+) = x + x3 3! + + xn+ (n + )! + O ( x n+3) = + x! + x4 4! + + xn (n)! + O ( x n+) = x x3 3! + + ( )n xn+ (n

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Terminale SMS - STL 2007-2008

Terminale SMS - STL 2007-2008 Terminale SMS - STL 007-008 Annales Baccalauréat. STL Biochimie, France, sept. 008. SMS, France & La Réunion, sept 008 3 3. SMS, Polynésie, sept 008 4 4. STL Chimie de laboratoire et de procédés industriels,

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

Exercices Corrigés Premières notions sur les espaces vectoriels

Exercices Corrigés Premières notions sur les espaces vectoriels Exercices Corrigés Premières notions sur les espaces vectoriels Exercice 1 On considére le sous-espace vectoriel F de R formé des solutions du système suivant : x1 x 2 x 3 + 2x = 0 E 1 x 1 + 2x 2 + x 3

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

SYSTEMES LINEAIRES DU PREMIER ORDRE

SYSTEMES LINEAIRES DU PREMIER ORDRE SYSTEMES LINEIRES DU PREMIER ORDRE 1. DEFINITION e(t) SYSTEME s(t) Un système est dit linéaire invariant du premier ordre si la réponse s(t) est liée à l excitation e(t) par une équation différentielle

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Tout ce qu il faut savoir en math

Tout ce qu il faut savoir en math Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion

Plus en détail

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que

De même, le périmètre P d un cercle de rayon 1 vaut P = 2π (par définition de π). Mais, on peut démontrer (difficilement!) que Introduction. On suppose connus les ensembles N (des entiers naturels), Z des entiers relatifs et Q (des nombres rationnels). On s est rendu compte, depuis l antiquité, que l on ne peut pas tout mesurer

Plus en détail

Polynômes à plusieurs variables. Résultant

Polynômes à plusieurs variables. Résultant Polynômes à plusieurs variables. Résultant Christophe Ritzenthaler 1 Relations coefficients-racines. Polynômes symétriques Issu de [MS] et de [Goz]. Soit A un anneau intègre. Définition 1.1. Soit a A \

Plus en détail

Logique. Plan du chapitre

Logique. Plan du chapitre Logique Ce chapitre est assez abstrait en première lecture, mais est (avec le chapitre suivant «Ensembles») probablement le plus important de l année car il est à la base de tous les raisonnements usuels

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Développements limités

Développements limités Université Joseph Fourier, Grenoble Maths en Ligne Développements limités Bernard Ycart Les développements limités sont l outil principal d approximation locale des fonctions. L objectif de ce chapitre

Plus en détail

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET

TOUT CE QU IL FAUT SAVOIR POUR LE BREVET TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R.

Chap 4. La fonction exponentielle Terminale S. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Lemme : Si est une fonction dérivable sur R telle que : = et 0! = 1 alors ne s annule pas sur R. Démonstration : Soit la fonction %:& %&!= &!, elle est dérivable sur R et & R, %. &!= &! = &! = %&! gaelle.buffet@ac-montpellier.fr

Plus en détail

Résolution d équations non linéaires

Résolution d équations non linéaires Analyse Numérique Résolution d équations non linéaires Said EL HAJJI et Touria GHEMIRES Université Mohammed V - Agdal. Faculté des Sciences Département de Mathématiques. Laboratoire de Mathématiques, Informatique

Plus en détail

Programme de la classe de première année MPSI

Programme de la classe de première année MPSI Objectifs Programme de la classe de première année MPSI I - Introduction à l analyse L objectif de cette partie est d amener les étudiants vers des problèmes effectifs d analyse élémentaire, d introduire

Plus en détail

Fonctions de plusieurs variables et applications pour l ingénieur

Fonctions de plusieurs variables et applications pour l ingénieur Service Commun de Formation Continue Année Universitaire 2006-2007 Fonctions de plusieurs variables et applications pour l ingénieur Polycopié de cours Rédigé par Yannick Privat Bureau 321 - Institut Élie

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles

Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Annexe 1 Programmes des classes préparatoires aux Grandes Ecoles Filière : scientifique Voie : Physique, chimie et sciences de l ingénieur (PCSI) Discipline : Mathématiques Première année Classe préparatoire

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

3 Approximation de solutions d équations

3 Approximation de solutions d équations 3 Approximation de solutions d équations Une équation scalaire a la forme générale f(x) =0où f est une fonction de IR dans IR. Un système de n équations à n inconnues peut aussi se mettre sous une telle

Plus en détail

DUT Techniques de commercialisation Mathématiques et statistiques appliquées

DUT Techniques de commercialisation Mathématiques et statistiques appliquées DUT Techniques de commercialisation Mathématiques et statistiques appliquées Francois.Kauffmann@unicaen.fr Université de Caen Basse-Normandie 3 novembre 2014 Francois.Kauffmann@unicaen.fr UCBN MathStat

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands.

Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Catalogue des connaissances de base en mathématiques dispensées dans les gymnases, lycées et collèges romands. Pourquoi un autre catalogue en Suisse romande Historique En 1990, la CRUS (Conférences des

Plus en détail

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé.

Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. Baccalauréat L spécialité, Métropole et Réunion, 19 juin 2009 Corrigé. L usage d une calculatrice est autorisé Durée : 3heures Deux annexes sont à rendre avec la copie. Exercice 1 5 points 1_ Soit f la

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

Chapitre VI Fonctions de plusieurs variables

Chapitre VI Fonctions de plusieurs variables Chapitre VI Fonctions de plusieurs variables 6. 1 Fonctions différentiables de R 2 dans R. 6. 1. 1 Définition de la différentiabilité Nous introduisons la différentiabilité sous l angle des développements

Plus en détail

Logistique, Transports

Logistique, Transports Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,

Plus en détail