Corrigé Bac ES Spécialité Maths Antilles Guyane 2011

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé Bac ES Spécialité Maths Antilles Guyane 2011"

Transcription

1 Corrigé Bac ES Spécialité Maths Antilles Guyane 2011 Christian CYRILLE A quoi servent les mathématiques? : C est pour l honneur de l esprit humain? Jacobi 1 Exercice 1-5 points - Commun à tous les candidats Dans chaque programme de construction proposé par un grand promoteur immobilier, les acquéreurs doivent choisir entre la pose de moquette, de carrelage ou de sol plastifié pour revêtir le sol du salon. Pour le revêtement des murs du salon, ils ont le choix entre peinture ou papier peint. Le recueil des choix des acquéreurs par l entreprise donne les résultats suivants : 20% ont choisi la moquette 50% ont choisi le carrelage les autres acquéreurs ont choisi la pose de sol plastifié. Parmi les acquéreurs ayant choisi la moquette, 46% choisissent le papier peint pour le revêtement des murs. Parmi les acquéreurs ayant choisi le carrelage, 52% choisissent le papier peint pour le revêtement des murs. 42, 7% des acquéreurs ont choisi le papier peint pour le revêtement des murs. On interroge au hasard un acquéreur de logement construit par cette entreprise. On considère les événements suivants : M l événement : L acquéreur a choisi la pose de moquette. C l événement : L acquéreur a choisi la pose de carrelage. S l événement : L acquéreur a choisi la pose de sol plastifié. P l événement : L acquéreur a choisi la pose de papier peint. P l événement contraire de P, correspondant à : L acquéreur a choisi la peinture. Les résultats seront donnés sous forme décimale et arrondis au millième. 1. Représenter la situation à l aide d un arbre pondéré, qui sera complété tout au long de l exercice. 2. (a) Décrire l événement M P (b) Calculer la probabilité p(m P ) 3. (a) Montrer que la probabilité que l acquéreur ait choisi la pose de sol plastifié et de papier peint est égale à 0, 075 (b) L acquéreur a choisi le sol plastifié. Calculer la probabilité qu il ait choisi le papier peint. 1

2 4. On interroge au hasard et de façon indépendante trois acquéreurs parmi tous les clients du constructeur. (a) Calculer la probabilité, notée p 1, qu au moins un des trois acquéreurs ait choisi le papier peint. (b) Calculer la probabilité, notée p 2, qu exactement deux des trois acquéreurs ait choisi le papier peint. 2 Exercice 2-5 points - Commun à tous les candidats Partie A : Etude d une fonction Soit f la fonction dérivable définie sur l intervalle [0; + [ par f(x) = e 0,3x Dans un repère orthogonal, on note C F la courbe représentative de la fonction f et D la droite d équation y = 7x. On admet que la courbe C f et la droite D se coupent en un seul point d abscisse x 0 et on donne x 0 9, Calculer f(0) et la valeur arrondie au centième de f(20) 2. Démontrer que la fonction f est croissante sur l intervalle [0; + [ 3. (a) Calculer la limite de f en +. En déduire que la courbe C f admet une asymptote horiozntale au voisinage de + et en donner une équation. (b) Montrer que pour tout x appartenant à [0; + [ on a f(x) < 80. En déduire la position relative de la courbe C f par rapport à la droite d équation y = 80 sur l intervalle [0; + [. (c) A l aide du graphique, déterminer, selon les valeurs de x le signe de 7x f(x) pour x appartenant à l intervalle [0; + [ Partie B : Interprétation économique Dans cette question, toute trace de recherche même incomplète ou d initiative même non fructueuse, sera prise en compte dans l évaluation. On utilisera les 2

3 résultats de la partie A Une entreprise peut produire chaque jour au maximum 2000 thermomètres de bain pour bébé. On note x le nombre de centaines de thermomètres produits chaque jour travaillé, x appartenant à l intervalle [0; 20]. On suppose que le coût total de production par jour, exprimé en centaines d euros, est égal à f(x) où f est la fonction définie dans la partie A. 1. Déterminer le montant des coûts fixes c est-à-dire le montant des coûts lorsque la quantité produite est nulle. 2. Le coût total de production des thermomètres peut-il atteindre 8100 euros par jour? Justifier. 3. Le prix de vente d un thermomètre est fixé à 7 euros. La recette journalière, exprimée en centaines d euros, est donc donnée par R(x) = 7x. Pour quelles productions journalières de thermomètres l entreprise réaliset-elle un bénéfice? Justifier. 3 Exercice 3-5 points - Pour les candidats ayant suivi l enseignement de spécialité Une entreprise du secteur Bâtiments et Travaux Publics doit réduire la quantité de déchets qu elle rejette pour respecter une nouvelle norme environnementale. Elle s engage, à terme, à rejetter moins de tonnes de déchets par an. En 2007, l entreprise rejettait tonnes de déchets. Depuis cette date, l entreprise réduit chaque année la quantité de déchets qu elle rejette de 5% par rapport à la quantité rejettée l année précédente, mais elle produit par ailleurs 200 tonnes de nouveaux déchets par an en raison du développement de nouvelles activités. Pour tout entier naturel n, on note r n la quantité, en tonnes, de déchets pour l année ( n). On a donc r 0 = (a) Calculer r 1 et r 2 (b) justifier que pour tout entier naturel n on a : r n+1 = 0, 95r n Soit (s n ) la suite définie pour tout entier naturel n par s n = r n 4000 (a) Démontrer que la suite (s n ) est une suite géométrique dont on déterminera la raison et le premier terme. (b) Pour tout entier naturel n, exprimer s n en fonction de n. En déduire, que pour tout entier naturel n, l on a : r n = (0, 95) n (c) La quantité de déchets rejetée diminue-t-elle d une année sur l autre? Justifier. (d) Déterminer la limite de la suite (r n ) quand n tend vers l infini. (e) Calculer une estimation, en tonnes et à une tonne près, de la quantité de rejets en Dans cette question, toute trace de recherche même incomplète ou d initiative même non fructueuse, sera prise en compte dans l évaluation. A partir de quelle année, le contexte restant le même, l entreprise réussira -t-elle à respecter son engagement? 3

4 4 Exercice 4-5 points - Commun à tous les candidats Soit f une fonction f définie et dérivable sur R. On appelle (C) la courbe représentive de la fonction f dans un repère du plan. On donne ci-dessus le tableau de variations de la fonction f sur R. x f(x) 1 On donne de plus : f( 2) = 0 ; f(5) = 0 et f(0) = 3 A l aide des informations fournies ci-dessus, répondre aux questions suivantes. 1. Dresser sans justification le tableau donnant le signe de f(x) suivant les valeurs du nombre réel x. Les réponses aux questions suivantes devront être justifiées. 2. (a) La courbe (C) admet-elle une asymptote horizontale? Si oui, préciser une équation de cette droite. (b) Montrer que l équation f(x) = 2 admet une unique solution sur l intervalle [3; 10] (c) On appelle F une primitive de la fonction f dur R. Déterminer les variations de la fonction F sur R 3. On note g la fonction définie sur ] ; 2[ ]5; + [ par g(x) = ln(f(x)) où ln désigne la fonction logarithme népérien. (a) Expliquer pourquoi la fonction g n est pas définie sur l intervalle [ 2; 5] (b) Déterminer lim g(x) et lim g(x) x + x 5 + (c) Préciser le sens de variation de la fonction g sur son ensemble de définition. 4

5 5 Corrigé Exercice 1 1. Nous pouvons représenter la situation à l aide d un arbre pondéré : 2. (a) M P est l événement suivant l acquéreur a choisi la pose de moquette et a choisi la pose de papier peint (b) pr(m P ) = pr(m)pr(p/m) = 0, 2 0, 46 = 0, (a) Comme le système {M, C, S} est un système complet d événements, d après la formule des probabilités totales, si l on note x = pr(p/s) on a : pr(p ) = pr(m P ) + pr(c P ) + pr(s P ) = pr(m)pr(p/m) + pr(c)pr(p/c) + pr(s)pr(p/s) = 0, 2 0, , 5 0, , 3x Or pr(p ) = 0, 427. Donc 0, 2 0, , 5 0, , 3x = 0, 427 d où 0, 3x = 0, 427 0, 092 0, 26 donc 0, 3x = 0, 427 0, 352 d où 0, 3x = 0, 075. Par conséquent, x = 0, 25 La probabilité que l acquéreur ait choisi la pose de sol plastifié et de papier peint est pr(s P ) = pr(s)pr(p/s) = 0, 3 0, 25 = 0, 075 pr(p S) 0, 075 (b) pr(p/s) = = = 0, 25 pr(s) 0, 3 4. On interroge au hasard et de façon indépendante trois acquéreurs parmi tous les clients du constructeur. On est donc en présence d un schéma de Bernoulli : n = 3 épreuves répétées, identiques et indépendantes.au cours de chacune d elles on a soit un succès : choisir le papier peint avec comme probabilité p = pr(p ) = 0, 427 soit un échec : choisir la peinture avec comme probabilité q = 1 p = 1 pr(p ) = 1 0, 427 = 0, 573 alors la variable aléatoire X : le nombre de succès suit la loi binomiale B(n, p) = B(3; 0, 427) alors l ensemble des valeurs prises ( par X est X < Ω >= {0; 1; 2; 3} et n k X < Ω > ona : pr([x = k] = p k) k (1 p) n k ( n On rappelle que est le nombre de sous-ensembles (ou de parties ou k) 5

6 de combinaisons) à( k éléments que l on peut extraire d un ensemble à n n! n éléments et que = k) k!(n k)! (a) L événement contraire de au moins un des trois acquéreurs ait choisi le papier peint est aucun des trois acquéreurs n a chois le papier peint donc p 1 = pr( au moins un des ( trois ) acquéreurs ait choisi le papier peint ) 3 = 1 pr(x = 0) = 1 p 0 0 (1 p) 3 0 = 1p 0 (1 p) 3 = (1 p) 3 = 0, = 0, 188 (b) p 2 = pr( exactement deux des( trois acquéreurs ait choisi le papier peint ) = pr(x = 2) = p 3 2) 2 (1 p) 3 2 = 3p 2 (1 p) = 3(0, 427) 2 (0, 573) = 0, Corrigé Exercice 2 Partie A : Etude d une fonction Soit f la fonction dérivable définie sur l intervalle [0; + [ par f(x) = e 0,3x Dans un repère orthogonal, on note C F la courbe représentative de la fonction f et D la droite d équation y = 7x. On admet que la courbe C f et la droite D se coupent en un seul point d abscisse x 0 et on donne x 0 9, f(0) = = 1 + 4e 0, e 0 = = 80 5 = f(20) = 1 + 4e 0,3 20 = 80 79, e 6 2. f est le quotient de x 80 et de x 1 + 4e 0,3x x 80 est constante donc dérivable sur R donc sur [0; + [ x 1 + 4e 0,3x ne s annule jamais sur R donc sur [0; + [ car e 0,3x > 0 x R 6

7 x 1 + 4e 0,3x qui est dérivable sur R donc sur [0; + [ Par conséquent f est dérivable sur [0; + [ Alors en utilisant les formules suivantes ( 1 u ) = u u 2 et (eu ) = u e u donc x [0; + [ on a : f (x) = 80 4( 0, 3e 0,3x ) 96e 0,3x (1 + 4e 0,3x ) 2 = (1 + 4e 0,3x ) 2 > 0 puisque car e 0,3x > 0 x R et que (1 + 4e 0,3x ) 2 > 0 donc la fonction f est croissante sur l intervalle [0; + [ 3. (a) f(x) = N(x) D(x) lim N(x) = 80 x + lim x + et D(x) = 1 puisque lim x + e 0,3x = 0 car lim X ex = 0 donc lim x + f(x) = 80 lim 0, 3x = X + On en déduit que la courbe C f admet une asymptote horizontale au voisinage de +, la droite d équation y = 80 (b) e 0,3x > 0 donc 4e 0,3x > 0 d où 1 + 4e 0,3x > 1. Par conséquent e 0,3x < 1 donc 80 < e 0,3x On a donc démontré que pour tout x appartenant à [0; + [ on a f(x) < 80. On en déduit que la courbe C f reste toujours en dessous de la droite d équation y = 80 sur l intervalle [0; + [. (c) A l aide du graphique, on peut déterminer, selon les valeurs de x le signe de 7x f(x) pour x appartenant à l intervalle [0; + [ x 0 x 0 + D est en dessous de C f coupe C f est au dessus de C f 7x f(x) 0 + Partie B : Interprétation économique 1. Le montant des coûts fixes c est-à-dire le montant des coûts lorsque la quantité produite est nulle est f(0) = 16 centaines d euros = 1600 euros 2. Le coût total de production des thermomètres ne peut atteindre 8100 euros par jour car pour tout x appartenant à [0; + [ on a f(x) < 80 centaines d euros. 3. Le prix de vente d un thermomètre est fixé à 7 euros. La recette journalière, exprimée en centaines d euros, est donc donnée par R(x) = 7x. L entreprise réalise un bénéfice lorsque 7x > f(x) c est-à-dire 7x f(x) > 0 c est-à-dire x > x 0 9, 02 centaines de thermomètres c est-à-dire x > 902 thermomètres 7

8 7 Corrigé Exercice 3 Une entreprise du secteur Bâtiments et Travaux Publics doit réduire la quantité de déchets qu elle rejette pour respecter une nouvelle norme environnementale. Elle s engage, à terme, à rejetter moins de tonnes de déchets par an. En 2007, l entreprise rejettait tonnes de déchets. Depuis cette date, l entreprise réduit chaque année la quantité de déchets qu elle rejette de 5% par rapport à la quantité rejettée l année précédente, mais elle produit par ailleurs 200 tonnes de nouveaux déchets par an en raison du développement de nouvelles activités. Pour tout entier naturel n, on note r n la quantité, en tonnes, de déchets pour l année ( n). On a donc r 0 = (a) r 1 = r r = r = 0, 95r = 0, 95(40000)+ 200 = r 2 = r r = r = 0, 95r = (0, 95)(38200)+ 200 = (b) Comme l entreprise réduit chaque année la quantité de déchets qu elle rejette de 5% par rapport à la quantité rejettée l année précédente et qu elle produit par ailleurs 200 tonnes de nouveaux déchets par an, alors pour tout entier naturel n on a : r n+1 = r n r n = 0, 95r n Soit (s n ) la suite définie pour tout entier naturel n par s n = r n 4000 (a) s n+1 = r n = 0, 95r n = 0, 95r n 3800 = 0, 95(r n 4000) = 0, 95s n donc la suite (s n ) est une suite géométrique de raison q = 0, 95 et de premier terme s 0 = r = = (b) Alors pour tout entier naturel n, s n = (0, 95) n s 0 = (0, 95) n. Donc r n = s n = (0, 95) n (c) r n+1 r n = (0, 95) n (36000 (0, 95) n ) = 36000(0, 95) n (0, 95 1) < 0 donc la suite (r n ) décroît. Par conséquent, la quantité de déchets rejetée diminue d une année sur l autre. (d) Comme 1 < 0, 95 < 1 alors lim (0, n + 95)n = 0 donc lim r n = 4000 n + (e) En 2011 = , une estimation, en tonnes et à une tonne près, de la quantité de rejets est r 4 = (0, 95) , tonnes 3. Résolvons l inéquation suivante d inconnue n N r n < (0, 95) n < (0, 95) n < (0, 95) n < (0, 95)n < ln((0, 95)n ) < ln( 26 ln( ) nln(0, 95) < ln( ) n > 36 ) car ln(0, 95) < 0 ln(0, 95) ln( 26 puisque 0 < 0, 95 < 1 Or 36 ) 6, 34 Donc à partir de l année ln(0, 95) = 2014 l entreprise réussira à respecter son engagement. 26 8

9 8 Corrigé Exercice 4 f une fonction f est dérivable sur R donc est définie sur R. On donne cidessus le tableau de variations de la fonction f sur R. x f(x) 1 On donne de plus : f( 2) = 0 ; f(5) = 0 et f(0) = 3 A l aide des informations fournies ci-dessus, répondre aux questions suivantes. 1. On peut donc compléter le tableau de variations de la fonction f sur R. x f(x) On en déduit le tableau de signe de f(x) : x f(x) (a) Comme lim f(x) = 1 alors la courbe (C) admet au voisinage de x une asymptote horizontale la droite d équation y = 1. (b) f est continue sur l intervalle [3; 10] car elle y est dérivable puisque f est dérivable sur R. f est strictement croissante sur l intervalle [3; 10] Donc f réalise une bijection de l intervalle I = [3; 10] sur l iage de cat intervalle par f qui est l intervalle J = [ 1; 3] Par conséquent, tout réel y de J admet un unique antécédent pour f dans l intervalle I Or 2 J donc 2 admet un unique antécédent pour f dans l intervalle I Par conséquent, l équation f(x) = 2 admet une unique solution sur l intervalle [3; 10] (c) Comme f est dérivable sur R alors f est continue sur R donc f y admet une primitive F. Donc x F (x) = f(x) donc F (x) 3. On note g la fonction définie sur ] ; 2[ ]5; + [ par g(x) = ln(f(x)) où ln désigne la fonction logarithme népérien. 9

10 (a) g(x) = ln(f(x)) existe lorsque f(x) existe etf(x) > 0 c est-à-dire lorsque x ] ; 2[ ]5; + [ donc la fonction g n est pas définie sur l intervalle [ 2; 5] (b) lim g(x) = + car x + f(x) = + lim x + lim X + ln(x) = + lim x 5 + g(x) = car lim x 5 + f(x) = 0 + lim ln(x) = X

11 (c) Comme ln est une fonction croissante alors sur ] ; 2[ g = ln o f décroît car f y est décroissante sur ]5; + [ g = ln o f croît car f y est croissante x f(x) ln(f(x)) ln(3) 11

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité)

BACCALAURÉAT BLANC DE MATHÉMATIQUES. Terminales ES (Spécialité) BACCALAURÉAT BLANC DE MATHÉMATIQUES Terminales ES (Spécialité) Vendredi 7 février 0 8h - h coefficient : 7 Les calculatrices sont autorisées Le sujet est composé de exercices indépendants. Le candidat

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 7 Ce sujet comporte 6 pages numérotées de 1 à 6. Du papier millimétré est mis à la disposition des

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL ACCALAUREAT GENERAL Session 2009 MATHÉMATIQUES - Série ES - Enseignement de Spécialité Liban EXERCICE 1 1) 2) C 3) C 4) A Explication 1. Chacun des logarithmes existe si et seulement si x > 4 et x > 2

Plus en détail

Un corrigé de l épreuve de mathématiques du baccalauréat blanc

Un corrigé de l épreuve de mathématiques du baccalauréat blanc Terminale ES Un corrigé de l épreuve de mathématiques du baccalauréat blanc EXERCICE ( points). Commun à tous les candidats On considère une fonction f : définie, continue et doublement dérivable sur l

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés

Classe : TES1 Le 12/05/2003. MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Classe : TES1 Le 12/05/2003 MATHEMATIQUES Devoir N 7 (rattrapage) Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Le tableau suivant donne l évolution du prix d un paquet de café

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012

Lycée Marlioz - Aix les Bains. Bac Blanc 2012. Mathématiques - Terminale ES. 16 mai 2012 Lycée Marlioz - Aix les Bains Bac Blanc 2012 Mathématiques - Terminale E Candidats n ayant pas choisi la spécialité maths 16 mai 2012 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

B A C C A L A U R E A T G E N E R A L

B A C C A L A U R E A T G E N E R A L B A C C A L A U R E A T G E N E R A L SESSION 2006 MATHÉMATIQUES SERIE : ES DUREE DE L EPREUVE: 3 heures - COEFFICIENT : 7 Ce sujet comporte 6 pages dont feuille ANNEXE L utilisation d une calculatrice

Plus en détail

Bac ES La Réunion juin 2009

Bac ES La Réunion juin 2009 Bac ES La Réunion juin 2009 Exercice 1 (4 points) Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2012 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2012 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

Baccalauréat STMG Antilles Guyane / 18 juin 2015

Baccalauréat STMG Antilles Guyane / 18 juin 2015 Exercice 1 Durée : 3 heures Baccalauréat STMG Antilles Guyane / 18 juin 2015 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de la question

Plus en détail

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7.

Session 2011. Enseignement de Spécialité. Durée de l épreuve : 3 heures. Coefficient : 7. Ce sujet comporte 7 pages numérotées de 1 à 7. BACCALAURÉAT GENÉRAL Session 2011 MATHÉMATIQUES Série ES Enseignement de Spécialité Durée de l épreuve : 3 heures Coefficient : 7 Ce sujet comporte 7 pages numérotées de 1 à 7. L utilisation d une calculatrice

Plus en détail

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole

Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Sujet de Bac 2012 Maths ES Obligatoire & Spécialité - Métropole Exercice 1 : 5 points Sur le site http: //www.agencebio.org, on a extrait des informations concernant l agriculture en France métropolitaine.

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 22 avril 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. obligatoire SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi avril 014 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTRISÉES obligatoire Coefficient : 7 Le

Plus en détail

Baccalauréat S Asie 18 juin 2013

Baccalauréat S Asie 18 juin 2013 Baccalauréat S Asie 18 juin 2013 Dans l ensemble du sujet, et pour chaque question, toute trace de recherche même incomplète, ou d initiative même non fructueuse, sera prise en compte dans l évaluation

Plus en détail

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé.

Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013. Calculatrice autorisée - Aucun document n'est autorisé. TES Spé Maths Eléments de correction du Bac Blanc n 2 de Mathématiquesdu Lundi 8 Avril2013 Calculatrice autorisée - Aucun document n'est autorisé. Vous apporterez un grand soin à la présentation et à la

Plus en détail

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015

Corrigé du baccalauréat ES Antilles Guyane 24 juin 2015 Corrigé du baccalauréat ES Antilles Guyane 2 juin 2015 EXERCICE 1 Commun à tous les candidats Aucune justification n était demandée dans cet exercice. 1. La fonction f définie sur R par f (x)= x 3 + 6x

Plus en détail

BACCALAURÉAT GÉNÉRAL Hiver 2015

BACCALAURÉAT GÉNÉRAL Hiver 2015 BACCALAURÉAT GÉNÉRAL Hiver 2015 Épreuve : MATHÉMATIQUES Séries SCIENCES ÉCONOMIQUES ET SOCIALES, toutes spécialités LITTÉRAIRE, spécialité Mathématiques Classes TES1, TES2, TES3, TES ET TL1ES Durée de

Plus en détail

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire

Le sujet est composé de 6 pages dont une annexe à rendre avec la copie. Formulaire Année universitaire 2013-2014 Diplôme de D.A.E.U Option A 1 ère session Juin 2014 Intitulé de la matière : Nom de l enseignant : Mathématiques Mme Baulon Date de l épreuve : Mercredi 11 juin 2014 13.30-16.30

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2011 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 011 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES Durée de l épreuve : 3 heures Coefficient : 7 (ES) ES : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques de poche sont autorisées conformément

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE

BACCALAURÉAT TECHNOLOGIQUE BACCALAURÉAT TECHNOLOGIQUE SESSION 014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DE LA SANTÉ ET DU SOCIAL STS DURÉE DE L ÉPREUVE : heures COEFFICIENT : 3 Ce sujet comporte 5 pages numérotées de 1

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC ANALYSE LN & EXPONENTIELLE LIBAN 2014 On considère la fonction f définie sur l intervalle [0 ; 5] par f(x) = x+1+e

Plus en détail

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L

BACCALAURÉAT GÉNÉRAL. MATHÉMATIQUES Série ES/L BACCALAURÉAT GÉNÉRAL SESSION 2015 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

BACCALAURÉAT BLANC 2013

BACCALAURÉAT BLANC 2013 BACCALAURÉAT BLANC 203 Série S Corrigé Exercice. a) On traduit les données de l énoncé et on représente la situation par un arbre pondéré. PF ) = 2, PF 2) = 3, P F ) = 5 00 = 20, P F 2 ) =,5 00 = 3 3,5,

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab

Devoir Commun : 3 heures -27.01.10- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Exercice Devoir Commun : 3 heures -7..- Terminales ES - Lycée Newton - Y. Angeli et L. Arab Soient f : R { } R, x x3 + x + x + (x + ), et C la courbe de f dans un repère orthonormé d unité, 5cm.. Limites.

Plus en détail

Commun à tous les candidats

Commun à tous les candidats BACCALAURÉAT GÉNÉRAL SESSION 213 MATHÉMATIQUES Série ES/L Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) ES : ENSEIGNEMENT OBLIGATOIRE L : ENSEIGNEMENT DE SPECIALITE Les calculatrices électroniques

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES

«L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES «L art de la réussite consiste à s entourer des meilleurs» STAGE INTENSIF OBJECTIF BAC PRIMITIVES, INTEGRALES & CALCUL D AIRES LIBAN 2015 Une entreprise artisanale produit des parasols. Elle en fabrique

Plus en détail

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME

mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques SÉRIE ES ANNALES D EXERCICES REGROUPÉS PAR THÈME mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques mathématiques

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Baccalauréat ES La Réunion 19 juin 2009

Baccalauréat ES La Réunion 19 juin 2009 Baccalauréat ES La Réunion 9 juin 9 EXERCICE points Cet exercice est un questionnaire à choix multiples. Pour chaque question, trois réponses sont proposées. Une seule de ces réponses est exacte. Aucune

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015

Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 Durée : 3 heures Correction Baccalauréat STMG Antilles Guyane 18 juin 2015 EXECICE 1 4 points Cet exercice est un questionnaire à choix multiples (QCM). Le candidat recopiera sur sa copie le numéro de

Plus en détail

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014

T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 T ES DEVOIR SURVEILLE 2 28 NOVEMBRE 2014 Durée : 3h Calculatrice autorisée NOM : Prénom : Sauf mention du contraire, tous les résultats doivent être soigneusement justifiés. La précision et la clarté de

Plus en détail

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry

Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Sujet de Bac 2013 Maths ES Obligatoire & Spécialité - Pondichéry Exercice 1 : 4 points Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Une réponse exacte rapporte 1 point.

Plus en détail

Baccalauréat ES Amérique du Nord 30 mai 2013

Baccalauréat ES Amérique du Nord 30 mai 2013 Baccalauréat ES Amérique du Nord 30 mai 03 EXERCICE 4 points Cet exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles. Pour chacune de ces questions,

Plus en détail

1ES Février 2013 Corrigé

1ES Février 2013 Corrigé 1ES Février 213 Corrigé Exercice 1 Le tableau ci-dessous renseigne sur les besoins en eau dans le monde : Population mondiale (Milliards d habitants) Volume moyen par habitant ( ) 195 2,5 4 1 197 3,6 5

Plus en détail

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2014 Épreuve de Mathématiques (durée 3 heures) L attention des candidats est attirée sur le fait que la qualité de la rédaction, la clarté et la précision des raisonnements

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

Exercice 1 Métropole juin 2014 5 points

Exercice 1 Métropole juin 2014 5 points Le sujet comporte 6 pages. Seule l annexe est à rendre avec la copie. BAC BLANC MATHÉMATIQUES TERMINALE STMG Durée de l épreuve : 3 heures Les calculs doivent être détaillés. Les calculatrices sont autorisées,

Plus en détail

Baccalauréat S Métropole 21 juin 2011

Baccalauréat S Métropole 21 juin 2011 Baccalauréat S Métropole 1 juin 011 EXERCICE 1 Les deux parties A et B peuvent être traitées indépendamment. 4 points Les résultats seront donnés sous forme décimale en arrondissant à 10 4. Dans un pays,

Plus en détail

Probabilités conditionnelles Exercices corrigés

Probabilités conditionnelles Exercices corrigés Terminale S Probabilités conditionnelles Exercices corrigés Exercice : (solution Une compagnie d assurance automobile fait un bilan des frais d intervention, parmi ses dossiers d accidents de la circulation.

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction

Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction Baccalauréat ST2S Antilles-Guyane 16 juin 2014 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre de maladies professionnelles ayant entrainé un arrêt de travail de 2003 à 2010 : Année

Plus en détail

Devoir Surveillé n 5 BTS 2009 groupement B

Devoir Surveillé n 5 BTS 2009 groupement B EXERCICE 1 (12 points) Devoir Surveillé n 5 BTS 2009 groupement B Les trois parties de cet exercice peuvent être traitées de façon indépendante. A. Résolution d une équation différentielle On considère

Plus en détail

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3

SESSION 2014 MATHÉMATIQUES. Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG. DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 BACCALAURÉAT TECHNOLOGIQUE SESSION 2014 MATHÉMATIQUES Série : SCIENCES ET TECHNOLOGIES DU MANAGEMENT ET DE LA GESTION STMG DURÉE DE L ÉPREUVE : 3 heures COEFFICIENT : 3 Calculatrice autorisée, conformément

Plus en détail

Corrigé, bac S, mathématiques

Corrigé, bac S, mathématiques Corrigé, bac S, mathématiques jeudi juin 0 Eercice 4 points Le plan est muni d un repère orthonormé (O; ı ; j) On considère une fonction f dérivable sur l intervalle [ 3; ] On dispose des informations

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Cours de mathématiques pour la Terminale S

Cours de mathématiques pour la Terminale S Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre Florent Girod 1 Année scolaire 2015 / 2016 1. Externat Notre Dame - Grenoble Table des matières 1) Suites numériques.................................

Plus en détail

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2010 Maths ES Obligatoire & Spécialité Amérique du Nord EXERCICE 1 : 5 points Commun à tous les candidats On sait que la courbe C passe par les points A( 2; 0,5), B(0; 2), C(2; 4,5), D(4,5;

Plus en détail

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord

Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Sujet de Bac 2013 - Maths ES Obligatoire & Spécialité Amérique du Nord Exercice 1 : 4 points et exercice est un questionnaire à choix multiples. Chaque question ci-après comporte quatre réponses possibles.

Plus en détail

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015

T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 T ES/L DEVOIR SURVEILLE 3 16 JANVIER 2015 Durée : 3h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse,

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Baccalauréat ST2S Polynésie 16 juin 2014 correction

Baccalauréat ST2S Polynésie 16 juin 2014 correction Baccalauréat STS Polynésie 6 juin 0 correction EXERCICE 8 points On présente dans un tableau, extrait d une feuille de calcul, le nombre de cartes SIM (carte électronique permettant d utiliser un réseau

Plus en détail

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014

BAC BLANC DE MATHÉMATIQUES TERMINALES ES et L CORRECTION SUCCINCTE. Coefficients 5, 7 ou 4. Année scolaire 2013-2014 BA BLAN DE MATHÉMATIQUES TERMINALES ES et L ORRETION SUINTE oefficients, ou Année scolaire - Durée heures Page sur 8 pages Année EXERIE. ommun à tous les candidats sur points Un club de remise en forme

Plus en détail

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction

Baccalauréat SMTG Pondichéry 8 avril 2014 Sciences et technologies du management et de la gestion correction Baccalauréat SMTG Pondichéry 8 avril 0 Sciences et technologies du management et de la gestion correction EXERCICE points Les deux parties de cet exercice peuvent être traitées de manière indépendante.

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Amérique du Nord EXERCICE 1 : 5 points On se place dans l espace muni d un repère orthonormé. On considère les points,, et. 1. Démontrer que les points,

Plus en détail

Baccalauréat ST2S Antilles Guyane juin 2013 Correction

Baccalauréat ST2S Antilles Guyane juin 2013 Correction Baccalauréat ST2S Antilles Guyane juin 2013 Correction EXERCICE 1 6 points Le tableau ci-dessous donne le nombre d abonnements au service de téléphonie mobile en France entre fin 2001 et fin 2009, exprimé

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction

Baccalauréat STG CGRH Métropole 13 septembre 2012 Correction Baccalauréat STG CGRH Métropole 3 septembre 202 Correction La calculatrice est autorisée. EXERCICE Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, trois réponses sont proposées,

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban Sujet de Bac 2013 Maths S Obligatoire & Spécialité - Liban EXERCICE 1 : 4 Points Cet exercice est un questionnaire à choix multiples. Aucune justification n est demandée. Pour chacune des questions, une

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉAT GÉNÉRAL SESSION 2011 MATHÉMATIQUES Série : ES DURÉE DE L ÉPREUVE : 3 heures. COEFFICIENT : 5 Ce sujet comporte 5 pages numérotées de 1 à 5. Du papier millimétré est mis à la disposition des

Plus en détail

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h

Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h Entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE Mardi 26 juin 2012 MATHEMATIQUES durée de l épreuve : 4h A. P. M. E. P. Le problème se compose de 4 parties. La dernière page sera à rendre avec

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que :

En 2005, année de sa création, un club de randonnée pédestre comportait 80 adhérents. Chacune des années suivantes on a constaté que : Il sera tenu compte de la présentation et de la rédaction de la copie lors de l évaluation finale. Les élèves n ayant pas la spécialité mathématique traiteront les exercices 1, 2,3 et 4, les élèves ayant

Plus en détail

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé

Baccalauréat ES Pondichéry 7 avril 2014 Corrigé Baccalauréat ES Pondichéry 7 avril 204 Corrigé EXERCICE 4 points Commun à tous les candidats. Proposition fausse. La tangente T, passant par les points A et B d abscisses distinctes, a pour coefficient

Plus en détail

Correction du baccalauréat ES/L Métropole 20 juin 2014

Correction du baccalauréat ES/L Métropole 20 juin 2014 Correction du baccalauréat ES/L Métropole 0 juin 014 Exercice 1 1. c.. c. 3. c. 4. d. 5. a. P A (B)=1 P A (B)=1 0,3=0,7 D après la formule des probabilités totales : P(B)=P(A B)+P(A B)=0,6 0,3+(1 0,6)

Plus en détail

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité

PRÉPARATION DU BACCALAURÉAT MATHÉMATIQUES. SÉRIE ES Obligatoire et Spécialité PRÉPARATIN DU BACCALAURÉAT MATHÉMATIQUES SÉRIE ES bligatoire et Spécialité Décembre 0 Durée de l épreuve : heures Coefficient : ou L usage d une calculatrice électronique de poche à alimentation autonome,

Plus en détail

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES

SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE. Sciences et Technologies de la Gestion. Communication et Gestion des Ressources Humaines MATHÉMATIQUES SESSION 2011 BACCALAURÉAT TECHNOLOGIQUE Sciences et Technologies de la Gestion Communication et Gestion des Ressources Humaines MATHÉMATIQUES Durée de l épreuve : 2 heures Coefficient : 2 Dès que le sujet

Plus en détail

Baccalauréat blanc nº1 - ES - décembre 2011

Baccalauréat blanc nº1 - ES - décembre 2011 Sujet obligatoire - durée : 3 heures - calculatrice autorisée - coefficient 5 - le sujet comporte 5 pages. Baccalauréat blanc nº - ES - décembre 0 EXERCICE 4points On considère une fonction f définie et

Plus en détail

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information.

BACCALAURÉAT TECHNOLOGIQUE STG. Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. BACCALAURÉAT TECHNOLOGIQUE STG Spécialités : Mercatique, Comptabilité et Finance d Entreprise, Gestion des systèmes d information. SESSION 2011 ÉPREUVE DE MATHÉMATIQUES Mercatique, comptabilité et finance

Plus en détail

Baccalauréat STG CGRH Polynésie corrigé

Baccalauréat STG CGRH Polynésie corrigé EXERCICE 1 Baccalauréat STG CGRH Polynésie corrigé 8 points Le tableau ci-dessous donne les dépenses, en millions d euros, des ménages en France de 2000 à 2009 pour les programmes audio-visuels. cinéma

Plus en détail

Baccalauréat STG Mercatique Pondichéry 21 avril 2010

Baccalauréat STG Mercatique Pondichéry 21 avril 2010 Baccalauréat STG Mercatique Pondichéry 21 avril 2010 La calculatrice (conforme à la circulaire N 99-186 du 16-11-99) est autorisée. Le candidat est invité à faire figurer sur la copie toute trace de recherche,

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion

Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion Brevet de technicien supérieur Polynésie session mai 2012 - Informatique de gestion A. P. M. E. P. ÉPREUVE OBLIGATOIRE Durée : 3 heures Coefficient : 2 Exercice 1 7 points Les parties A et B de cet exercice

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015

Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Baccalauréat STL biotechnologies Métropole La Réunion 18 juin 2015 Calculatrice autorisée conformément à la circulaire n o 99-186 du 16 novembre 1999. Le candidat doit traiter les quatre exercices. Il

Plus en détail

Baccalauréat ES Asie 19 juin 2013 Corrigé

Baccalauréat ES Asie 19 juin 2013 Corrigé accalauréat E sie 19 juin 201 orrigé EXERIE 1 ommun à tous les candidats On ne demandait aucune justification dans cet exercice. 4 points 1. b. 2. a.. c. 4. c. La longueur de l intervalle [ 1; 1] est 2

Plus en détail

BACCALAURÉAT LIBANAIS - SG Énoncé

BACCALAURÉAT LIBANAIS - SG Énoncé CONSIGNES À SUIVRE PENDANT L EXAMEN. DURÉE : 4 heures Il y a 6 exercices obligatoires à résoudre. L exercice est noté sur points, l exercice sur points, l exercice 3 sur 3 points, l exercice 4 sur 3 points,

Plus en détail

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008

Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Baccalauréat SMS 2008 L intégrale de juin à septembre 2008 Métropole juin 2008..................................... 3 La Réunion 18 juin 2008................................. 6 Polynésie juin 2008......................................

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction

Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction Baccalauréat STG Mercatique Nouvelle-Calédonie 15 novembre 2012 Correction EXERCICE 1 : TAUX D ÉVOLUTION 5 points Le tableau ci-dessous présente le nombre de voitures neuves vendues en France en 1980,

Plus en détail

Épreuve de mathématiques Terminale ES 200 minutes

Épreuve de mathématiques Terminale ES 200 minutes Examen 2 Épreuve de mathématiques Terminale ES 200 minutes L usage de la calculatrice programmable est autorisé. La bonne présentation de la copie est de rigueur. Cet examen comporte 7 pages et 5 exercices.

Plus en détail

TES-sujets de révisions BAC Amérique du sud nov. 2009

TES-sujets de révisions BAC Amérique du sud nov. 2009 TES-sujets de révisions BAC Amérique du sud nov. 009 Exercice 3 points Cet exercice est un questionnaire à choix multiples (QCM). Pour chaque question, une seule des trois réponses est exacte. Indiquer

Plus en détail

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12

TS. 2012/2013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 20/11/12 TS. 01/013. Lycée Prévert. Corrigé du contrôle n 3. Durée : 3 heures. Mardi 0/11/1 Exercice 1 : ( 6,5 pts) Première partie : Démonstration à rédiger { Démontrer que si ( ) et (v n ) sont deux suites telles

Plus en détail

Terminale ES BAC blanc N 1 ( janvier 2014)

Terminale ES BAC blanc N 1 ( janvier 2014) Terminale ES BAC blanc N 1 ( janvier 2014) Epreuve de mathématiques N anonymat :... Durée : 3 heures Calculatrice autorisée Exercice 1 ( pour tous les candidats ) Cet exercice est un QCM Une seule bonne

Plus en détail

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé Baccalauréat ES/L Métropole 12 septembre 2014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Avant de réaliser une opération marketing en début de saison, un revendeur de piscines

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats On considère la fonction f définie pour tout réel x de l intervalle [1,5 ; 6] par : f (x)=(5x 3)e x. On

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2

BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES. Durée : 2 heures Coefficient : 2 BREVET DE TECHNICIEN SUPÉRIEUR COMPTABILITÉ ET GESTION DES ORGANISATIONS Session 2013 ÉPREUVE DE MATHÉMATIQUES Durée : 2 heures Coefficient : 2 SUJET Dès que le sujet vous est remis, assurez-vous qu il

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x)

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x) EXERCICES LN Eercice : Soit f la fonction définie sur ]0;+ [ par f ()=+ ln(). On note C sa courbe représentative dans un repère orthogonal.. a. Calculer f () b. Déterminer l équation de la tangente T à

Plus en détail

Dérivées et applications. Equation

Dérivées et applications. Equation Dérivées et applications. Equation I) Dérivée d une fonction strictement monotone 1) Exemples graphiques Soit une fonction dérivable sur un intervalle I. Pour tout I, (x) est le coefficient directeur de

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail