Séquence 6. Fonctions dérivées. Sommaire

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Séquence 6. Fonctions dérivées. Sommaire"

Transcription

1 Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement Séquence 6 MA

2 Pré-requis A Fonctions de référence Fonction «carré» f : À savoir Dans le plan muni d un repère, la fonction «carré» est définie par f( )= où est un nombre réel. La fonction «carré» est : ] ;] [ ; + [ y 4 y = f. f est paire : f( ) = f( ) Variation + f( ) Séquence 6 MA

3 Fonction «inverse» f : À savoir R* = ] ; [ ] ; + [. La fonction «inverse» est : ] ;[. ] ; + [. f R* f est impaire : f( ) = f( ) Variation + f( ) y y = asymptotes Fonction «racine carrée» f : La fonction f + Variation + f( ) 4 Séquence 6 MA

4 y y = 4 5 Fonction «cube» f : + y 8 y = + f( ) 8 Séquence 6 MA 5

5 B Nombre dérivé À savoir On donne une fonction f et un nombre a. f lim ( a + h ) f ( a ) eiste on l appelle nombre dérivé de h h f en a et on la note f'( a). On dit alors que f est dérivable en a. f est dérivable en a, le nombre dérivé f '( a) est le coefficient au point Aafa ). ( ) ( )) est donc : directeur de la tangente à f f au point Aa fa y f( a) = f ( a)( a). C Maimum et minimum d une fonction Définitions Soit f I. f atteint un maimum en a I tout I, f( ) f( a). f( a) a. f atteint un minimum en a I tout I, f( ) f( a). f( a) a. f( a)etremum M P 5 4 Q m m Séquence 6 MA

6 Eemple f 68 f m et m. fm. P et Q f 68 Séquence 6 MA 7

7 Définition A Dérivées des fonctions usuelles Activités Nombre dérivé d une fonction f en un point d abscisse a (a quelconque) Cas de la fonction «carré» f af( )= et a = 8, a f :. 6 5 Cf Séquence 6 MA

8 a 4 5 f'( a) f ( a)a? Cas d une fonction constante f R parf( ) =. C f C f a f'( a) =... Cas d une fonction affine a) f R parf( ) = 7 +. C f C f a f ( a) =... f( )f'( ) Si R par ( )= m + p (m et p sont a, on a ( ) =... B Cours f en = a. f'( a). Définition Définition fif Ifonction dérivée de f f If en : f': I R f'( ) Séquence 6 MA 9

9 Rappel Lorsqu on parle d un intervalle I cela signifie qu on est dans l un des sept cas suivants : I = a ; b, I = a ; b, I = a ; b, I = a ; b, I = [ a; + [, I = ] ; b], I = ] + ; [. Remarque C est en 797 qu apparait pour la première fois l écriture f'. Le mathématicien Joseph-Louis Lagrange l utilise pour désigner le nombre dérivé qu aujourd hui on note f'( ). Dérivées des fonctions usuelles f'( a) f'( ) f( ) tions f connaître. A savoir Fonction f Dérivée f Intervalle I () f( )= c (c f'( ) = () f( )= m + p f'( ) = m () (4) f( )= f'( ) = f( )= f'( ) = I = R (5) f( )= n, n N { } f'( ) = n n (6) f( )= f'( ) = I = + (7) f( )= f'( ) = I = I = + Séquence 6 MA

10 Remarques On dit souvent «la dérivée de la fonction f» à la place de «la fonction dérivée de la fonction f». La fonction «racine carrée» f : est définie sur + alors que sa dérivée f': n est définie que sur + Autrement dit, la fonction «racine carrée» est définie en zéro (et = ) mais sa dérivée n est définie pour =. Graphiquement, ceci se traduit par une tangente verticale au point d abscisse = ; c est-à-dire par une tangente dont on ne peut pas calculer le coefficient directeur. Dire que n N { } signifie que n est un entier naturel différent de zéro. Ainsi la formule de la dérivée de la fonction «puissance n-ième» f : n (donnée ligne (5)) généralise les formules des dérivées des fonctions «carré» et «cube» (données lignes () et (4)). Conclusion (avec m= et p= c ). f( )= m + p f ( ) = m. f '( f ) ( + ) = ( ). f( + ) ( ) m ( + ) m + m = = = = m, f ( + ) ( ) = m f m ( + ) ( ) = m. f'( ) = m. C Eercices d apprentissage Eercice f : On posef( )= Séquence 6 MA

11 , f ( + ) ( ). f m ( + ) ( ) =. f'( ) =. Eercice Eercice Eercice 4 f : On posef( )=, f ( + ) ( ) f m ( + ) ( ) =. f'( ) =. f : On posef( )=, f ( + ) ( ) f m ( + ) ( ) =. f'( ) =. f : On posef( )=, f ( + ) ( ) f m ( + ) ( ) =. f '( ) =. Séquence 6 MA

12 Dérivation et opérations algébriques A Activités En somme, c est simple! et v R par ( )= 7 + et v( ) =. Les fonctions et v R. '( ) etv '( ). f R, et v : = + v. f en a fonction f a =. f '( ) Un produit dérivé pas si docile! et v R par ( )= 4 et v ( ) = 5,. et v R. '( ) et v '( ). f + tions et v : = v. f '( ) B Cours,,, «) Séquence 6 MA

13 Dérivée d une somme Propriété Soient u et v deu fonctions dérivables sur un intervalle I et k un réel. La fonction k u est dérivable sur I et ( k u) = k u. La fonction u+ v est dérivable sur I et ( u+ v) = u + v. Eemple ff( ) = + 7. f( ) = + ( 7 )= ( ) + v ( ) où( )= etv( ) = 7. '( ) = etv'( ) =. ( + )'( ) = '( ) + v'( ) = + f'( ) = +. Remarque On peut résumer la propriété en disant que «la dérivée de la somme est la somme des dérivées». De même pour la multiplication par un réel. L activité soulevait le problème : nous allons voir que la dérivation (c est-à-dire le calcul de la dérivée) ne se comporte pas aussi agréablement que l addition vis-à-vis de la multiplication et de la division entre fonctions. Dérivée d un produit Soient u et v deu fonctions dérivables sur un intervalle I. La fonctionu v est dérivable sur I et ( u v ) = u v + u v. Eemple ff( ) = ( + ). f( ) = ( ) v ( ) où( )= etv( ) = +. '( ) = ( ) ( ) = ( ) v( ) + ( ) v ( ) = ( + ) + et v ( ) =. 9 soitf'( ) = +. = = f'( ). 4 Séquence 6 MA

14 ne pas commettre à' '. Dérivée d un quotient Propriété Soient u et v deu fonctions dérivables sur un intervalle I telles que v ne s annule pas sur I. La fonction u ' v est dérivable sur I et u u v u v v = ' '. v Eemple + ff( ) =. 4 + Posons( )= + etv( ) = 4+. I = + v I). 4 ( ) f( ) =. v ( ) ( ) = 6 + et v ( ) = 4. '( ) v ( ) v ( ) '( ) ( 6+ 4 )( + ) ( + ) 4 ( ) = = v v ( ) ( 4 + ) ( ) Soit f'( ) = ( 4 + ) Donc f'( ) =. ( 4 + ) Remarque Un cas particulier important est celui de =. Il s agit alors de calculer la dérivée de l inverse de v. Dans ce cas = et la formule de la propriété précédente devient ' v v v v = ' ' =. v v Ce résultat mérite d être signalé en tant que tel. Propriété Soit u une fonction dérivable et ne s annulant pas sur un intervalle I. La fonction ' u est dérivable sur I et u u = '. u Séquence 6 MA 5

15 Eemple C ff( ) =. Posons( )= f( ) = ( ). ( ) = '( ) f'( ) = = =. ( ( )) ( ) f'( ) =. Eercices d apprentissage Eercice Eercice Eercice f ( )f f( )= f( )= f( ) =, f( )= 7 + f( ) = f( )= + 7 f ( )f f( )= f( )= 5 f ( ) = 4 + ( + ) f et R 6 + Eercice 4 ff( ) f( ) = ( )( 4 ) f( ) = ( )( + ) f( )= Eercice 5 Eercice 6 f ( )f 5 + f( )= f( )= f( )= f ( )ff( )= + f( ) = Séquence 6 MA

16 4 Applications A de la dérivation Activités Des tangentes horizontales f C f C f =..., =..., =... f'( ) =..., f '( ) =..., f'( ) =... 4 f f 4f 45f Séquence 6 MA 7

17 Variations et signe de la dérivée f «Sif'( ) » «Sif'( ) » B Cours Dérivée et sens de variations Théorèmes Théorème On considère une fonction f dérivable sur un intervalle I. Si f est constante sur I alors pour tout réel I, f'( ) =. Si f est croissante sur I alors pour tout réel I, f'( ). Si f est décroissante sur I alors pour tout réel I, f'( ). Eemple f + par f( ) =. ff est croissante +. 8 Séquence 6 MA

18 4 + f'( ) f'( ). f'( ) =. = + f +, + > +. f +, f'( ). f ' 5 C f 4 f f est croissante. f ' est positive. 4 f ' f '( ) =. f a f traverse. 4 5 Séquence 6 MA 9

19 Théorème On considère une fonction f dérivable sur un intervalle I. Si pour tout réel I, f( )= alors f est constante sur I. Si pour tout réel I, f( ) alors f est croissante sur I. Si pour tout réel I, f( ) alors f est décroissante sur I. Logique réciproque fi I, f( ).». Sialors On note ceci A B Sialors On note ceci B A A B et oùb A on écrit A B Attention donc Sialors Eemple f : f':. R, f'( ). f est croissante. R. f R parf( ) = +. f R, f'( ) = + = +., + > f'( ) >. f R. 8 + par ( ) = , '( ) = '( ): '( ) = ( ) Séquence 6 MA

20 '( ) = ( ). +,. '( ). Tableau de variations Eemple R par f( ) = +. f R R, f'( ) = + Comme + = =, f ' =. + en f'( ) < f. f'( ) > + f +. f + f ' + f 4 f ( ) = ( ) + ( ) = 4 Remarque Cet eemple a mis en évidence la propriété suivante : L abscisse a du sommet de la parabole est solution de l équation f'( ) =. Cette propriété est vraie plus généralement pour tous les polynômes du nd degré. Séquence 6 MA

21 Etremum d une fonction Théorème On considère une fonction f dérivable sur un intervalle ouvert I. Si f a un etremum en un point d abscisse a alorsf'( a) =. Remarque Autrement dit, un etremum est à prendre parmi les points où la dérivée s annule. Cependant, la dérivée peut s annuler en a I sans que la fonction f n atteigne d etremum en a. L eemple suivant en est une illustration. Mais d abord, dans l eemple suivant, voyons une application du théorème. Eemple f + parf( ) = ( ). + (attention, pas en = ). +, f'( ) = ( ) + = ( ) =. Comme f'( ) = = =, si f f f +, f( ) f( ) f( ) f( ). f( ) f( ) = ( ) ( ) = + = ( ). +, ( ) f( ) f( ). Séquence 6 MA

22 La fonction f =, ( ). f R parf( ) = ( ) +. f f'( ) = ( ), f '( ) =. f =, > ( ) > ( ) + > + f( ) > f( ). <, ( ) < ( ) + < + f( ) < f( ). C f C f «traverse» cette tan nées ) point d infleion.,5 Cf,5,5,,5,5,5,5,5 Une fonction peut atteindre un etremum en plusieurs points comme l illustre la courbe de fonction définie sur l intervalle 68ci-dessous : Remarque Une fonction peut aussi ne pas avoir d etremum sur un intervalle. C est le cas par eemple de la fonction «inverse» sur l intervalle + (définie parf( )= ), dont les valeurs sont aussi grandes que voulues puisque f (, ) =, f (, ) = 6,... (elle n a donc pas de maimum) et dont les valeurs sont aussi proche de zéro que voulues mais positives puisque f( ) =,, f( ) =,,... (elle n a donc pas de 6 minimum puisque la valeur zéro n est jamais atteinte). Séquence 6 MA

23 Optimisation Eemple X X premier temps. V( ). V( ) = ( ) V( ) = La fonction V etv'( ) = V'( ) V'( )= 4+ 9 = = ( 8) 4 4 = 6= 4 4 Séquence 6 MA

24 > est 4( )( ) 8 où = ( ) 8 = 4 = ( ) + = 4 V'( ) = 4( )( ), V'( ) = ( )( ). ( )( ) R,5, ( )( ) + + V,5,5 V ' + V V ( ) = =, V ( 5, ) = 4 5, 5, + 9 5, = et V (, 5) = 4 5, 5, + 9 5, =. m, f f ' f'( ) Séquence 6 MA 5

25 C Eercices d apprentissage Eercice Soit f 4 parf( ) = + +. f ' f. f'( ). f 4 f a.? 4? f( )= Eercice Soit f 4 4 parf( ) = + 4. f ' f. f'( ). f 44 Eercice Soit f + parf( ) =. + f ' f. f'( ). f + Eercice 4 f et f( )= et + ( ) =.. a. A, ce point). PP est P A, Eercice 5 6 Séquence 6 MA

26 «Si f'( ) I M C f I C f f est croissante». f C f f'( )». Eercice 6 «Si f ( a) = a)». «Si f ( a) = a». Eercice 7 f + f f( ) f( )? f( ) > f( )? Eercice 8 C, C, C f, et C C C Séquence 6 MA 7

27 La fonction f fonction. f, et 8 Séquence 6 MA

28 5 Synthèse de la séquence Dérivées des fonctions usuelles Fonction f Dérivée f Intervalle I f( )= c (c f'( ) = I = R f( )= m + p f'( ) = m f( )= f'( ) = f( )= f'( ) = f( )= n, n N { } f'( ) = n n f( )= f'( ) = f( )= f'( ) = I = + I = I = + Dérivation et opérations sur les fonctions Soient et vi ' etv '. Fonction Dérivée + ( + )' = ' + ' où k R. ( )' = ' ( )' = ' + ' ( )' = ' ( )' = ' n où n N { } n n ( )' = ' Séquence 6 MA 9

29 (I) ' = ' v (vi) ' v = ' ' v Applications de la dérivation fi. Théorèmes et Théorème «fi I, f'( ) =». «fi I, f'( )». «fi I, f'( )». fi. Si faf'( a) =. Séquence 6 MA

30 5 Eercices d approfondissement Eercice I I Démontrons d abord le premier point du théorème à savoir : Si fi I, f'( ). f f I, f'( ). a I. f'( a). a) >, f( a+ ) ( a). >, fa ( + ) ( a ). a) <, f( a+ ) ( a). <, fa ( + ) ( a ). f'( a). I, f'( ). II Démontrons ensuite le second point du théorème, à savoir : Si f I, f'( ). f f Eercice II ff( ) = ( + ) +. 4 a)f. f '( ). Séquence 6 MA

31 c) a f'( a). f est croissante. f '. f'( ) a)f'( ) = +. a+ vraie + +. Eercice III er poste. f et ) et C f S R C g La fonction f parf( ) = + 5. La fonction 5 par ( ) = ( ). 7 ( SR ) a)c f S Séquence 6 MA

32 C R a)f et. Fonction[f,a,b] ( SR ). c) Eercice IV Eercice V, est V = π où. Déterminer 4t + ft ()= où tf() t est t + 8 f'( t) a) t Année 98 +t 8 9 f a)f '( 8) f '( 9 ). Eercice VI Séquence 6 MA

33 er G( ) = 5, 5, où. G. Déterminer G ( ) G ( ) G. 4 Séquence 6 MA

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Complément d information concernant la fiche de concordance

Complément d information concernant la fiche de concordance Sommaire SAMEDI 0 DÉCEMBRE 20 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : La fiche de concordance pour le DAEU ; Page 2 Un rappel de cours

Plus en détail

O, i, ) ln x. (ln x)2

O, i, ) ln x. (ln x)2 EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x)

EXERCICES. Exercice 3 : Soit f la fonction définie sur ]0; + [ par f (x) = 1 5 ln(x). 1. Déterminer les limites suivantes : lim f (x) et lim f (x) EXERCICES LN Eercice : Soit f la fonction définie sur ]0;+ [ par f ()=+ ln(). On note C sa courbe représentative dans un repère orthogonal.. a. Calculer f () b. Déterminer l équation de la tangente T à

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M.

PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. PETIT MANUEL DE SURVIE EN MATHÉMATIQUES À L USAGE DES TERMINALES STI2D (OU CE QU ON DOIT APPRENDRE ET CE QU ON PEUT RETROUVER SI ON EST MALIN) par M. Vienney 2 M. VIENNEY Vous trouverez dans ce document

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE

MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE MATIÈRE DU COURS D'ALGÈBRE ET D'ANALYSE Titulaire : A.M. Tilkin 8h/semaine 1) MATIERE DE 4 e ANNEE a) ALGEBRE - Rappels algébriques concernant la résolution d équations et d inéquations (fractionnaires

Plus en détail

Mathématiques en Terminale ES. David ROBERT

Mathématiques en Terminale ES. David ROBERT Mathématiques en Terminale ES David ROBERT 0 0 Sommaire Suites. Activités........................................................... Suites géométriques Rappels..............................................

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 7 EXERCICE points. Le plan (P) a une pour équation cartésienne : x+y z+ =. Les coordonnées de H vérifient cette équation donc H appartient à (P) et A n

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 7 JANVIER 202 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les suites ; Page 2 Deu eercices intitulés

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Séquence 8. Fonctions numériques Convexité. Sommaire

Séquence 8. Fonctions numériques Convexité. Sommaire Séquence 8 Fonctions numériques Conveité Objectifs de la séquence Introduire graphiquement les notions de fonctions convees et de fonctions concaves. Établir le lien entre le sens de variation d une fonction

Plus en détail

5. Étude de fonctions

5. Étude de fonctions ÉTUDE DE FONCTIONS 33 5. Étude de fonctions 5.1. Asymptotes Asymptote verticale La droite = a est dite asymptote verticale (A. V.) de la fonction f si l'une au moins des conditions suivantes est vérifiée

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Etude de fonctions: procédure et exemple

Etude de fonctions: procédure et exemple Etude de fonctions: procédure et exemple Yves Delhaye 8 juillet 2007 Résumé Dans ce court travail, nous présentons les différentes étapes d une étude de fonction à travers un exemple. Nous nous limitons

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Corrigé Pondichéry 1999

Corrigé Pondichéry 1999 Corrigé Pondichéry 999 EXERCICE. = 8 = i ). D'où les solutions de l'équation : z = + i et z = z = i. a. De manière immédiate : z = z = b. Soit θ la mesure principale de arg z : cos θ = Par suite arg z

Plus en détail

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé

Baccalauréat S Antilles-Guyane 11 septembre 2014 Corrigé Baccalauréat S ntilles-guyane 11 septembre 14 Corrigé EXERCICE 1 6 points Commun à tous les candidats Une entreprise de jouets en peluche souhaite commercialiser un nouveau produit et à cette fin, effectue

Plus en détail

BACCALAUREAT GENERAL MATHÉMATIQUES

BACCALAUREAT GENERAL MATHÉMATIQUES BACCALAUREAT GENERAL FEVRIER 2014 MATHÉMATIQUES SERIE : ES Durée de l épreuve : 3 heures Coefficient : 5 (ES), 4 (L) 7(spe ES) Les calculatrices électroniques de poche sont autorisées, conformement à la

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA

Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Correction du BAC BLANC TECHNOLOGIQUE - Epreuve E4 MATHEMATIQUES ET TECHNOLOGIES INFORMATIQUES ET MULTIMEDIA Exercice 1 (4 points) Dans une classe de terminale STAV de 5 élèves, chaque élève possède une

Plus en détail

Ressources pour le lycée technologique

Ressources pour le lycée technologique éduscol Enseignement de mathématiques Classe de première STMG Ressources pour le lycée technologique Dérivation : Approximation affine et applications aux évolutions successives Contexte pédagogique Objectifs

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide)

Épreuve pratique de mathématiques Printemps 2009. Descriptifs. (Page vide) Épreuve pratique de mathématiques Printemps 2009 Descriptifs (Page vide) Sujet 001 Épreuve pratique de mathématiques Descriptif Étude d une fonction dépendant d un paramètre Étant donné une fonction dépendant

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

Séquence 1. Notion de fonctions Fonctions linéaires et affines. Sommaire

Séquence 1. Notion de fonctions Fonctions linéaires et affines. Sommaire Séquence Notion de fonctions Fonctions linéaires et affines Sommaire. Prérequis. Notion de Fonctions 3. Sens de variation d une fonction 4. Fonctions linéaires et fonctions affines 5. Algorithmique 6.

Plus en détail

Quadrature n 74 (2009) 10 22. Online Material

Quadrature n 74 (2009) 10 22. Online Material Quadrature n 74 (009) 10 Online Material E. Brugallé, Online Material Un peu de géométrie tropicale Solutions des exercices Erwan Brugallé Université Pierre et Marie Curie, Paris 6, 175 rue du Chevaleret,

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Continuité en un point

Continuité en un point DOCUMENT 4 Continuité en un point En général, D f désigne l ensemble de définition de la fonction f et on supposera toujours que cet ensemble est inclus dans R. Toutes les fonctions considérées sont à

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Rappels sur les suites - Algorithme

Rappels sur les suites - Algorithme DERNIÈRE IMPRESSION LE 14 septembre 2015 à 12:36 Rappels sur les suites - Algorithme Table des matières 1 Suite : généralités 2 1.1 Déition................................. 2 1.2 Exemples de suites............................

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» )

LE PROCESSUS ( la machine) la fonction f. ( On lit : «fonction f qui à x associe f (x)» ) SYNTHESE ( THEME ) FONCTIONS () : NOTIONS de FONCTIONS FONCTION LINEAIRE () : REPRESENTATIONS GRAPHIQUES * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

Plus en détail

Problèmes de Mathématiques MPSI. Erwan Biland

Problèmes de Mathématiques MPSI. Erwan Biland Problèmes de Mathématiques MPSI Erwan Biland Lycée Stanislas, classe de MPSI 1, 2009/2010 Ce recueil réunit une partie des problèmes posés aux élèves de PCSI 1 puis MPSI 1, en temps libre ou en temps limité,

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Première S Valère BONNET valere.bonnet@gmail.com 0 juin 009 Lycée PONTUS DE TYARD 3 rue des Gaillardons 700 CHALON SUR SAÔNE Tél. : 33 03 85 46 85 40 Fax : 33 03 85 46 85 59 FRANCE

Plus en détail

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader

Terminale STMG Lycée Jean Vilar 2013/2014. Terminale STMG. O. Lader Terminale STMG O. Lader Table des matières 1 Information chiffrée (4s) 4 1.1 Taux d évolution....................................... 6 1.2 indices............................................. 6 1.3 Racine

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Mathématiques assistées par ordinateur

Mathématiques assistées par ordinateur Mathématiques assistées par ordinateur Chapitre 4 : Racines des polynômes réels et complexes Michael Eisermann Mat249, DLST L2S4, Année 2008-2009 www-fourier.ujf-grenoble.fr/ eiserm/cours # mao Document

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Mercredi 24 Juin 2015

Mercredi 24 Juin 2015 BACCALAURÉAT GÉNÉRAL Session 2015 MATHÉMATIQUES Série ES ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 3 heures coefficient : 5 MATHÉMATIQUES Série L ENSEIGNEMENT DE SPÉCIALITÉ Durée de l épreuve : 3 heures

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé

Baccalauréat ES/L Métropole 12 septembre 2014 Corrigé Baccalauréat ES/L Métropole 12 septembre 2014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Avant de réaliser une opération marketing en début de saison, un revendeur de piscines

Plus en détail

Mathématiques en Première ES. David ROBERT

Mathématiques en Première ES. David ROBERT Mathématiques en Première ES David ROBERT 009 00 Sommaire Pourcentages. Rappels et compléments................................................... Pourcentage......................................................

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Projets individuels Informatique II

Projets individuels Informatique II Projets individuels Informatique II 1. Faites un programme en C qui effectue la lecture à partir du clavier d un nombre entier N qui détermine la taille d une matrice N x N et qui recherche la valeur minimale

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

Baccalauréat STI Génie civil Métropole 16 septembre 2010

Baccalauréat STI Génie civil Métropole 16 septembre 2010 Durée : 4 heures Baccalauréat STI Génie civil Métropole 16 septembre 010 L utilisation d une calculatrice est autorisée pour cette épreuve. Le candidat doit traiter les deux exercices et le problème. EXERCICE

Plus en détail

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine

Mini Dictionnaire Encyclopédique Mathématiques. Fonction affine Fonction affine ) Définition et Propriété caractéristique a) Activité introductive Une agence de location de voiture propose la formule de location suivante : forfait de 50 et 0,80 le km. Quel est le prix

Plus en détail

Baccalauréat ES/L Amérique du Sud 21 novembre 2013

Baccalauréat ES/L Amérique du Sud 21 novembre 2013 Baccalauréat ES/L Amérique du Sud 21 novembre 2013 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 5 points Une entreprise informatique produit et vend des clés USB. La vente de ces clés est réalisée

Plus en détail

Algèbre binaire et Circuits logiques (2007-2008)

Algèbre binaire et Circuits logiques (2007-2008) Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits

Plus en détail

Concours de recrutement interne PLP 2009

Concours de recrutement interne PLP 2009 Concours de recrutement interne PLP 2009 Le sujet est constitué de quatre exercices indépendants. Le premier exercice, de nature pédagogique au niveau du baccalauréat professionnel, porte sur le flocon

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

Ensembles et applications. Motivations. Exo7

Ensembles et applications. Motivations. Exo7 o7 nsembles et applications Vidéo partie 1. nsembles Vidéo partie 2. Applications Vidéo partie 3. Injection, surjection, bijection Vidéo partie 4. nsembles finis Vidéo partie 5. Relation d'équivalence

Plus en détail

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1

La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La Licence Mathématiques et Economie-MASS Université de Sciences Sociales de Toulouse 1 La licence Mathématiques et Economie-MASS de l Université des Sciences Sociales de Toulouse propose sur les trois

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Lecture graphique. Table des matières

Lecture graphique. Table des matières Lecture graphique Table des matières 1 Lecture d une courbe 2 1.1 Définition d une fonction.......................... 2 1.2 Exemple d une courbe........................... 2 1.3 Coût, recette et bénéfice...........................

Plus en détail