Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercices - Calcul d intégrales : corrigé. Intégration par parties - Changements de variable"

Transcription

1 Intégration par parties - Changements de variable Eercice - Changements de variables - Niveau - L/Math Sup -. La fonction t t est une bijection de classe C de, 4] sur, ]. On peut donc poser u t. Lorsque t, u et lorsque t 4, u vaut. De plus, on a et On en déit que t t u t t u 4 t dt t u u dt u. u u u ( u) u u ]. La fonction e réalise une bijection de, ] sur e, e ]. Effectuons le changement de variables u e dans l intégrale, de sorte que e d. Il vient e e + e d + u ln + u ] ( ) + e e e ln. + e e Eercice - Changements de variables - Niveau - L/Math Sup -. La fonction ln réalise une bijection de, e] sur, ]. On pose donc u ln de sorte que d. De plus, lorsque vaut, u vaut et lorsque vaut e, u vaut. On trouve donc e (ln ) n d u n n +.. La fonction à intégrer est définie et continue sur ], +. On se limite donc à calculer l intégrale recherchée pour >. La fonction t e t est une bijection de, ] sur e, e ]. Posant u e t, on a d où e t e t dt ( ) ( ) e e F () e u + 4 arctan e arctan.

2 Eercice - Changements de variables - Recherche de primitives - L/Math Sup - est définie et continue sur ], +, intervalle sur lequel on cherche. La fonction ln à calculer une primitive. Pour cela, on fait le changement de variables u ln, de sorte que d et on trouve ln d u u + C (ln ) + C.. La fonction cos( ) est définie et continue sur ], +, intervalle sur lequel on cherche à calculer une primitive. Pour cela, on effectue le changement de variables u, de sorte que u ou encore d u. On trouve alors cos( )d u cos(u) u sin u] sin(u) u sin u + cos u + C (on a aussi effectué une intégration par parties). sin( ) + cos( ) + C Eercice 4 - Intégration par parties - Niveau - L/Math Sup -. La fonction arctan étant continue sur R, elle admet une primitive sur cet intervalle. On intègre par parties en posant : de sorte que u() arctan u () + v () v() arctan tdt arctan +. La primitive que l on doit encore rechercher est de la forme g /g, et donc arctan tdt arctan ln( + ).. La fonction (ln ) étant continue sur ], +, elle admet des primitives sur cet intervalle. On se restreint à cet intervalle et on intègre par parties en posant : u() (ln ) u () ln v () v()

3 de sorte que (ln t) dt (ln ) ln tdt. Une primitive de ln étant ln (résultat qui se retrouve en intégrant par parties), on trouve finalement qu une primitive de (ln ) est (ln ) ln +.. On va intégrer par parties deu fois. On travaille sur l intervalle ], +, là où la fonction est bien définie et continue. On pose alors : u() sin(ln ) u () cos(ln ) v () v() de sorte que sin(ln )d sin(ln ) cos(ln ). On intègre une deuième fois par parties en posant u () cos(ln ) u () sin(ln ) v () v () de sorte que cos(ln )d cos(ln ) + sin(ln ). En mettant tout cela ensemble, on trouve sin(ln )d sin(ln ) cos(ln ) sin(ln ) soit sin(ln ) ( sin(ln ) cos(ln ) ). Eercice 5 - Intégration par parties - Niveau - L/Math Sup -. On intègre par parties, en posant u () et v() (arctan ). On a v () arctan() +, et ceci nous incite à considérer comme primitive de u la fonction u() ( + ), ce qui va simplifier les calculs. On obtient alors I ( + )(arctan ) ] arctan. On calcule la dernière intégrale en réalisant à nouveau une intégration par parties, et on trouve : I π 6 arctan ] + + d π 6 π 4 + ln( + ) ] π 6 π 4 + ln.

4 . La fonction f : ln est continue sur ], ], et elle tend vers en. On peut donc ( +) la prolonger par continuité à, ] en posant f(), ce qui donne un sens à J. Pour calculer cette intégrale, on va intégrer par parties entre a > et, pour ne pas être gêné par les problèmes en. On pose donc J(a) a ce qui donne De plus, de sorte que a On obtient donc que ln ( +), puis : u() (ln ) v () ( +) u () v() ( +) J(a) ln ] ( + + ) a ( + ) + a d ( + ). d ( + ) ln ] ln( + ) a ln ln(a) + ln( + a ). J(a) ln a (a + ) ln 4 ln a + 4 ln( + a ). Reste à faire tendre a vers. Pour cela, on factorise par ln a, et on trouve J(a) a ln(a) (a + ) ln ln( + a ). Comme a ln(a) tend vers lorsque a tend vers, de même que ln( + a ), on conclut finalement que J ln 4. Eercice 6 - Une suite d intégrales - L/Math Sup - Pour (n, p) N N, l application n (ln ) p est définie et continue sur ], ]. De plus, les théorèmes de comparaison usuels entraînent que cette fonction se prolonge par continuité en (remarquons l importance de n > ). Ceci justifie l eistence de I n,p. Pour calculer I n,p, nous allons réaliser une intégration par parties. On la réalise entre a > et, pour prendre garde au fait que la fonction logarithme n est pas définie en. On remarque aussi que I n, n+, et donc il suffit de traiter le cas p >. On pose donc puis I n,p (a) u() (ln ) p u () p(ln )p a n (ln ) p d v () n v() n+ n+. 4

5 On trouve alors, I n,p (a) n+ (ln ) p] n + a p n (ln ) p d an+ n + a n + On passe à la limite en faisant tendre a vers, et on trouve : On trouve alors I n,p I n,p p n + I n,p. p n + I n,p. ( p) ( (p )) ( ) (n + ) (n + ) (n + ) I n, ( )p p! (n + ) p n + ( )p p! (n + ) p+. Eercice 7 - Une autre suite d intégrales - L/Math Sup - On pose, pour (α, β, n, m) R N, I m,n β α (t α) m (t β) n dt. On intègre par parties pour obtenir une relation entre I m,n et I m,n+, et on trouve m (t β)n+ I m,n (t α) n + m n + I m,n+. D autre part, pour tout p N, on a I,p β Une récurrence immédiate donne alors α ] β α (t α) p dt m β (t α) m (t β) n+ dt n + α (α β)p+. p + I m,n ( ) m+ m(m )... (α β) m+n+ (n + )(n + )... (n + m) m + n +. En particulier, l intégrale recherché vaut I n,n, c est-à-dire I n,n ( ) n+ n! (α β) n+ (n + )... (n) n + n+ (α β)n+ ( ) (n + ) ( n). n Fractions rationnelles Eercice 8 - Fractions rationelles - Niveau - L/Math Sup - 5

6 . On commence par faire apparaître au numérateur la dérivée dénominateur On intègre alors. Pour la première partie, c est facile, car : ln + +. Pour la seconde, on se ramène à écrire le dénominateur sous la forme X + ω, ce qui ( ) nécessite en plus un changement de variables. Ici, on a soit, avec le changement de variables u + /, d + + u + ( ) arctan ( ) u ( ) + arctan. Finalement, une primitive de la fonction recherchée est ln ( ) + arctan.. C est plus facile, car le numérateur est une constante. On écrit simplement que +4+5 ( + ) + et la méthode précédente donne d arctan( + ) On commence par effectuer la division euclidienne numérateur par le dénominateur. On trouve que + ( )( + + ) + + d où Une primitive est donc la fonction + ln On sait que la fraction rationnelle peut s écrire ( + ) a + + b ( + ). Par identification (par eemple...), on trouve que a et b. Une primitive de la fonction est donc ln Eercice 9 - Fractions rationelles - Niveau - L/Math Sup - 6

7 . Le dénominateur se factorise en ( )( + + ). On cherche alors à écrire a + b + c + +. Par identification (par eemple...) on trouve a /, b / et c /, soit On cherche alors à faire apparaître la dérivée de + + pour faciliter l intégration, et on trouve Pour intégrer le dernier terme, on écrit + + ( + ) + ( ce qui donne finalement qu une primitive de la fonction est ln 6 ln + + ( ) + arctan.. C est assez difficile si on ne pense pas à faire un changement de variables. On peut en effet poser u, et ( 4) d (u 4) (u 4) ( 4). Eercice - Grande puissance - L/Math Sup - Une intégration par parties donne Or, I n ( + ) n ] + n ( + ) n+ Regroupant les termes, on trouve Sachant que I π 4, on trouve ) ( d + ) n+ n + n + ( + ) n+ ( d. + ) n+ ( + ) n+ d I n I n+. ni n+ (n )I n + n I n+ n n I n + n n+. I π et I π + 4. Avec la fonction eponentielle 7

8 Eercice - Fonction eponentielle - Niveau - Math Sup/L -. La fonction cosh est continue sur R (le dénominateur ne s annule pas). Une primitive est par eemple la fonction F définie par cosh t dt e t + e t dt. On calcule cette intégrale à l aide changement de variables u e t (la fonction t e t est une bijection de classe C de, ] sur, e ], de bijection réciproque u ln u). On en déit que F () e + u arctan(u) ] e arctan(e ) π.. On réalise là-aussi le changement de variables u e, e d soit d /u et on trouve : + e d u( + u) ( u ) + u ( ) u ln + C + u ( e ) ln + e + C.. On peut intégrer par parties, ou rechercher une primitive de la même forme, c est-à-dire une fonction F : e (a + b + c + d). On a alors F () e ( a + (a + b) + (b + c) + (c + d) ). Par identification, on trouve que F est une primitive de e ( + + ) lorsque a, a + b, b + c 5 et c + d, soit a, b, c 5 et d 4. Les primitives sont donc les fonctions e ( + 5 4) + C. Eercice - Fonction eponentielle - Niveau - Math Sup/L -. On pose u e, de sorte que cosh cosh + e d u u + u + u + 4u (u + ) 4 u + + u 4 (u + ) u 4 ln( + u) 4 + u + C e 4 ln( + e ) 4 + e + C. 8

9 . Le changement de variables le plus malin ici est u sinh, de sorte que d cosh d cosh cosh On en déit : cosh ( + sinh ) d ( + u )( + u) u/ + / u + + u 4 u u. / + u u + + ln + u 4 ln(u + ) + arctan(u) + ln + u + C ln(cosh ) + arctan(sinh ) + ln + sinh + C. Eercice - Eponentielle et trigonométrique - Math Sup/L -. I est égal à Re(J) avec J π e (+i) (on a posé cos Re(e i )). En intégrant par parties, on trouve e (+i) ] π J π e (+i) d + i + i π e π + i + i π e (+i) d. On fait une deuième intégration par parties pour calculer cette dernière intégrale, et on trouve ] π e e (+i) (+i) π d π e (+i) d + i + i πeπ + i ( + i) e (+i)] π πeπ + i + i ( eπ ). Regroupant tous les termes, et multipliant par la quantité conjuguée au dénominateur, on trouve : soit J π e π i iπe π + i ( eπ ), I + π e π.. On commence par linéariser sin et on trouve J π ( ) cos() e d e π π e cos(). 9

10 On calcule alors la dernière intégrale en utilisant les complees. On trouve π ( π ) e cos()d Re e (i ) d ( ] ) π Re i e(i ) ( ) Re 5 (i + )( e π ) 5 ( e π ). Finalement, on trouve J 5 ( e π ). Fonctions trigonométriques Eercice 4 - Puissances et proits - L/Math Sup -. On a sin 5 5 i ( e i e i sin(5) 6 ) 5 i (e 5i e 5i 5e i + 5e i + e i e i) 5 sin() sin(). 8 Une primitive de la fonction recherchée est donc la fonction cos(5) cos() 48 5 cos(). 8. On écrit, pour éviter le calcul d un proit, cos 4 sin cos 4 cos 6. Or, cos 4 ( e i + e i ) 4 ) (e i4 4 + e i4 + 4e i + 4e i + 6 De même, on trouve ( cos(4) + 8 cos() + 6). 4 cos 6 6 ( cos(6) + cos(4) + cos() + ). On a donc cos 4 cos 6 cos(6) 6 cos(4) + cos()

11 Une primitive de la fonction étudiée est donc la fonction 9 sin(6) 64 sin(4) + 64 sin() On commence par linéariser cos en ( cos() + cos() ) /4. Avec la formule cos p cos q ( ) cos(p + q) + cos(p q) on trouve finalement cos() cos ( ) + cos(6) + cos(4) + cos() d sin(6) 48 + sin(4) + sin() 6 + C. Eercice 5 - Intégrale trigonométrique - Niveau - L/Math Sup -. On pose u cos t, de sorte que dt cos u. Il vient sin dt (sin t) sin tdt ( u ). De plus, pour t, u et pour t π/4, u /. L intégrale est donc égale à soit I u / + u + / / u + I + + π arctan( /).. Là aussi, le meilleur changement de variables est u cos, de sorte que sin d. Pour le faire apparaitre dans l intégrale, on écrit : π/ π/ d π/ sin sin cos d π/ u / / ( u u + ] ln u / u + ln. ). C est encore le même changement de variables qui est le meilleur! π/ ( + cos() ) tan() / u + u u + ln u ] / + ln.

12 Eercice 6 - Intégrale trigonométrique - Niveau - Math Sup/L -. On pose w() tan cos + sin d et on remarque que w( ) w(). Ceci nous conit, par les règles de Bioche, au changement de variables t cos. Il vient dt sin d et donc I dt t( t + t ). On décompose la fraction rationnelle en éléments simples en remarquant que t( t + t ) t(t )(t + ) t + 6(t ) + (t + ). On en déit I ln t + 6 ln( t) + ln(t + ] ) (il faut prendre garde que t est négatif sur l intervalle considéré). On trouve alors : I 6 ln( ) + ln( + ) ln( ) 6 ln ln( ). Ceci peut encore se simplifier, mais c est sans grand intérêt.... Aucune des règles de Bioche ne s applique, et on est conit à poser u tan(/), de sorte que d + u. L intégrale devient π/ d + sin + u + u +u u + u + ( u + ) / + 4 arctan u + ] π. Eercice 7 - Intégrale trigonométrique - Niveau - L/Math Sup -

13 . La fonction cos(/) sin(/) est continue sur ], π], et elle se prolonge par continuité en en posant f() (on a f() /9). On commence par effectuer le changement de variables t /6, de sorte que, notant I l intégrale, I π/6 soit encore, après simplification : cos(t) π/6 sin t 6dt sin(t) sin t 4 sin t dt, π/6 sin t I 4 cos t dt. On effectue alors le changement de variables u cos t, de sorte que sin tdt, et I / 4u 6 dv v. Écrivant v v v+, puis intégrant, on trouve ] I ln + v ( ) + v ln.. La règle de Bioche nous dit que le changement de variables approprié est u cos. Pour le faire apparaitre, on écrit d sin + sin On obtient, notant J l intégrale, d sin ( + cos ) sin d ( cos )( + cos ). J / ( u)( + u)( + u). On décompose la fraction rationnelle obtenue en éléments simples : On peut alors finir le calcul de J : ( u)( + u)( + u) /6 u / + u + 4/ + u. J 6 ln u ln + u + ln + u ] / ln + ln. 6 Intégrales abéliennes Eercice 8 - Intégrales abéliennes - Niveau - Math Sup/L -

14 . La fonction est définie et continue sur, + \{ }. Le calcul sera donc valable sur les intervalles, et ], +. On effectue le changement de variables u +, puisque la fonction + est bijective et C sur ], +, de sorte que + d d u. On en déit : d + d u u ( ) u ( ln u u ) + C ln C.. La fonction est définie sur ],, et on effectue le changement de variables sin u, avec u π/, π/], de sorte que d cos u. On trouve : d ( ) cos u cos u cos u cos u tan(u) + C sin u cos u + C + C.. On pose u +, de sorte que u + u et d 4u ( u ). On en déit + d 4u ( u ) ( u + (u ) u + + (u + ) ) + ln u ln + u + C u u ln ln C Eercice 9 - Intégrale abélienne - Niveau - Math Sup/L - On commence par écrire le trinome sous forme canonique : I + 5d ( ) + 4d. On trouve un terme de la forme u +, pour ( ) 4u. Ceci nous incite à poser u sh(t), soit encore sht. En posant α Argsh(/), on obtient I α ( + sht) cht chtdt α 4ch t + 8 α sh(t)ch (t)dt. 4

15 Utilisant ch (t) + ch(t), on obtient I t + sh(t) ] α + 8 ] α ch t α + sh(α) + 8 ch α 8. Ceci peut encore se simplifier en eprimant sh(α) en fonction de sh(α) et ch(α), ie sh(α) sh(α)ch(α), et en remarquant que ch α sh α. On obtient finalement I α

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie

MEÉF 1 - Mathématiques DS2-5 octobre 2015 Analyse - Géométrie MEÉF - Mathématiques DS2-5 octobre 25 Analyse - Géométrie Eercice Soit E un K-espace vectoriel (K étant le corps R ou C). Deu normes N et N 2 sur E sont dites équivalentes s il eiste deu constantes réelles

Plus en détail

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin.

Exo7. Développements limités. 1 Calculs. 2 Applications. Corrections d Arnaud Bodin. Exo7 Développements ités Corrections d Arnaud Bodin. Calculs Exercice Donner le développement ité en 0 des fonctions :. cosx expx à l ordre 2. ln + x)) 2 à l ordre 4 shx x. x à l ordre 6 4. exp sinx) )

Plus en détail

Calculs de primitives

Calculs de primitives Calculs de primitives Eercice. Calculer... 4. 5. 6. 7. Allez à : Correction eercice Eercice. Calculer Allez à : Correction eercice Eercice.... 4. F () = cos (t) dt F () = sin (t) dt F () = cos 4 (t) dt

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Eo7 Clcls de primitives et d intégrles Eercices de Jen-Lois Roget. Retrover ssi cette fiche sr www.mths-frnce.fr * très fcile ** fcile *** difficlté moyenne **** difficile ***** très difficile I : Incontornle

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. a) x arctan x. a) x x x b) x (ch x) x c) x ln x [ttp://mp.cpgedupuydelome.fr] édité le 29 décembre 205 Enoncés Dérivation Dérivabilité Eercice [ 0354 ] [Correction] Étudier la dérivabilité des fonctions suivantes : a) 2 3 b) 2 ) arccos 2 ) Eercice 2

Plus en détail

Compléments de trigonométrie

Compléments de trigonométrie IUT Orsay Mesures Physiques Cours du er semestre Compléments de trigonométrie A. Les outils A-I. Notion de bijection, bijection réciproque Une application de E vers F est une bijection lorsque : tout élément

Plus en détail

Annexe A. Herbier de fonctions réelles. Les fonctions continues

Annexe A. Herbier de fonctions réelles. Les fonctions continues Annee A Herbier de fonctions réelles Rappelons que lorsque les domaines de définition et d arrivée d une fonction f sont des sous-ensembles de R, on parle de fonctions réelles. Les mathématiciens ont classé

Plus en détail

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3.

Partie I : Manipulation d inégalités. n k. k=0. (1 + a) n 1 + na. 27. Indication : On pourra utiliser les fonctions f(x) = (x+b+c)3. Mathématiques Devoirs de Vacances MPSI/PCSI août 5 Partie I : Manipulation d inégalités Eercice Soit m un réel Déterminer l'ensemble E des réels tels que e + e l'ensemble E des réels tels que (m + + m

Plus en détail

L exercice proposé au candidat

L exercice proposé au candidat «Oral» du Capes Externe de Mathématiques (6 Juin 5 Énoncé Thème : Intégration Cet énoncé est tiré de l exercice-jury proposé aux candidat(es le 6 Juin 5, lors de la deuxième épreuve orale (épreuve sur

Plus en détail

EN - EXERCICES SUR LES INTEGRALES MULTIPLES

EN - EXERCICES SUR LES INTEGRALES MULTIPLES EN - EXERCICES SUR LES INTEGRALES MULTIPLES Eercice Calculer I f(, y) ddy dans les cas suivants a) est le triangle de sommets O, A(,), B(,) f(,y) ln( + y + ) b) est le parallélogramme limité par les droites

Plus en détail

Mines MP 2004, Maths 1

Mines MP 2004, Maths 1 MP 933 & 934 evoir à la Maison n o 8 Corrigé Mines MP 24, Maths Première partie Variations de la fonction ϕ. On a bien évidemment, au voisinage de : Arctant t et e πt πt, donc ϕ(t) t + /π : On peut donc

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques 7 Généralités sur les fonctions numériques Une fonction numérique est, de manière générale, une fonction d une variable réelle et à valeurs réelles. 7.1 Notions de base sur les fonctions Si I, J sont deux

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Chapitre 5 Le logarithme néperien

Chapitre 5 Le logarithme néperien A) La fonction ln(x) Chapitre 5 Le logarithme néperien ) Définition Nous avons vu que nous ne savions pas exprimer la primitive de la fonction inverse avec des fonctions connues. Alors inventons cette

Plus en détail

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé

Cours de mathématiques pour la Terminale S. Savoir-Faire par chapitre avec corrigé Cours de mathématiques pour la Terminale S Savoir-Faire par chapitre avec corrigé Florent Girod Année scolaire 205 / 206. Eternat Notre Dame - Grenoble Table des matières I Savoir-Faire 2 ) Suites numériques.................................

Plus en détail

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b

Les intégrales. f(x) dx. f(x) dx est appelée intégrale définie, c est un nombre. La variable x ne sert qu à décrire la fonction f, on a b Les intégrles Introduction Etnt donnée une fonction positive f définie sur un intervlle borné [, b], on veut évluer l ire comprise entre l e des bscisses, l courbe représentnt f et les verticles = et =

Plus en détail

Exercices du chapitre VI avec corrigé succinct

Exercices du chapitre VI avec corrigé succinct Exercices du chapitre VI avec corrigé succinct Exercice VI. Ch6-Exercice Montrer par récurrence que En déduire que puis que k =,,..., n, d k dx k xn = n(n ) (n + k)x n k, d n dx n xn = n! d k dx k xn =

Plus en détail

Synthèse d analyse Avril 2011

Synthèse d analyse Avril 2011 Snthèse d analse Avril 20 Cette snthèse d analse a été rédigée suite à une suggestion de M le Professeur E Delhez Elle est destinée à aider les étudiants à préparer l eamen d admission au études d ingénieur

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Chapitre 1.1 Fonctions trigonométriques.

Chapitre 1.1 Fonctions trigonométriques. Chapitre. Fonctions trigonométriques. Exercice. Formules de somme et de différence En remplaçant a et b par des valeurs particulières complèter le tableau suivant avec les résultats donnés ci-après : cos

Plus en détail

CHAPITRE I TRIGONOMETRIE

CHAPITRE I TRIGONOMETRIE CHAPITRE I TRIGONOMETRIE ) Le cercle trigonométrique Un cercle trigonométrique est un cercle C de rayon qui est orienté, ce qui veut dire qu on a choisi un sens positif (celui des ronds-points) et un sens

Plus en détail

13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS.

13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS. 13. EQUATIONS DIFFERENTIELLES LINEAIRES DU SECOND ORDRE A COEFFICIENTS CONSTANTS. 1. DEFINITION Soit l'équation différentielle du second ordre à coefficients constants ay + by + cy = ϕ( x) ( I) a R, b

Plus en détail

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples.

Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Fonction réciproque d une fonction strictement monotone sur un intervalle de Y. Etude de la continuité, de la dérivabilité. Exemples. Introduction : On suppose connues les notions d injectivité, surjectivité,

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

Chapitre I : Continuité et dérivabilité des fonctions réelles

Chapitre I : Continuité et dérivabilité des fonctions réelles ENIHP1 mathématiques continuité et dérivabilité p 1/10 Chapitre I : Continuité et dérivabilité des fonctions réelles Le cours sera illustré à l'aide du logiciel de calcul formel gratuit Maima. Les commandes

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

f(z) = u(x, y) + i v(x, y),

f(z) = u(x, y) + i v(x, y), Université A/MIRA de Béjaia 27 mai 202 Faculté de la Technologie Département ST 2 Examen de Maths 5 Exercice points En utilisant les paramétrisations, montrer que l on a : z 2 dz = 0, où est la courbe

Plus en détail

CALCUL DE PRIMITIVES

CALCUL DE PRIMITIVES CALCUL DE PRIMITIVES Calculer une primitive des fonctions suivantes en les mettant sous la forme u f (u) a) + 6 b) e + e c) 4 d) e) ( + ) f) e 6 e g) cos 9 sin h) e 4 e i) Calculer une primitive des fonctions

Plus en détail

EM - EXERCICES SUR LE CALCUL DE PRIMITIVES

EM - EXERCICES SUR LE CALCUL DE PRIMITIVES EM - EXERCICES SUR LE CALCUL DE PRIMITIVES ) ( )sin ) ( + )e ) e 5 cos 7 4) sin 5) 8 + 6) ( ) + 4 7) 9) ) ( + ) 8) 8 + 6 5 + 6 ( + ) 7 0) 4 + ( + ) ) 4 + 5 ( + ) 7 ( + + ) ( + ) ) arctan + 4) ln( + ) 5)

Plus en détail

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien

TRAVAUX DIRIGÉS DE l UE MNBif. Informatique 3A MÉTHODES NUMÉRIQUES DE BASE. 2015-2016, Automne. N. Débit & J. Bastien TRAVAUX DIRIGÉS DE l UE MNBif Informatique 3A MÉTHODES NUMÉRIQUES DE BASE 2015-2016, Automne N. Débit & J. Bastien Document compilé le 13 novembre 2015 Liste des Travaux Dirigés Avant-propos iii Travaux

Plus en détail

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système,

(Un) Corrigé du partiel Lundi 19 mars 2007. u u1 = Au = 1 2) 1 t forment une base des solutions de ce système, Université Paris 7 Denis Diderot UFR de Mathématiques Licence L3 Equations différentielles 2006-2007 P. Perrin (Un) Corrigé du partiel Lundi 9 mars 2007 Eercice. On considère le système différentiel linéaire

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/200 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 6 : PRIMITIVES ET INTEGRATION - COURS + ENONCE EXERCICE - 39 . Tableau

Plus en détail

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105

Institut de Biologie Fondamentale et Appliquée. M A T H E M A T I Q U E S pour SV 105 U N I V E R S I T E de C A E N Institut de Biologie Fondamentale et Appliquée M A T H E M A T I Q U E S pour SV 05 0 - Présentation - Bibliographie. - Trigonométrie - Fonctions réciproques - Nombres complees

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Suites et Convergence

Suites et Convergence Suites et Convergence Une suite c est se donner une valeur (sans ambigüité) pour chaque N sauf peutêtre les premiers n. Donc une suite est une fonction : I R où I = N: = N. Notation : On note ( ) I R pour

Plus en détail

EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE

EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE EO - EXERCICES SUR LE CALCUL DE LONGUEUR D ARCS DE COURBE Exercice Longueur de l arc de spirale logarithmique défini par r = e t pour t a, puis limite quand a tend vers + Exercice Longueur de l astroïde

Plus en détail

I. ÉTUDE DES FONCTIONS SIN ET COS

I. ÉTUDE DES FONCTIONS SIN ET COS I. ÉTUDE DES FONCTIONS SIN ET COS Les propriétés mises en évidence au thème précédent vont permettre d étudier les fonctions trigonométriques { { R R R R cos : et sin : x cosx) x sinx). On fixe un repère

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer

[http://mp.cpgedupuydelome.fr] édité le 29 décembre 2015 Enoncés 1. b) Soit (u n ) n N une suite d éléments de [0 ; 1]. Montrer [http://mp.cpgedupuydelome.fr] édité le 9 décembre 05 Enoncés Familles sommables Ensemble dénombrable a) Calculer n+ Exercice [ 03897 ] [Correction] Soit f : R R croissante. Montrer que l ensemble des

Plus en détail

Cours de Mathématiques 2

Cours de Mathématiques 2 Cours de Mathématiques 2 première partie : Analyse 2 DEUG MIAS 1 e année, 2 e semestre. Maximilian F. Hasler Département Scientifique Interfacultaire B.P. 7209 F 97275 SCHOELCHER CEDEX Fax : 0596 72 73

Plus en détail

Fonctions réciproques

Fonctions réciproques Fonctions réciproques X =message coage y=f() Y y=message coé - = g(y)= f (y) écoage =message B. Aoubiza IUT Belfort-Montbéliar Département GTR 6 janvier 3 Table es matières.fonctionsréciproques... 3..

Plus en détail

Exercices sur les développements limités, avec le Classpad

Exercices sur les développements limités, avec le Classpad Eercices avec le Classpad développements limités Eercices sur les développements limités, avec le Classpad On trouvera ici quelques eercices sur les développements limités. Chaque eercice est corrigé complètement,

Plus en détail

CHAPITRE 5 EXERCICES 5.2 0,1 ( 4; 0,10) 2. y. Chapitre 5 Régression et modélisation 43. f (x) = 1,8 x (3; 5,83) (2; 3,24) (1; 1,8) (0; 1)

CHAPITRE 5 EXERCICES 5.2 0,1 ( 4; 0,10) 2. y. Chapitre 5 Régression et modélisation 43. f (x) = 1,8 x (3; 5,83) (2; 3,24) (1; 1,8) (0; 1) Chapitre 5 Régression et modélisation CHAPITRE 5 EXERCICES 5.. 0 7 f () =,8 (;,8) (;,) (; 5,8) 0,7 0,5 0, 0, 0, ( ; 5 0,) ( ; 0,7) (0; ) 9( ; 0,5) 0, ( ; 0,0) 0 5 7 8 9.,0 0,7 0,5 0, 0, 0, 0, 5 7 0 Chapitre

Plus en détail

Nombre dérivé, interprétations géométrique et cinématique

Nombre dérivé, interprétations géométrique et cinématique CHAPITRE 4 DÉRIVATION ET PRIMITIVATION Nombre dérivé, interprétations géométrique et cinématique 08. Nombre dérivé Soit f une fonction numérique, définie sur un intervalle ou une réunion d intervalles,

Plus en détail

Fonctions circulaires et applications réciproques

Fonctions circulaires et applications réciproques Chapitre II Fonctions circulaires et applications réciproques A Fonctions circulaires A Rappels de trigonométrie Radians et cercle trigonométrique Le radian est une unité de mesure d angle (orienté) définie

Plus en détail

Théorème de Rolle et égalité des accroissements finis. Applications

Théorème de Rolle et égalité des accroissements finis. Applications 0 Théorème de Rolle et égalité des accroissements finis. Applications 0. Le théorème de Rolle sur un espace vectoriel normé Pour ce paragraphe, on se donne un espace vectoriel normé (E, ). Le théorème

Plus en détail

TD Dérivation n 2 : étude des variations de fonctions

TD Dérivation n 2 : étude des variations de fonctions 1) f (x) = 7x+3 TD Dérivation n : étude des variations de fonctions Étude de variations f est une fonction affine, de coefficient directeur négatif, on sait donc qu elle est décroissante surê. Le calcul

Plus en détail

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE

L3 Mathématique pour la physique Examen final 4 janvier 2011 : CORRIGE Université Joseph Fourier L3 Physique Julia Meyer julia.meyer@ujf-grenoble.fr L3 Mathématique pour la physique Examen final 4 janvier 20 : CORRIGE Modalités : Notes de cours et TDs permis. NOTE IMPORTANTE

Plus en détail

RAPPELS ET COMPLÉMENTS CALCULATOIRES

RAPPELS ET COMPLÉMENTS CALCULATOIRES RAPPELS ET COMPLÉMENTS CALCULATOIRES ENSEMBLES DE NOMBRES ENSEMBLES,,,ET: On rappelle que : désigne l ensembleprivé de 0 idem pour, et, + désigne l ensemble des réels positifs ou nuls et l ensemble des

Plus en détail

Cours sur les fonctions usuelles

Cours sur les fonctions usuelles Cours sur les fonctions usuelles c Emmanuel Vieillard Baron, Table des matières Préambule Fonctions logarithmes, eponentielles et puissances. Logarithme néperien................................ Eponentielle

Plus en détail

Les espaces L p. Chapitre 6. 6.1 Définitions et premières propriétés. 6.1.1 Les espaces L p, avec 1 p < +

Les espaces L p. Chapitre 6. 6.1 Définitions et premières propriétés. 6.1.1 Les espaces L p, avec 1 p < + Chapitre 6 Les espaces L p 6.1 Définitions et premières propriétés 6.1.1 Les espaces L p, avec 1 p < + Soient (E, T,m) un espace mesuré, 1 p < + et f M = M(E, T) (c est-à-dire f : E R, mesurable). On remarque

Plus en détail

Les différentes méthodes de calcul intégral

Les différentes méthodes de calcul intégral Les différentes méthodes de calcul intégral Connaissances de primitives Le calcul d une intégrale est immédiat quand on connaît une primitive de la fonction à intégrer. Tableau des primitives usuelles

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Intégrales Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 3 juin 2 Document diffusé via le site www.bacamaths.net de Gilles Costantini 2. frederic.demoulin

Plus en détail

Applications des maths

Applications des maths Applications des maths Série de Taylor Exercices préalables Exercice a) On considère le polynôme p(x) = x 4 + x 3 + x + x +. Déterminer la valeur de p(0), p'(0), p''(0), p'''(0), p (4) (0), p (5) (0),

Plus en détail

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle

Chapitre 01 : Intégrales généralisées. Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle Chapitre 01 : Intégrales généralisées Objectifs : En première année, on a étudié l intégrale d une fonction définie et continue sur un intervalle fermé borné de Dans ce chapitre, on va étudier le cas d

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Cours de Mathématiques

Cours de Mathématiques Chapitre 4 Cours de Mathématiques Lycee Gustave Eiffel PTSI 02/03 Equations différentielles Ce chapitre est une première étude des équations différentielles, il vous sera d abord utile en physique et en

Plus en détail

La fonction logarithme népérien

La fonction logarithme népérien La fonction logarithme népérien Christophe ROSSIGNOL Année scolaire 204/205 Table des matières La fonction logarithme népérien 2. Définition Courbe représentative................................... 2.2

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES FRANÇAISES DE MATHÉMATIQUES OLYMPIADES OFM FRANÇAISES MATHÉMATIQUES ENVOI NO. 3 CORRIGÉ 1 Exercices du groupe B Exercice 1. Soit n 1 un entier tel que le quotient de 2 n par n est une puissance

Plus en détail

Équations différentielles en physique

Équations différentielles en physique Fiche Mathématiques pour la Physique - Équations différentielles en physique - MPSI 1 Lycée Chaptal - 2012 Équations différentielles en physique On ne considère en physique en prépa (quasiment) que des

Plus en détail

Techniques fondamentales de calcul

Techniques fondamentales de calcul Chapitre Techniques fondamentales de calcul. Inégalités dans R On rappelle que (R, +,, ) est un corps totalement ordonné, d où : x, y R, x y ou y x, x, y, z R, x y = x + z y + z, x, y R, x 0ety 0 = xy

Plus en détail

Sujets et corrigés des DS de mathématiques. BCPST 1A Lycée Hoche 2014-2015. Sébastien Godillon

Sujets et corrigés des DS de mathématiques. BCPST 1A Lycée Hoche 2014-2015. Sébastien Godillon Sujets et corrigés des DS de mathématiques BCPST A Lycée Hoche 04-05 Sébastien Godillon Table des matières Sujet du DS n o Corrigé du DS n o 5 Exercice logique 5 Exercice nombres réels, sommes, suites

Plus en détail

Equations différentielles

Equations différentielles Equations différentielles Mathématiques Martine Arrrou-Vignod FORMAV 2009 I Equations différentielles linéaires à coefficients constants du premier ordre 3 I.1 Vocabulaire Définitions......................

Plus en détail

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths

Corrigé de l examen partiel du 30 Octobre 2009 L2 Maths Corrigé de l examen partiel du 30 Octobre 009 L Maths (a) Rappelons d abord le résultat suivant : Théorème 0.. Densité de Q dans R. QUESTIONS DE COURS. Preuve. Il nous faut nous montrer que tout réel est

Plus en détail

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année.

MATHÉMATIQUES TERMINALE ES A. YALLOUZ. Ce polycopié conforme au programme 2002, regroupe les documents distribués aux élèves en cours d année. MATHÉMATIQUES TERMINALE ES A. YALLOUZ Ce polcopié conforme au programme 00, regroupe les documents distribués au élèves en cours d année. Année 0-0 Année 0-0 T le ES A. YALLOUZ (MATH@ES) TABLE DES MATIÈRES

Plus en détail

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147

Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur. Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 Boîte à outils mathématiques de base pour l infographie et l animation par ordinateur Yves Chiricota, professeur DIM, UQAC Cours 8TRD147 14 Janvier 2015 2 Il est impossible d envisager l étude des méthodes

Plus en détail

Journal de bord. Vendredi novembre. Lundi 9 novembre. Samedi 7 novembre. Vendredi 6 novembre. Mercredi 4 novembre. Lundi 2 novembre.

Journal de bord. Vendredi novembre. Lundi 9 novembre. Samedi 7 novembre. Vendredi 6 novembre. Mercredi 4 novembre. Lundi 2 novembre. Journal de bord Vendredi novembre. Matin : Recherche d'une solution particulière dans le cas d'un second membre de la forme e αx. Puis dans le cas d'une excitation périodique. Théorème de synthèse. Exercices

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Devoir commun de Mathématiques 18 janvier 2014. Problème 1

Devoir commun de Mathématiques 18 janvier 2014. Problème 1 Lycée Jean Bart MPSI & PCSI Année 213-214 Devoir commun de Mathématiques 18 janvier 214 La clarté des raisonnements, la précision de la rédaction et la présentation entreront pour une part non négligeable

Plus en détail

Intégrale et aire. Exercice 4.1. Par un calcul d aire, donner la valeur des intégrales suivantes : Tableau de primitives

Intégrale et aire. Exercice 4.1. Par un calcul d aire, donner la valeur des intégrales suivantes : Tableau de primitives Chapitre 4 : Calcul intégrale Intégrale et aire Exercice 4.. Par un calcul d aire, donner la valeur des intégrales suivantes : 4 x ; 3 x. Tableau de primitives Exercice 4.. En précisant sur quels intervalles

Plus en détail

Exo7. Formes différentielles

Exo7. Formes différentielles Exo7 Formes différentielles Fiche de A. Gammella-Mathieu (IUT de Mesures Physiques de Metz Université de Lorraine) Exercice 1 éterminer si les formes différentielles suivantes sont exactes et dans ce cas,

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Trigonométrie circulaire

Trigonométrie circulaire Trigonométrie circulaire On rappelle ici et on complète les résultats énoncés au lycée. L objectif à viser est la technicité. Pour cela, il faut : ➀ connaître par cœur les différentes formules de trigonométrie,

Plus en détail

Mathématique - Cours

Mathématique - Cours Mathématique - Cours Filière STAV 2014-2015 Centre de Formation aux Métier de la Montagne Marine Estorge Le programme se compose ainsi : partie seconde partie 1/3 partie 2/3 partie 3/3 Sommaire 1 Ensemble

Plus en détail

Généralités sur les fonctions numériques

Généralités sur les fonctions numériques Chapitre 7 Généralités sur les fonctions numériques Étude d une fonction réelle d une variable réelle On munit le plan d un repère orthonormé O; i, j.. Fonction réelle d une variable réelle Définition

Plus en détail

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités

Sujet Métropole 2013 EXERCICE 1. [4 pts] Probabilités Sujet Métropole 01 EXERIE 1. [4 pts] Probabilités Une jardinerie vend de jeunes plants d arbres qui proviennent de trois horticulteurs : 5% des plants proviennent de l horticulteur H 1, 5% de l horticulteur

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Exercices de rentrée MPSI-PCSI

Exercices de rentrée MPSI-PCSI Exercices de rentrée MPSI-PCSI Lycée Saint-Louis 015-016 Introduction Cette feuille d exercices s adresse aux élèves rentrant en MPSI ou en PCSI au lycée Saint- Louis Il s agit d exercices qui sont entièrement

Plus en détail

TS - Cours sur le logarithme népérien

TS - Cours sur le logarithme népérien Lcée Europole - R. Vidonne 1 TS - Cours sur le logarithme népérien Fonction carrée et racine carrée Considérons les fonctions f : R + R + g : R + R + 2 Dans un repère orthonormal, les courbes C f et C

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

FONCTIONS USUELLES. 1 t dt. ln(x) =

FONCTIONS USUELLES. 1 t dt. ln(x) = 00 - Gérard Lavau - http://perso.wanadoo.fr/lavau/inde.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreu ou utilisation

Plus en détail

EMLYON 2015 S. Éléments de correction

EMLYON 2015 S. Éléments de correction EMLYON 15 S Éléments de correction ECS Lycée La ruyère, Versailles Année 1/15 Premier problème Première partie 1. On peut vérifier le critère de sous-espace vectoriel E et, pour P 1, P E et λ R, λp 1 +

Plus en détail

Exemples détaillés de calculs de primitives et d'intégrales

Exemples détaillés de calculs de primitives et d'intégrales Eemples détaillés de calculs de primitives et d'intégrales Ce document illustre les diérentes techniques d'intégration à travers un grand nombre d'eemples très variés. L'algorithme du choi d'une "technique

Plus en détail

Équations différentielles

Équations différentielles 1 Équations différentielles Compléments de Calculus Math 152 18 janvier 2006 1 Généralités Qu est-ce qu une équation? C est une égalité comportant une (ou plusieurs) inconnue(s) : Résoudre l équation 2x

Plus en détail

FONCTIONS USUELLES. 1 t dt. ln(x) =

FONCTIONS USUELLES. 1 t dt. ln(x) = 005 - Gérard Lavau - http://perso.wanadoo.fr/lavau/inde.htm Vous avez toute liberté pour télécharger, imprimer, photocopier ce cours et le diffuser gratuitement. Toute diffusion à titre onéreu ou utilisation

Plus en détail

Simplification d expressions contenant des valeurs absolues & applications

Simplification d expressions contenant des valeurs absolues & applications Simplification d epressions contenant des valeurs absolues & applications Rappelons la définition de la valeur absolue : si 0 ( R ) si 0 En d autres termes, la valeur absolue d un réel positif est ce réel,

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier..................................... Fonctions affines....................................... Fonction logarithme......................................4

Plus en détail

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL

L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3. Alexandre VIDAL L2 ÉCONOMIE & GESTION 2010-11 COURS DE MÉTHODES MATHÉMATIQUES 3 Alexandre VIDAL Dernière modification : 11 janvier 2011 Table des matières I Généralités et rappels sur les fonctions 1 I.1 Définition....................................

Plus en détail

Fonctions d une variable réelle

Fonctions d une variable réelle Fonctions d une variable réelle BTS Table des matières Fonctions usuelles. Fonctions en escalier.......................................... Fonctions affines............................................

Plus en détail

Etude des fonctions trigonométriques

Etude des fonctions trigonométriques Chapitre Dans ce chapitre, nous continuons le travail sur les fonctions usuelles en introduisant les fonctions trigonométriques. Si celles sont définies à partir de la géométrie euclidienne, elles permettent

Plus en détail

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP)

concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) SESSION DE 2005 concours externe de recrutement de professeurs certifiés et concours d accès à des listes d aptitude (CAFEP) section : mathématiques deuxième composition de mathématiques (épreuve de remplacement)

Plus en détail

Fonctions modulaires. Caroline Dumoulin. Université de Fribourg (Suisse) 25.10.2007

Fonctions modulaires. Caroline Dumoulin. Université de Fribourg (Suisse) 25.10.2007 Fonctions modulaires Caroline Dumoulin Université de Fribourg (Suisse) 25.0.2007 Table des matières Introduction 2 La fonction modulaire 3 La fonction modulaire J de Klein 6 Introduction Dans ce proséminaire,

Plus en détail

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS

CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS. 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS CHAPITRE 6 LES OPÉRATIONS SUR LES FONCTIONS 6.1 QUATRE OPÉRATIONS (+,, x, ) SUR LES FONCTIONS On peut effectuer les quatre opérations de base sur des fonctions, c est-à-dire les additionner, les soustraire,

Plus en détail

2 Le champ électrostatique E

2 Le champ électrostatique E Licence 3 Sciences de la Terre, de l Univers et de l Environnement Université Joseph-Fourier : Outil Physique et Géophysique 2 Le champ électrostatique E k Daniel.Brito@ujf-grenoble.fr E MAISON DES GÉOSCIENCES

Plus en détail

Intégrales sur un intervalle

Intégrales sur un intervalle CHAPTRE 2. NTÉGRALES SUR UN NTERVALLE Chapitre 2 ntégrales sur un intervalle 2.1 Préparation 2.1.6 L objectif de ce cours est de généraliser la notion d intégrale d une fonction sur un segment, à des intervalles

Plus en détail

USAGE DES COMPLEXES DANS LES CIRCUITS ÉLECTRIQUES

USAGE DES COMPLEXES DANS LES CIRCUITS ÉLECTRIQUES Avant propos : usage des nombres complexes est incontournable en ce qui concerne l étude des circuits électriques aussi bien du point de vue énergétique (2 hemins de l énergie, bilan de puissance, puissance

Plus en détail