FONCTIONS NUMÉRIQUES : DÉRIVATION

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "FONCTIONS NUMÉRIQUES : DÉRIVATION"

Transcription

1 FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées et opérations 3 5. Dérivées et opérations Dérivée d une fonction composée Dérivée de u Dérivée de u n, n Z Dérivée de x v(ax+ b) Dérivée de x f [g (x)] Les fonctions sinus et cosinus 5 6. Propriétés Étude des fonctions sinus et cosinus QCM 7 8 EXERCICES : Les exercices de base 8 9 EXERCICES : Les exercices de base ( corrigés) 0

2 Dérivée en un point Définition. Soit f une fonction numérique définie sur un intervalle I de R et a I. f (x) f (a) On dit que la fonction f est dérivable en a lorsque admet une limite finie quand x tend vers x a a. Cette limite est notée f (a), c est le nombre dérivé de f en a. On note : f f (x) f (a) f (a+ h) f (a) (a)= lim = lim x a x a h 0 h Définition. Soit I un intervalle et f une fonction dérivable en a I. La tangente à la courbe représentative de f au point A d abscisse a est la droite passant par A de coefficient directeur f (a). Elle admet pour équation y = f (a)(x a)+ f (a) Continuité et dérivabilité Propriétés. admis Si f est dérivable en un réel a, alors f est continue en a. 3 Attention la réciproque est fausse. Exemple : x x est continue sur R mais x x n est pas dérivable en 0. 3 Fonction dérivée Définition 3. Soit f une fonction numérique définie sur un intervalle I de R. On dit que f est dérivable sur I lorsqu elle est dérivable en tout point de I. Dérivées usuelles Fonction f définie par : Fonction f définie par : Intervalles de validité f (x)=k f (x)=0 ] ;+ [ f (x)=x n,n N f (x)=nx n ] ;+ [ f (x)= x f (x)= x n = x n, n N f (x)= x f (x)= nx n = n f (x)= x f (x)= x x n+ ] ;0[ et ]0;+ [ ] ;0[ et ]0;+ [ ]0; + [ Ph Depresle : Notes de cours Page sur

3 Remarque : Pour p Z, si f (x)= x p, alors f (x)= px p 8 Exemple : Soit f : x x +. Cette fonction est définie sur R et sa dérivée est f (x)=x. Une équation de la tangente à C f au point d abscisse 3 est y = f (3)(x 3)+ f (3) On a f (3)=0 et f (3)=6 soit y = 6(x 3)+0 soit y = 6x y = x4 + y = 6x Sens de variation d une fonction dérivable Théorème. (admis) Soit f une fonction dérivable sur un intervalle I. Si f est nulle sur I, alors f est constante sur I. Si f est strictement positive sur I sauf en un nombre fini de points où elle peut s annuler, alors f est strictement croissante sur I. Si f est strictement négative sur I sauf en un nombre fini de points où elle peut s annuler, alors f est strictement décroissante sur I. 5 Dérivées et opérations 5. Dérivées et opérations Soient u et v deux fonctions dérivables sur un intervalle I et k un réel. fonction f fonction dérivée f dérivabilité somme f = u+ v f = u + v dérivable sur l intervalle I. produit f = k.u f = k.u f = u.v f = u.v+ u.v dérivable sur l intervalle I. quotient f = v f = u v f = v v f = u v uv v 5. Dérivée d une fonction composée 5.. Dérivée de u dérivable en tout réel x de l intervalle I où v(x) est non nul. Théorème. Soit u une fonction strictement positive et dérivable sur un intervalle I alors u : x u(x) est dérivable sur I et sa dérivée est ( u ) = u u. Ph Depresle : Notes de cours Page 3 sur

4 Exemple : Soit f : x x + comme u : x x + est strictement positif et dérivable sur R, alors f est dérivable sur R et on a : f x (x)= x + = x x + ( car u (x)=x). 5.. Dérivée de u n, n Z Théorème 3. Soit u une fonction dérivable sur un intervalle I alors si n N, u n : x [u(x)] n est dérivable sur I. si n Z et si u ne s annule pas sur I alors u n est dérivable sur I. et dans tous les cas (u n ) = nu u n. Exemples : Soit f : x (x + x+ ) 7. f est dérivable sur R et f (x)=7(x+ )(x + x+ ) 6. Soit g : x 3 (4x+ ). g est dérivable sur ] ; 4 [ ] 4 ;+ [. g (x)=3(4x+ ) et g (x)=3 ( ) 4 (4x+ ) 3 = Dérivée de x v(ax+ b) (4x+ ) 3 Théorème 4. Soit x 0 R, tel que v dérivable en ax 0 +b, alors la fonction h : x v(ax+b) est dérivable x 0 et sa dérivée en x 0 est h (x 0 )=a v (ax 0 + b). ( ) Exemple : Soit f : x sin Sa dérivée est f (x)=cos x+ π 4 ( x+ π 4 sur R. ) 5.4 Dérivée de x f [g (x)] Soit I g J f R x g (x) f (g (x)) } on compose les fonctions f et g Théorème 5. Si g est dérivable en x 0 et f est dérivable en g (x 0 ) alors la fonction h : x f [g (x)] est dérivable en x 0 et on a h (x 0 )= g (x 0 ) f [g (x 0 )]. Remarque : On retrouve comme cas particuliers les dérivées de u u un et : x v(ax+ b) Résumé : Ainsi, pour n Z, fonction dérivée f = u n f = nu u n f = u f = u u fonction dérivée f = u f = u u Ph Depresle : Notes de cours Page 4 sur

5 Chapitre : Fonctions numériques : dérivation 6 Les fonctions sinus et cosinus 6. Propriétés Rappel ( : On se place dans un repère orthonormé direct O ; i, ) j du plan. Soit C le cercle trigonométrique de centre O. Si x est un réel, et si M est le point de C associé à x, (x est alors une mesure en radian de l angle orienté ( i, OM )) ( alors cos x et sin x sont les coordonnées de M dans le repère O ; i, ) j. M(cos x;sin x) et OM ( x y ) sin x O M cos x x A Propriétés. Les fonctions cos : x cos x et sin : x sin x sont définies sur R et sont périodiques de période π : x R, cos(x+ π)= cos x et sin(x+ π)=sin x. La fonction cos : x cos x est paire sur R et la fonction sin : x sin x est impaire sur R : x R, cos( x)= cos x et sin( x)= sin x. Les fonctions cos et sin sont continues et dérivables sur R et on a : x R, cos x = sin x et sin x= cos x sin x cos x On a lim = et lim = 0 x 0 x x 0 x 6. Étude des fonctions sinus et cosinus La fonction cosinus D abord sur [0;π] en utilisant le cercle trigonométrique : π x 0 π cos x = sin x fonction f = cos u f = sinu dérivée f = u sinu f = u cos u cos x 3 3 et on complète par parité sur [ π;0]. (symétrie d axe O y) Puis par périodicité, la courbe est invariante par la translation de vecteur π i. La representation graphique de la fonction cos est donc : Ph Depresle : Notes de cours Page 5 sur

6 π i La fonction sinus π x 0 π sin x= cos x + 0 sin x 0 et on complète par imparité sur [ π;0]. (symétrie de centre O) Puis par périodicité, la courbe est invariante par la translation de vecteur π i. La representation graphique de la fonction sin est donc : π i Ph Depresle : Notes de cours Page 6 sur

7 7 QCM Pour chacune des propositions suivantes, dire si elle est vraie ou fausse en justifiant :. La dérivée de la fonction f est la fonction g. (a) f (x)= x x+ et g (x)= x (x+ ). (b) f (x)= x et g (x)= x. (c) f (x)= x n et g (x)= n xn+, où n est un entier naturel strictement positif. (d) f = u n et g = nu n, où n est un entier naturel strictement positif et u une fonction dérivable sur R.. Une équation de la tangente à la courbe représentative de la fonction sinus en 0 est : (a) y = 0. (b) y = x (c) y = cos x. 3. La fonction f est paire si et seulement si f est impaire. Solution :. (a) FAUX. Pour tout réel x, f (x+ ) (x ) (x)= (x+ ) = (x+ ). ( (b) FAUX. Pour tout réel x non nul, f (x)= x ) x 4 = x 3. En fait c est la fonction f qui est la dérivée de g! (c) VRAI Pour tout réel x non nul, f (x)= x n, donc f (x)= nx n = n (d) FAUX. f = nu u n. x n+.. L équation de la tangente à la courbe représentative de la fonction sinus en 0 est y = cos 0(x 0)+sin 0+= x. La bonne réponse est b. En particulier c est fausse : la fonction cosinus est la dérivée de la fonction sinus. 3. Si f est une fonction paire, pour tout réel x, f ( x)= f (x). Donc f ( x)= f (x) (dérivée d une fonction composée). La fonction f est est impaire. On a montré que si f est une fonction paire, alors sa dérivée f est impaire. Mais la réciproque est fausse : Posons pour tout réel x, f (x)=x 3 +. La fonction f n est pas impaire. Mais pour tout réel x, f (x)=3x, f est une fonction paire. Donc c est FAUX. Ph Depresle : Notes de cours Page 7 sur

8 8 EXERCICES : Les exercices de base Exercice Soit f la fonction définie sur R par f (x)= x et C sa courbe représentative dans un repère orthonormal. A est un point d abscisse a non nulle de C et est la tangente en A à C. On note B le point d intersection de et de l axe des abscisses.. Trouver, en fonction de a, une équation de.. Trouver l abscisse de B. Exercice Soit f la fonction définie sur R par f (x)= 3x + ax+ b x. + Déterminer les réels a et b pour que la courbe représentative de f admette comme tangente au point d abscisse 0 la droite (T ) d équation y = 4x + 3. Exercice 3 Le plan est muni d un repère orthonormal (O; #» ı, #» j ). On considère une fonction f dérivable sur l intervalle [ 3 ; ]. On dispose des informations suivantes : f (0)=. la dérivée f de la fonction f admet la courbe représentative C ci -dessous. j O i C Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse et justifier la réponse.. La représentation graphique de la fonction f admet une tangente horizontale sur [ 3;0].. La fonction f est croissante sur l intervalle [ ; ]. 3. Pour tout réel x de l intervalle [ 3 ; ], f (x). 4. Soit C la courbe représentative de la fonction f. La tangente à la courbe C au point d abscisse 0 passe par le point de coordonnées ( ; 0). Exercice 4 On pose tan(x)= sin x (fonction tangente). cos x. Quel est l ensemble de définition de la fonction tangente?. Montrer que la fonction tangente admet π comme période et est impaire. 3. Étudier ses variations et ses branches infinies, tracer sa courbe représentative C dans un repère orthonormé du plan. Ph Depresle : Notes de cours Page 8 sur

9 Exercice 5 f est la fonction définie sur ],+ [ par : f (x)=. Démontrer que pour tout x> : x x. En déduire la limite de f en+. x+ sin x x. f (x) x+ x. Exercice 6 Étudier les variations de la fonction f définie sur R par f (x) = x + cos x. En déduire que l équation f (x) = a une unique solution, en donner un encadrement d amplitude 0 près. Ph Depresle : Notes de cours Page 9 sur

10 9 EXERCICES : Les exercices de base ( corrigés) Exercice :. Une équation de est : y = f (a)(x a)+ f (a)=a(x a)+ a.. B appartient à et a une ordonnée nulle. Son abscisse vérifie a(x B a)+ a = 0, donc x B = a a = a. Exercice : f est dérivable sur R et f (x)= (6x+ a)(x + ) x(3x + ax+ b) (x + ) = ax + (6 b)x+ a (x + ) f (0)=b et f (0)=a, l équation de la tangente à la courbe représentative de f au point d abscisse 0 est y = f (0)(x 0)+ f (0)= ax+ b. Pour que cette tangente soit la droite (T ) il faut et il suffit que a= 4 et b= 3. Exercice 3 :. VRAI. La fonction f s annule en -. Donc C admet une tangente horizontale au point d abscisse -.. VRAI. f est positive sur [;], donc f est croissante sur [;]. 3. FAUX. Le tableau de variations de f est : x 3 0 f 0 + f f étant strictement croissante sur [; ], on a f () < f (0). Or f (0)=. D après le théorème des valeurs intermédiaires il existe a dans [;] tel que f (a)<. 4. VRAI. L équation de la tangente à C au point d abscisse 0 est y = f (0)(x 0)+ f (0)= x. Le point de coordonnées (,0) appartient bien à cette droite. Exercice 4 :. La fonction tangente est définie lorsque cos(x) est différent de 0, donc pour tout réel différent de π + kπ, où k est un entier relatif.. Pour tout réel x appartenant à l ensemble de définition de cette fonction : sin(x+ π) tan(x+ π)= cos(x+ π) = sin x cos x = tan(x) tan( x)= sin( x) cos( x) = sin x cos x = tan(x). [ [ Il suffit d étudier la fonction sur 0; π. Ph Depresle : Notes de cours Page 0 sur

11 3. Pour tout entier relatif k, tan est dérivable sur ] π + kπ; π + kπ [ et pour tout x de appartenant à cet intervalle : tan cos x cos x sin x( sin x) (x)= cos = x cos x car cos x+ sin x=. La dérivée de la fonction tan est positive, cette fonction est strictement croissante sur tous les intervalles où elle est définie. Quand x tend vers π par valeurs inférieurs, sin x tend vers et cos x tend vers 0. La fonction cos étant [ [ positive sur 0; π, tan x tend vers+ : La droite d équation x= π est asymptote verticale à la courbe représentative de le fonction tan π i π π 3π y = tan x Exercice 5 :. Pour x > on a : sin x. Donc x x+ sin x x+. Comme x est positif : x x+ f (x) x x.. Posons g (x)= x et h(x)= x+ x x. x x lim g (x)= lim = et lim h(x)= lim x + x + x x + x + x =. C h C f C g #» j 0 #» ı f est comprise entre les fonctions g et h qui tendent vers quand x tend vers+. Le théorème de l encadrement nous permet d affirmer que f converge et que sa limite est en +. Exercice 6 : Ph Depresle : Notes de cours Page sur

12 f est dérivable sur R et f (x)= sin x. Si x est un réel différent de π + kπ où k est un entier relatif, sin x<. Donc sin x> 0. f est strictement positive, sauf aux réels π + kπ où elle s annule. f est donc strictement croissante sur R. Pour tout réel x : cos x donc x f (x) x+. La fonction f est minorée par la fonction x x qui tend vers+ quand x tend vers+. Donc elle tend vers+. La fonction f est majorée par la fonction x x+ qui tend vers quand x tend vers. Donc elle tend vers. y = x+ x + + f (x) j 0 i y = x+ cos(x) y = x f est continue, strictement croissante sur R. L image de R par f est R. D après le théorème des valeurs intermédiaires pour une fonction strictement croissante, il existe un unique réel α tel que f (α) =. Or f ()= +cos(),58 et f (3)=3+cos(3),0, donc <α<3. A l aide de la calculatrice, on obtient : α ],98;,99[. Ph Depresle : Notes de cours Page sur

Fonctions numériques : dérivation

Fonctions numériques : dérivation Fonctions numériques : dérivation Table des matières I Notion de tangente à une courbe Soit f une fonction définie sur un intervalle I de courbe représentative C f et soit A un point fixe de C f. Soit

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

LIMITES ET CONTINUITÉ

LIMITES ET CONTINUITÉ LIMITES ET CONTINUITÉ Ph DEPRESLE septembre 05 Table des matières Limites à l infini. Limites infinies............................................ Limites finies-asymptotes horizontales.............................

Plus en détail

Chapitre 3. Compléments sur les fonctions numériques

Chapitre 3. Compléments sur les fonctions numériques Capitre 3 Compléments sur les fonctions numériques 24 ) Compléments sur la dérivation - ) Dérivées des fonctions u et u n, n Z Téorème : Si u est une fonction strictement positive, dérivable sur un intervalle

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

FONCTIONS : Limites Continuité Dérivée Trigonométrie

FONCTIONS : Limites Continuité Dérivée Trigonométrie FONCTIONS : Limites Continuité Dérivée Trigonométrie I) PRELIMINAIRES Voir activité II) LIMITE D UNE FONCTION EN + et ) Limite infinie en + et Soit f une fonction définie sur un intervalle de la forme

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie Corrigés des eercices de trigonométrie I. Résoudre algébriquement des équations, des inéquations Pour les eercices suivants, on utilisera le cercle trigonométrique Eercice 1 Résoudre dans l intervalle

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo.

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. I- LE RADIAN Le radian est, comme le degré ou le grade, une unité de mesure d angles. Sur un cercle de centre O, l angle

Plus en détail

1.2 Plan d étude et exemples types.

1.2 Plan d étude et exemples types. Université de Rennes Licence Biologie Mathématiques Année 2008-2009.2 Plan d étude et exemples types..2. But Le but de ce chapitre est d étudier les fonctions comme celles données dans les exemples précédents.

Plus en détail

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance Dérivation. Fonctions cosinus et sinus ANALYSE Connaissances nécessaires à ce chapitre Calculer la dérivée d une fonction f Déterminer certaines caractéristiques de f à partir de f Utiliser le cercle trigonométrique,

Plus en détail

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle

Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en. Chaudronnerie Industrielle Cours d analyse Brevet de Technicien Supérieur Conception et Réalisation en Chaudronnerie Industrielle Chapitre Fonctions de référence...3 I Fonctions affines...3 a) Signe d'une fonction affine...3 II

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction

Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction Tangente à une courbe. Dérivées. Etude du sens de variation d une fonction On dit qu une fonction est dérivable sur un intervalle I si elle est définie sur I et admet en chaque point de I un nombre dérivé.

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Dans tout le chapitre, le plan est muni d'un repère orthonormé (O ; i ; j ). Les fonctions trigonométriques sont des fonctions dont la variable est une mesure d'angle. Elles

Plus en détail

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0

Si f est décroissante sur un intervalle, alors f (x 0 ) <0 sur cet intervalle. ) = 0 et f change de signe en x 0 Théorème : Soit f une fonction définie sur un intervalle de IR, C la courbe représentative de f et x un élément de I. Si f est croissante sur un intervalle, alors f (x )> sur cet intervalle. Si f est décroissante

Plus en détail

Chapitre 3. Continuité, dérivation et limite d une fonction

Chapitre 3. Continuité, dérivation et limite d une fonction Chapitre 3. Continuité, dérivation et limite d une fonction I. Continuité Définition : Continuité d une fonction Dire que f est continue en a signifie que f a une limite finie en a ; cette limite est alors

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Rappels de trigonométrie. Définitions, premières propriétés..................................... Formules de trigonométrie.......................................

Plus en détail

Fonctions trigonométriques - Corrigé. 2 2 cos 1

Fonctions trigonométriques - Corrigé. 2 2 cos 1 Exercice 1 : Fonctions trigonométriques - Corrigé 1. a. est dérivable sur comme somme de fonctions dérivables sur et =1 cos On sait que, pour tout réel et donc en particulier pour tout, cos 1 donc 0 et

Plus en détail

Limite d une fonction en un point

Limite d une fonction en un point Limite d une fonction en un point Définiton Soit f une fct déf. sur un intervalle I de R, sauf p-ê en a I. l R est la limite de f en a si, quand x I se rapproche de a, f (x) se rapproche de l. Dans ce

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques I) Rappels 1) Repérage sur le cercle trigonométrique Sur un cercle trigonométrique : - à tout nombre réel t on associe un point M unique ; - si un point M est associé à un nombre

Plus en détail

mathématiques. (Joseph Fourier) Discours préliminaire à la théorie analytique de la chaleur.

mathématiques. (Joseph Fourier) Discours préliminaire à la théorie analytique de la chaleur. 1 Niveau : Titre Cours : Terminale S Chapitre 04 Compléments sur les fonctions. Fonctions trigonométriques et dérivabilité. Jospeh Fourier (21 mars 1768-16 mai 1830) Année : 2014-2015 Citation du moment

Plus en détail

Chapitre 6. Fonctions trigonométriques

Chapitre 6. Fonctions trigonométriques Chapitre 6 Fonctions trigonométriques Corrigés des exercices-tests Vrai La hauteur issue de M dans le triangle OIM est également médiane Donc le triangle OIM est isocèle en M Étant aussi isocèle en O,

Plus en détail

Compléments sur la dérivation Fonctions sinus et cosinus

Compléments sur la dérivation Fonctions sinus et cosinus I. Dérivation Compléments sur la dérivation Fonctions sinus et cosinus A faire : revoir notions vues en 1 S, p 384-385 du livre 1) Activité ( à traiter sur feuille annexe ) Soient la fonction définie sur

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Analyse 1 re année IUT GEA Notes de cours

Analyse 1 re année IUT GEA Notes de cours Analyse re année IUT GEA Notes de cours Jean-Marie Favreau Année 200 20 Remarque : l introduction de ce cours, présentée en quelques minutes, de manière interactive, permet de placer quelques rappels simples,

Plus en détail

Plan d'étude d'une fonction. , f x = f x alors f est impaire.

Plan d'étude d'une fonction. , f x = f x alors f est impaire. 1 Recherche de l'ensemble de définition Plan d'étude d'une fonction. Fonctions rationnelles. f x existe si le dénominateur n'est pas nul. 2n Fonctions avec radical du type. f x existe si la quantité sous

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE Ph DEPRESLE 29 juin 205 Table des matières Propriétés algébriques 2 2 Nouvelle notation 2 3 Étude de la fonction exponentielle 2 3. Variations et ites........................................

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 12 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation Ce que dit le programme : Nouveautés par rapport à la première : Dérivée de la composée et écriture différentielle (pour la physique)

Plus en détail

Cours de mathématique en TS d Eric ZERBIB, professeur au lycée Pardailhan à Auch,

Cours de mathématique en TS d Eric ZERBIB, professeur au lycée Pardailhan à Auch, Un peu d histoire La notion de dérivée a vu le jour au XVII e siècle dans les écrits de Leibniz et de Newton qui la nomme fluxion et qui la définit comme «le quotient ultime de deux accroissements évanescents».

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Cours de terminale S - Généralités sur les fonctions

Cours de terminale S - Généralités sur les fonctions les fonctions LPO de Chirongui - Exercices : Savoir Faire (livre)- Déterminer une ite Interprétation graphique Livre Indice BORDAS - Page 45 Exercice 34, 35, 36 et 37 page 56 - Limite finie à l infini

Plus en détail

Continuité d une fonction et équation

Continuité d une fonction et équation Continuité d une fonction et équation I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative sur l intervalle I se fait

Plus en détail

I. Fonction de référence

I. Fonction de référence I. Fonction de référence Fonction x x 2 x x 3 x x x x Nom Domaine de définition x 3 2,5 2,5 0,5 0 0,5,5 2 2,5 3 Tableau de valeurs x² x 3 x /x Graphes Extremum Eléments de symétrie de la courbe Fonctions

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions

T.S L 2. Limite d une fonction. Limites de fonctions, continuité et dérivabilité. I.1 Activités. I.2 Définitions T.S Limites de fonctions, continuité et dérivabilité. L 2 Le second degré, vu en classe de ère S, est à connaître IMPÉRATIVEMENT : solutions événtuelles d une équation du second degré, signe d une epression

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

Dérivation. I. Nombre dérivé d une fonction en un point

Dérivation. I. Nombre dérivé d une fonction en un point I. Nombre dérivé d une fonction en un point Dérivation Dans tout ce paragrape, on considère une fonction f définie sur un intervalle I et a un nombre réel de cet intervalle. ) Définition Le nombre dérivée

Plus en détail

Étude de fonction et de courbes dans le plan

Étude de fonction et de courbes dans le plan Chapitre Étude de fonction et de courbes dans le plan Dans ce chapitre on étudie le problème suivant : étant donne une fonction donné par f) y, comment tracer approimativement la courbe représentative

Plus en détail

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [

I. Limite en et en 1. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ A. Limites d'une fonction I. Limite en et en. Limites finie et infine Dans ce paragraphe, nous considèrerons des fonctions définies sur un intervalle de la forme [ a; [ où a R. DÉFINITIONS Soit l un réel.

Plus en détail

Fonctions - Dérivabilité Cours maths Terminale S

Fonctions - Dérivabilité Cours maths Terminale S Fonctions - Dérivabilité Cours maths Terminale S Dans ce module, retour sur la notion de nombre dérivé vue en première. La classe de terminale s attardant plus longuement sur le problème de la dérivabilité

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

DERIVATION. ou f'(x 0 ) = lim. h 0

DERIVATION. ou f'(x 0 ) = lim. h 0 DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Chapitre 3 : Dérivation et continuité

Chapitre 3 : Dérivation et continuité 1 DÉRIVATION D UNE FONCTION Chapitre 3 : Dérivation et continuité 1 Dérivation d une fonction 1.1 Nombre dérivé de f en a et fonction dérivée Définition 1 Soit f une fonction définie sur un intervalle

Plus en détail

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction.

FONCTIONS USUELLES. Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. A 00-0 FONCTIONS USUELLES Objectifs Connaître les fonctions usuelles classiques. Connaître des nouvelles fonctions usuelles. Savoir étudier une fonction. Exponentielles, logarithmes, puissances. Exponentielle

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES

EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES EL - EXERCICES SUR LES FONCTIONS CIRCULAIRES RECIPROQUES ET HYPERBOLIQUES Calculer les nombres suivants a) arcsin sin 8π ) 5 c) arcsin sin 5π ) 7 e) sin arcsin ) 3 b) arccos sin 8π ) 5 d) arcsin sin 0π

Plus en détail

; et un sens direct (sens positif, au

; et un sens direct (sens positif, au I- Angles dans un cercle I- 1 : Cercle trigonométrique Définition 1: Un cercle trigonométrique, est un cercle orienté de centre O et de rayon 1, auquel, on associe un repère orthogonal direct, ( O i, j

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

étude de fonctions trigonométriques 5) Calculer les limites aux bornes de cet ensemble d étude. Y a-t-il une asymptote?

étude de fonctions trigonométriques 5) Calculer les limites aux bornes de cet ensemble d étude. Y a-t-il une asymptote? Chapitre Eercice : étude de fonctions trigonométriques Terminale S sin Le but est d étudier et de représenter la fonction tangente définie par : tan = cos ) Déterminer l ensemble de définition de la fonction

Plus en détail

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54

Fonctions réelles : rappels de lycée et compléments. () Fonctions réelles : 1 / 54 Fonctions réelles : rappels de lycée et compléments () Fonctions réelles : 1 / 54 1 Fonctions logarithmes et exponentielles Le logarithme népérien L exponentielle Logarithmes et exponentielles de base

Plus en détail

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles.

Pour chaque proposition, indiquer si elle est vraie ou fausse et justifier soigneusement la réponse. Les questions sont indépendantes entre elles. TS - Maths - D.S.5 Samedi 17 janvier 015-4h Spécialités : SVT - Physique Exercice 1 (5 points) Pour les candidats n ayant pas suivi l enseignement de spécialité Pour chaque proposition, indiquer si elle

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

Fonctions : Dérivation-Composition

Fonctions : Dérivation-Composition Fonctions : Dérivation-Composition Terminale S 2011/2012 15 septembre 2011 Terminale S (2011/2012) Lycée Français de Valence 15 septembre 2011 1 / 21 Nombre dérivé Plan 1 Compléments sur la dérivation

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE FONCTIONS D UNE VARIABLE RÉELLE Toutes les fonctions considérées dans ce chapitre seront des d une variable réelle (i.e. l ensemble de départ est R) à valeurs dans R ou C. 1 Généralités 1.1 Ensemble de

Plus en détail

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11

Terminale S Chapitre 1 : Fonctions, variations et limites Page 1 sur 11 Terminale S Chapitre : Fonctions, variations et ites Page sur I) Dérivation ) Définition et interprétation géométrique : Soient f une fonction définie sur un intervalle I de R et a I. La fonction est dérivable

Plus en détail

Dérivation, cours, terminale S

Dérivation, cours, terminale S Dérivation, Dérivation, 27 septembre 2016 Définitions : Soit f une fonction définie sur un intervalle I contenant a. Dire que f est dérivable en a de nombre dérivé f (a), signifie que le taux d accroissement

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

EXERCICES CONTINUITÉ

EXERCICES CONTINUITÉ EXERCICES CONTINUITÉ On sait déjà calculer l aire de polygone, mais qu en est-il de figure dont les côtés ne sont pas des segments? Exercice 1. On cherche l aire A de la figure délimitée, sur l intervalle

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

Fonctions d'une variable réelle (M-1.1)

Fonctions d'une variable réelle (M-1.1) Fonctions d'une variable réelle (M-.) I. Fonctions définies par morceaux Définition des fonctions en escalier : une fonction en escalier est une fonction constante par intervalles. Sa représentation graphique

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

1 ère S Exercices sur les fonctions trigonométriques

1 ère S Exercices sur les fonctions trigonométriques 1 ère S Exercices sur les fonctions trigonométriques 1 Dans chaque cas, démontrer que la fonction f dont l expression est donnée est périodique de période T. 1 ) f ( x) cosx 4 et T ) f ( x) cos 6x sin

Plus en détail

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique

TS - Maths - D.S.4 - Correction Spécialités : SVT - Physique TS - Maths - D.S. - Correction Spécialités : SVT - Physique Samedi 05 Décembre 05 - h Exercice ( points) Commun à tous les candidats Une usine produit de l eau minérale en bouteilles. Lorsque le taux de

Plus en détail

Chapitre 13 Fonctions trigonométriques

Chapitre 13 Fonctions trigonométriques Capitre 13 Fonctions trigonométriques I. Définitions 1) Enroulement On considère le repère du plan (O; i, j), c le cercle trigonométrique, A le point de coordonnées (1; 0) et d la droite orientée munie

Plus en détail

I. COSINUS ET SINUS J M. On munit le cercle trigonométrique d un repère orthonormé (O, OI, OJ ) et d un sens (le «sens direct») O x A

I. COSINUS ET SINUS J M. On munit le cercle trigonométrique d un repère orthonormé (O, OI, OJ ) et d un sens (le «sens direct») O x A www.mathsenligne.com STI - N4 - FNCTINS TRIGNMETRIQUES CURS (/5) PRGRAMMES Etude des fonctions ï sin et ï cos : dérivée, sens de variation. Equations cos = α et sin = α. CMMENTAIRES n s aidera de l interprétation

Plus en détail

Sommaire. Prérequis. Généralités sur les fonctions

Sommaire. Prérequis. Généralités sur les fonctions Généralités sur les fonctions Stépane PASQUET, 4 octobre 06 C Sommaire Limites aux infinis....................................... Limite en un nombre fini, ite à droite, ite à gauce d un nombre fini........

Plus en détail

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES)

DERIVATION I. DE LA TANGENTE A LA DERIVABILITE. a) Tangente et nombre dérivé. Ch2 : Dérivation (TES) DERIVATION I. DE LA TANGENTE A LA DERIVABILITE a) Tangente et nombre dérivé Aux origines la dérivation, était un problème purement géométrique : il s'agissait de connaître le coefficient directeur ou pente

Plus en détail

Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA

Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA Terminale S Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA Octobre 2013 Table des matières Objectifs 5 Introduction 7 I - Définition - dérivabilité 9 A. Construction Sinus et Cosinus...9 B.

Plus en détail

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation :

[ 9;7 ] et représentée graphiquement. Contrôle du 16 octobre (durée : 2h ) Sujet A /20. Nom : Prénom : Terminale S T08 Appréciation : Nom : Prénom : Terminale S T08 Appréciation : Contrôle du 16 octobre (durée : 2h ) Sujet A /20 Evaluation des compétences : Lecture graphique Limites Lecture graphique Dérivée Tracer une courbe, ses tangentes

Plus en détail

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Contenu: Radian; Cercle trigonométrique; Mesure d un angle orienté; Mesure principale. Mevel

Plus en détail

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x.

3. En donner une interprétation graphique. 3 [ par f(x) = ln(-2x + 3) + 2x. T ES Mathématiques DS 5 le 18/01/01 Exercice 1 (5,5 POINTS ) On considère une fonction f définie et dérivable sur l intervalle [- ; 4]. On note f la fonction dérivée de la fonction f. La courbe C f, tracée

Plus en détail

Sujets de bac : Complexes

Sujets de bac : Complexes Sujets de bac : Complexes Sujet n 1 : extrait d Asie juin 2002 1) Dans le plan complexe ; ;, on considère quatre points,, et d affixes respectives 3 ; 4 ; 2 3 et 1. Placer les points,, et dans un plan.

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

CONTINUITE ET CONVEXITE

CONTINUITE ET CONVEXITE CONTINUITE ET CONVEXITE I. Continuité et théorème des valeurs intermédiaires Le mathématicien allemand Karl Weierstrass (1815 ; 1897) apporte les premières définitions rigoureuses au concept de limite

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

Correction : Les fonctions sinus et cosinus

Correction : Les fonctions sinus et cosinus Correctioneercices mars Correction : Les fonctions sinus et cosinus Rappels Eercice ) 5 ) 5) 7) 9) ) ) ) 8) Eercice ) sin = sin =sin ) = + k = 5 k Z + k 5 ) cos = cos =cos ) 5 5 + k = 5 k Z + k 5 5 ) cos)=cos

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

DÉRIVÉE. I Nombre dérivé - Tangente. Définition. Exemple 1. Remarque

DÉRIVÉE. I Nombre dérivé - Tangente. Définition. Exemple 1. Remarque DÉRIVÉE I Nombre dérivé - Tangente Eemple Considérons la fonction carré f() = 2, et effectuons avec une calculatrice un zoom de sa représentation graphique au voisinage de son point 0 d'abscisse 0 = 2

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail