Électronique Numérique. Licence Physique et Applications. Applications de l électronique. combinatoire

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Électronique Numérique. Licence Physique et Applications. Applications de l électronique. combinatoire"

Transcription

1 Élctroniqu Numériqu Licnc Physiqu t Application Élctroniqu Numériqu Licnc Physiqu t Applications Applications d l élctroniqu combinatoir Fabric AIGNET LAAS - NRS

2 Élctroniqu Numériqu Licnc Physiqu t Application Plan du ours I. Ls fonctions univrslls II. Ls opératurs arithmétiqus III. Étud d un multivibratur

3 Élctroniqu Numériqu Licnc Physiqu t Application I. I. Méthod d d synthès ds ds systèms combinatoirs But But :: réalisr par par un un assmblag d d ports ports logiqus A partir du cahir ds chargs, idntifir ls ntrés t sortis du systèm Mttr n plac la tabl d vérité décrivant l systèm 3 Trouvr ls équations simplifiés d chaqu sorti n fonction ds ntrés. 4 Réalisr l schéma élctriqu par l assmblag d ports n rspctant ls contraints du cahir ds chargs

4 Élctroniqu Numériqu Licnc Physiqu t Application I. I. Ls Ls fonctions univrslls I.) I.) Fonction NON NON Princip d raisonnmnt :Dans la pratiqu, c n sont pas ls trois fonctions d bas NON, OU, ET qui sont ls plus utilisés mais ls fonctions NAND t NOR. En fft, outr ds raisons tchnologiqus qu nous vrrons plus loin, on put réalisr ls trois fonctions d bas uniqumnt à l'aid d fonctions NAND ou d fonctions NOR t par conséqunt n'import qull fonction logiqu combinatoir. 'st pour ctt raison qu ls ports NAND t NOR sont applés élémnts d connxion univrsls s 0 E S E E S E

5 Élctroniqu Numériqu Licnc Physiqu t Application I. I. Ls Ls fonctions univrslls I.) I.) Fonction OU OU L théorèm d D Morgan nous prmt d'écrir l'xprssion boolénn d la fonction OU sous la form suivant : ( ) s E E E S E E E

6 Élctroniqu Numériqu Licnc Physiqu t Application I. I. Ls Ls fonctions univrslls I.) I.) Fonction OU OU (solution ) ) Mais l'xprssion ci- dssus put s transformr n la suivant par l'utilisation d l'un ds théorèms d D Morgan s ( ) ( ) E E E E S E E

7 Élctroniqu Numériqu Licnc Physiqu t Application I. I. Ls Ls fonctions univrslls I.3) I.3) Fonction ET ET s ( ) E E. E S E. E E Ou : ( ) ( ) s E E S E. E E E

8 Élctroniqu Numériqu Licnc Physiqu t Application I.3) Fonction OU EXLUSIF I.3) Fonction OU EXLUSIF I. Ls fonctions univrslls I. Ls fonctions univrslls Ls forms canoniqus nous ont prmis d'obtnir l'xprssion boolénn d la fonction OU EXLUSIF : ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) s s s En dévloppant : E E S E E

9 Élctroniqu Numériqu Licnc Physiqu t Application II. II. Ls Ls fonctions arithmétiqus II.) II.) omparaison d d dux dux nombrs binairs A titr d'xmpl, nous allons traitr la comparaison d dux nombrs binairs d bit, la généralisation à n bit n présntant pas d difficulté majur. Soint a t b dux nombrs d bit chacun. Lur comparaison put donnr liu à cinq sortis distincts : s a < b s a b s3 a b Réalisr cs fonctions :

10 Élctroniqu Numériqu Licnc Physiqu t Application II. II. Ls Ls fonctions arithmétiqus II.) II.) Additionnur binair binair à trois trois bits bits Ls circuits logiqus combinatoirs puvnt aussi êtr utilisés pour ffctur ds opérations arithmétiqus. Nous allons nous intérssr à titr d'xmpl à l'addition d dux nombrs binairs Princip d fonctionnmnt d l addition décimal : Princip d fonctionnmnt d l addition binair :

11 Élctroniqu Numériqu Licnc Physiqu t Application II. II. Ls Ls fonctions arithmétiqus II.a) Additionnur binair binair bit bit bit bit Réalisr la fonction : II.b) Additionnur binair binair bit bit bit bit avc avc pris pris n n compt du du carry carry Réalisr la fonction : II.c) II.c) Additionnur binair binair 3bits 3bits 3 bits bits Réalisr la fonction :

12 Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu III.) III.) Modèl d d l'invrsur logiqu idéalisé omm pour l'amplificatur opérationnl on put raisonnr sur un modèl d port logiqu idéal établi pour simplifir ls calculs : Résistanc d'ntré infini, donc courant d'ntré i 0. Résistanc d sorti null : la sorti s comport comm un génératur d tnsion parfait d valur 0 ou, étant la tnsion d'alimntation du circuit Tnsion d basculmnt du circuit, c'st-à-dir valur d la tnsion d'ntré u qui chang l'état d la sorti U B si u < UB, us : état haut ou logiqu. si u > UB, us 0 : état bas ou 0 logiqu. i 0 u u S

13 Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu III.) III.) Schéma du du montag montag d la figur ci-contr, dux nvrsurs n cascad, présnt dux états tabls : u 0 u () u u 0 () Etablissmnt d un rtard par un circuit R u u () R () u A R p u

14 Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu III.3) III.3) Princip d d fonctionnmnt u R i R i i 0 i i 0 A u i i u u A () ()

15 Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu III.3) III.3) Étud Étud théoriqu Ls conditions initials à l'instant t0 0 sont suivants : u u 0 (u u) t l condnsatur déchargé : u 0 ua u u 0 Qu s pass-t-il autour d t (pour UA /)? Phas S S u R A i(t) u R u 0 R A i(t) u R 3 S u u 0 u A S u u u A 3 t t -ε t t ε

16 Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu III.3) III.3) Étud Étud théoriqu Phas : d t à t l condnsatur s décharg dans R, puis prnd un charg d sign opposé. L potntil du point A diminu jusqu'à la tnsion d basculmnt attint à l'instant t. Qu s pass-t-il autour d t (pour UA /)? Phas S S u 0 R A i(t) u R u R A i(t) u R 3 S u u u A S u u 0 u A t t -ε t t ε

17 u Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu 0 u t III.3) III.3) obsrvation u A 0 3 t 0 t u 3 0 t

18 Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu III.4) III.4) alcul d d la la périod La périod st : T (t3 t) ( t3 - t) (t t) L xprssion d la tnsion au borns du condnsatur st donné par : E u D où l xprssion d t : () t ( E u ) xp t 0 E u R ln E u t R 0 () t

19 Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu III.4) III.4) alcul d d la la périod Dans l'intrvall (t t) l condnsatur s charg sous la tnsion (-) à partir d'un tnsion initial u0 u(t) / jusqu'à un tnsion final u(t) (-/) t l'on a donc : t ln t R R ln 3 Dans l'a intrvall (t3 t), l condnsatur s charg sous la tnsion à partir d'un tnsion initial u0 u(t) (-/) jusqu'à un tnsion final u(t3) / t l'on a donc : t ln 3 t R R ln3

20 Élctroniqu Numériqu Licnc Physiqu t Application III. III. Multivibratur à invrsur logiqu III.4) III.4) alcul d d la la périod On n déduit la périod : T R ln 3, R avc un rapport cycliqu : ϑ T t T t t 3 T t 0,5

IMPÉDANCES D ENTRÉE ET DE SORTIE

IMPÉDANCES D ENTRÉE ET DE SORTIE MPÉDNCE D ENTÉE ET DE OTE. DÉFNTON On s plac n régim sinusoïdal forcé. oit Q un quadripôl. Nous allons modélisr c quadripôl n utilisant ls impédancs d ntré t d sorti. quadripôl Q V V. Point d vu du génératur

Plus en détail

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé ycé François Arago Prpignan M.P.S.I. 2012-2013 TD d élctrocinétiqu n o 4 ircuits linéairs n régim sinusoïdal forcé Exrcic 1 - Détrmination ds modèls d Thévnin t d Norton. A Détrminr l modèl d Thévnin t

Plus en détail

L AMPLIFICATEUR OPÉRATIONNEL

L AMPLIFICATEUR OPÉRATIONNEL L PLIFICTEU OPÉTIONNEL I. L PLIFICTEU OPÉTIONNEL IDÉL I. Circuit intégré rpèr Un mplificatur Opérationnl (.O.) st un circuit intégré accssibl par V t V 3 + t un born d 8 borns. Il y a dux borns d ntré

Plus en détail

7.B ANNEXE: RÉGULATEURS ANALOGIQUES

7.B ANNEXE: RÉGULATEURS ANALOGIQUES 7.B ANNEXE: ÉGULATEUS ANALOGIQUES 7.B. Généralités Pour réalisr un régulatur analogiqu, on adoptra un montag à amplificatur qui prmt d réalisr la fonction d transfrt souhaité dans un larg gamm d'utilisation.

Plus en détail

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes.

LOI EXPONENTIELLE EXERCICES. La durée T, en minutes, d une conversation téléphonique suit une loi exponentielle de moyenne 4 minutes. EXERIES 3 La duré T, n minuts, d un convrsation téléphoniqu suit un loi xponntill d moynn 4 minuts. ) alculr P(T>5) ) alculr P( < T < 8). Pour un variabl T, xprimé n minuts, qui rprésnt un duré d vi t

Plus en détail

Théorie des machines thermiques

Théorie des machines thermiques héori ds machins thrmiqus I 7 éfrigératur trithrm, d'après concours Icar 997 ) Définir la notion d machin thrmiqu dans l langag d la thrmodynamiqu ) applr sans démonstration l théorèm d arnot régissant

Plus en détail

Loi exponentielle. Rappels sur le chapitre précédent :

Loi exponentielle. Rappels sur le chapitre précédent : TS Loi ponntill Rappls sur l chapitr précédnt : On st parti d la loi uniform sur l intrvall [ ; ] puis sur un intrvall [a ; b] qulconqu (formul donnant la probabilité d un intrvall [ ; ] inclus dans [a

Plus en détail

MÉTHODES DE RÉSOLUTION DES RÉSEAUX LINÉAIRES EN COURANT CONTINU

MÉTHODES DE RÉSOLUTION DES RÉSEAUX LINÉAIRES EN COURANT CONTINU MÉTHODES DE ÉSOLUTION DES ÉSEUX LINÉIES EN OUNT ONTINU I. DEUX FÇONS DE POSE LE POLÈME On considèr l circuit suivant. Nous chrchons à connaîtr l état élctriqu du circuit, c st à dir connaîtr ls potntils

Plus en détail

Dans le fer à souder se trouve un...qui compare à chaque instant t f et t c

Dans le fer à souder se trouve un...qui compare à chaque instant t f et t c UTOMTIQUE Lçon : 4 Objctifs : Décrir un systèm assrvi n fonctionnmnt. Modélisr un systèm assrvi par un schéma fonctionnl. Détrminr la fonction d transfrt d un systèm assrvi Mttr n œuvr un systèm assrvi

Plus en détail

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e Chapitr 2 Rprésntation ds fonctions logiqus 26..9 Ch 2 : Rprésntation ds fonctions logiqus Réalisation avc ds intrrupturs : a b +5 V Intrruptur a ouvrt (inactif) : a Intrruptur b frmé (actif) : b a Intrruptur

Plus en détail

Etude du circuit RLC. (5,5 points) de plus i = ; on obtient donc : = 0 (1) m /T 2 *cos(2πt/t) Q m* cos(2πt/ T 0 ) = 0 (2)

Etude du circuit RLC. (5,5 points) de plus i = ; on obtient donc : = 0 (1) m /T 2 *cos(2πt/t) Q m* cos(2πt/ T 0 ) = 0 (2) Exrcic I (7 points) Parti A Étud comparativ ds dipôls RL, RC t RLC séri. (1,5 point) Q1 a) Captur + Intrfac + ordinatur ou oscillo à mémoir. Pour visualisr la tnsion u R aux borns du conductur ohmiqu,

Plus en détail

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI Ministèr d l Ensignmnt Supériur, d la Rchrch Scintifiqu Univrsité Virtull d Tunis Ls systèms assrvis linéairs échantillonnés Echantillonnag instantané d un signal Mohamd AKKARI Attntion! C produit pédagogiqu

Plus en détail

TP Filtrage numérique

TP Filtrage numérique TP Filtrag On chrch à réalisr un filtrag pass-bas puis pass-band d un signal périodiqu t à mttr n évidnc la limitation introduit par l échantillonnag. I. Introduction I.1. Du filtrag au filtrag Jusqu à

Plus en détail

Correction du devoir de vacances Les suites dans plusieurs situations

Correction du devoir de vacances Les suites dans plusieurs situations L.E.G.T.A. L Chsnoy TB2 21-211 D. Blottièr Mathématiqus Corrction du dvoir d vacancs Ls suits dans plusiurs situations Exrcic 1 : Un pas vrs ls fractals On considèr un carré F 1 d côté d longuur 1. Au

Plus en détail

Physique Générale IV, solution série 3

Physique Générale IV, solution série 3 Phsiqu Général IV, solution séri 3 Ercic Du virations d mêm fréqunc, slon du as t prpndiculairs, avc un différnc d phas / : (t) = a sin (ωt) M(t) (t) = sin (ωt + /) = cos (ωt) où a t sont ls amplituds

Plus en détail

TS Fonction exponentielle (2)

TS Fonction exponentielle (2) TS Fonction ponntill () I. Limits d la fonction ponntill n + t n ) Comparaison d t On considèr la fonction f : défini sur. f st dérivabl sur comm différnc d fonctions dérivabls sur. f ' Sign d + Variation

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

VII. La méthode ESPRIT

VII. La méthode ESPRIT Patrick VAUDON Introduction à la détction ds angls d arrivés d un ond élctromagnétiqu. Mastr Rchrch Tchniqus hyprfréquncs élctroniqus t optiqus 4 VII La méthod ESPRIT ESPRIT st un acronym formé à partir

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynési juin 1 EXERCICE 1 L plan st rapporté à un rpèr orthonormal On considèr ls points B 1 ; 1 t C 5 ; O ; i ; j. 5 t la droit D d équation y = x. On not f la fonction défini sur R dont

Plus en détail

Actionneurs Electriques

Actionneurs Electriques Micromoturs élctrostatiqus Princip Ls systèms élctrostatiqus crént ds forcs par intraction d dux sourcs d champ élctriqu. Cs sourcs puvnt êtr ds conducturs chargés, portés à ds potntils élctriqus, ds matériaux

Plus en détail

Numérisation. Capteurs avec conditionnement. Actionneurs avec conditionnement. Fig : Principe d un système numérique de contrôle-commande.

Numérisation. Capteurs avec conditionnement. Actionneurs avec conditionnement. Fig : Principe d un système numérique de contrôle-commande. Numérisation A. Définition La figur suivant illustr l princip d un systèm numériu d contrôl-command. Cluici, à gauch, st chargé d contrôlr crtains comportmnts, par xmpl la tmpératur, d un systèm physiu.

Plus en détail

Fonctions Numériques, fonctions usuelles.

Fonctions Numériques, fonctions usuelles. Fonctions Numériqus, fonctions usulls.. Fonction constant : Soit b un rél fié. Définition : La fonction constant st la fonction qui à tout rél associ l rél b. la fonction constant st donc la fonction f

Plus en détail

Presser la touche F5 pour faire apparaître les signets qui favorisent la navigation dans le document.

Presser la touche F5 pour faire apparaître les signets qui favorisent la navigation dans le document. AMPLIFIATEU OPEATIONNEL Prssr la touch F5 pour fair apparaîtr ls signts qui faorisnt la naigation dans l documnt. Sommair Généralités.... Introduction.... Nots sur l'étag différntil Application à l'amplificatur

Plus en détail

Une extension pleine de tendresse par Antoine Bauza & Corentin Lebrat

Une extension pleine de tendresse par Antoine Bauza & Corentin Lebrat Un xtnsion plin d tndrss par Antoin Bauza & Corntin Lbrat CHIBIS_rgls_09032015.indd 1 13/03/2015 15:44:50 P L t M REPRODUCTION DES PANDAS La saison ds accouplmnts ds pandas s étal d mars à mai. En captivité

Plus en détail

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I

Le sujet comporte 8 pages numérotées de 2 à 9 Il faut choisir et réaliser seulement trois des quatre exercices proposés EXERCICE I L sujt comport 8 pags numérotés d 2 à 9 Il faut choisir t réalisr sulmnt trois ds quatr xrcics proposés Parti A EXERCICE I Donnr ls réponss à ct xrcic dans l cadr prévu à la pag 3 On considèr la fonction

Plus en détail

TS Exercices sur la fonction exponentielle (1)

TS Exercices sur la fonction exponentielle (1) TS Ercics sur la fonction ponntill () 4 a. 4 4 b. Simplifir ls prssions suivants : p( ) a. A = p () p () b. B = p () p ( ) c. C p( ) d. D p( ) 4 5 6 (on pourra posr X ) 4 Simplifir ls prssions suivants,

Plus en détail

Elizabeth Colin. 2 ème année cycle préparatoire ESIGETEL

Elizabeth Colin. 2 ème année cycle préparatoire ESIGETEL 1 Elizabth Colin èm anné cycl préparatoir ESIGETEL Plan du cours I - Introduction 1 èr Parti : l amplification II - Ls montags amplificaturs III Amplificatur à bas d transistors èm Parti : du transistor

Plus en détail

Série n 3 d Electrocinétique : Régime sinusoïdal forcé

Série n 3 d Electrocinétique : Régime sinusoïdal forcé Séri n 3 d Elctrocinétiqu : Régim sinusoïdal forcé Exrcic n 1 : Résonanc n tnsion d un circuit RLC parallèl 1.\ Détrminr l équation différntill qui régi l évolution d u(t). 2.\ Exprimr l amplitud complx

Plus en détail

Exercice 1.sur 10 points Commun à tous les candidats

Exercice 1.sur 10 points Commun à tous les candidats Trminal S Bac Blanc d mathématiqus : duré 4 h Mardi 3 mars 205 Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi,la précision ds raisonnmnts

Plus en détail

LES FILTRES. Les Filtres 1 Les filtres 2 Définitions 2

LES FILTRES. Les Filtres 1 Les filtres 2 Définitions 2 LES FILTES Ls Filtrs Ls filtrs Définitions ôl d'un filtr Typs d filtrs Filtrs passifs t actifs abarit d un filtr Ordr d un filtr Filtrs du prmir ordr (rappl) Filtr pass haut Filtr pass bas Filtr pass band

Plus en détail

Exercices sur la notion d impédance

Exercices sur la notion d impédance Exrcics sur la notion d impédanc C documnt st un compilation ds xrcics posés n dvoirs survillés d élctricité au départmnt Géni Elctriqu t nformatiqu ndustrill d l UT d Nants. Cs dvoirs s sont déroulés

Plus en détail

Feuille d exercices : Amplificateur linéaire intégré

Feuille d exercices : Amplificateur linéaire intégré Fuill d xrcic : Amplificatur linéair intégré P Colin 2017/2018 1 Intérêt du montag uivur 1. Détrminr la tnion v t l courant d intnité i dan chacun d montag rprénté ur la figur 1. 50 Ω 50 Ω i 12 V i 100

Plus en détail

LES ERREURS DE MESURE

LES ERREURS DE MESURE Chapitr 2 LES ERREURS DE MESURE OBJECTIFS Général Fair acquérir à l apprnant ls notions d rrur t d incrtitud. Spécifiqus Connaîtr ls différnts typs d rrurs t d incrtituds, ainsi qu lurs méthods d calcul.

Plus en détail

Exponentielles. Mr Zribi. Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I

Exponentielles. Mr Zribi.  Page 1. L.S.El Riadh. 4 ére Maths Solutions. Exercice 1 : Partie I Eponntills 4 ér Maths Solutions Ercic : Parti I. g st défini pour tout [ ; [ par g. a Pour tout, g t g > équivaut à > > >. car la fonction p st strictmnt croissant sur R. g ' > pour tout > t g'. Il s'nsuit

Plus en détail

CONTRE REACTION SUR UN AMPLI 5 C.R courant-parallèle. schéma de contre réaction

CONTRE REACTION SUR UN AMPLI 5 C.R courant-parallèle. schéma de contre réaction CONTRE REACTION SUR UN AMPLI 5 C.R courant-parallèl schéma d contr réaction Ig Is grandur d sorti :courant Ig A 0 nœud d courant : Entré // Is CONTRE REACTION SUR UN AMPLI 5 C.R courant-parallèl ouvrtur

Plus en détail

Physique - électricité : TC1

Physique - électricité : TC1 Ministèr d l Ensignmnt Supériur, d la chrch Scintifiqu t d la Tchnologi Univrsité Virtull d Tunis Physiqu - élctricité : T Ls condnsaturs oncptur du cours: Jilani Lamloumi t Monjia Bn Braik Attntion! produit

Plus en détail

Correction du devoir sur les situations de conjectures

Correction du devoir sur les situations de conjectures Corrction du dvoir sur ls situations d conjcturs no 1. n étant un nombr ntir... a. n + 1 b. n - 1 c. n d. n + 1. (n + 1) f. 5n + (5n + 5) g. 4 possibilités : i. n + 1 t n + 11 ii. n - 1 t n + 9 iii. n

Plus en détail

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1

EXPONENTIELLE : ETUDES DE FONCTIONS. e 1 EXPONENTIELLE : ETUDES DE FONTIONS Pour chacun ds fonctions ci-dssous, détrminr : - l nsmbl d définition I d la fonction ; - ls limits d la fonction au borns d I ; - la dérivé t l sign d la dérivé ; -

Plus en détail

Chapitre 5. La fonction exponentielle

Chapitre 5. La fonction exponentielle Ensignmnt spécifiqu Chapitr 5 La fonction ponntill I Eistnc t unicité Théorèm : Il ist un uniqu fonction f dérivabl sur tll qu : f = f t f(0) = Ctt fonction st applé fonction ponntill t noté p : Ainsi

Plus en détail

69.010/1. XEP: Convertisseurs e/p et p/e. Sauter Components

69.010/1. XEP: Convertisseurs e/p et p/e. Sauter Components 9.00/ XEP: Convrtissurs / t / Votr avantag our lus d fficacité énrgétiqu Associ ls avantags d la régulation élctroniqu à cux d la régulation numatiqu, our un fonctionnmnt otimal ds installations. Domains

Plus en détail

1 ère L Exercices de statistiques

1 ère L Exercices de statistiques 1 èr L Exrcics d statistiqus 1 Détrminr la médian d chacun ds séris suivants n rédigant a) b) x i 8 10 1 15 x i 150 160 140 130 n i 1 4 3 n i 1000 100 1100 1050 Pour chaqu séri indiqué, calculr, sans utilisr

Plus en détail

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES CHAPITRE 4 ÉTUDE DES CHAÎNES FERMÉES : DÉTERMINATION DES LOIS ENTRÉE SORTIE Trainr Solo Sport [1] Modèl CAO d un motur d modélism [2] Modélisation

Plus en détail

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices

Boubacar MANÉ. Série d exercices de Mathématiques : L Oasis Des Mathématiques. Étude de fonctions à variable réelle dansr : Énoncé des exercices Séri d rcics d Mathématiqus : Étud d fonctions à variabl réll dansr : Énoncé ds rcics Ercic Soit la fonction numériqu f défini par : f )= 3+ 5 +. a) Détrminr l nsmbl d définition D f t ls its au borns.

Plus en détail

ÉTUDE D UN TRANSFORMATEUR

ÉTUDE D UN TRANSFORMATEUR A 05 PHYS. I ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

REDRESSEMENT COMMANDE

REDRESSEMENT COMMANDE EDEEMENT COMMANDE I. INTODUCTION..Définition. i Un montag rdrssur commandé prmt d obtnir un tnsion continu réglabl (d valur moynn non null) à partir d un tnsion altrnativ sinusoïdal (d valur moynn null).

Plus en détail

TS Exercices sur la fonction exponentielle (2)

TS Exercices sur la fonction exponentielle (2) TS Ercics sur la onction ponntill () Dans ls rcics à, on dmand d détrminr ls nsmbls d déinition d t d dérivabilité d puis d calculr la dérivé d. Lundi 8--06 Délia El Chatr (TS) Ercic sur ls ponntills ()

Plus en détail

CHAPITRE 3 : AMPLIFICATEUR OPERATIONNEL

CHAPITRE 3 : AMPLIFICATEUR OPERATIONNEL Unirité d Saoi DEUG Scinc t Tchnologi r mtr Elctroniqu t ntrumntation CHPTE 3 : MPLFCTEU OPETONNEL PEMBULE 24 2 DESCPTON 24 2 PESENTTON 24 22 LMENTTON 24 3 MODELE DE L O DEL 25 3 DEFNTON 25 32 EGMES DE

Plus en détail

Fiche 3 : Exponentielles, logarithmes, puissances

Fiche 3 : Exponentielles, logarithmes, puissances Tous droits résrvés Studyrama 00 En partnariat avc : Fich téléchargé sur wwwstudyramacom Séri S Nº : 00 Fich Corrigés Fich : Eponntills, logarithms, puissancs Opérations élémntairs t fonction ponntill

Plus en détail

Traitement du Signal - Travaux Dirigés - Sujet n 3 : "Echantillonnage, Transformée de Fourier d un signal échantillonné"

Traitement du Signal - Travaux Dirigés - Sujet n 3 : Echantillonnage, Transformée de Fourier d un signal échantillonné raitmnt du Signal - ravaux Dirigés - Sujt n 3 : "Echantillonnag, ransormé d Fourir d un signal échantillonné" Exrcic : Sur-échantillonnag L objcti d ct xrcic st d mttr n évidnc l intérêt qu il put y avoir

Plus en détail

ANALYSE D UN AMPLIFICATEUR POUR ANTENNE DE TELEVISION 1 PARTIE 1 : ADAPTATION EN PUISSANCE DU SIGNAL DELIVRE PAR L ANTENNE.

ANALYSE D UN AMPLIFICATEUR POUR ANTENNE DE TELEVISION 1 PARTIE 1 : ADAPTATION EN PUISSANCE DU SIGNAL DELIVRE PAR L ANTENNE. ANALYSE D UN AMPLIFICATEUR POUR ANTENNE DE TELEVISION On s propos d analysr un monta dstiné à amplifir l sinal fourni par un antnn d télévision (fréqunc d l ordr d 500 MHz). En fft, ctt antnn st situé

Plus en détail

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1

Exercice n 1 Déterminer des primitives des fonctions suivantes sur l'intervalle indiqué : 5 a) f (x)= (2 x+1) 3 sur I =] 1 Fich Bac S n 0 Trminal S Intégration - Calcul ds primitivs Exrcic n Détrminr ds primitivs ds fonctions suivants sur l'intrvall indiqué : 5 a) f (x)= (2 x+) 3 sur I =] 2 [ ;+ b) g ( x)= ln x sur I =]0 ;+

Plus en détail

Université Paris Sorbonne (Paris IV) Master Histoire, parcours «Recherche et Agrégation d Histoire»

Université Paris Sorbonne (Paris IV) Master Histoire, parcours «Recherche et Agrégation d Histoire» Univrsité Paris orbonn (Paris IV) Mastr Histoir, cours «Rchrch t Agrégation d Histoir» 1 Intitulé d l UE Hurs Cof / Cof / 2 Intitulé d l UE Hurs UE1 Fondamntaux variabl 2/10 UE1 Fondamntaux variabl 1/5

Plus en détail

France métropolitaine Enseignement spécifique

France métropolitaine Enseignement spécifique Franc métropolitain 03. Ensignmnt spécifiqu EXERCICE 7 points) commun à tous ls candidats) Sur l graphiqu ci-dssous, on a tracé, dans l plan muni d un rpèrorthonormé rprésntativ C d un fonction f défini

Plus en détail

Les trois questions de l exercice sont indépendantes.

Les trois questions de l exercice sont indépendantes. Pondichéry Avril 00 Séri S Exrcic Un urn contint 0 bouls blanchs t n bouls rougs, n étant un ntir naturl supériur ou égal à On fait tirr à un jouur ds bouls d l urn A chaqu tirag, touts ls bouls ont la

Plus en détail

Atomic Absorption. Spectroscopy

Atomic Absorption. Spectroscopy Chimi Analytiqu Atomic Absorption Spctroscopy Crost Elliott - Frnandz Samul - Tissot Guillaum (Group 2) Univrsité d Gnèv, Scincs II 17 Janvir 29 Résumé L but du laboratoir consist dans un prmir tmps à

Plus en détail

Correction du bac blanc de mathématiques

Correction du bac blanc de mathématiques Corrction du bac blanc d mathématiqus Exrcic (commun à tous ls candidats, point) Rstitution organisé d connaissancs :. Démontrr par récurrnc l inégalité d Brnoulli : pour tout x >, pour n N, (+x) n +nx.

Plus en détail

Terminale ES Problèmes d'études de fonctions avec des logarithmes - Corrigés

Terminale ES Problèmes d'études de fonctions avec des logarithmes - Corrigés Trminal ES Problèms d'étuds d onctions avc ds logarithms - Corrigés Problèm : st déini sur [;9] par ()= 4 ln. V st la courb rprésntativ d. ) D'après l'allur du graphiqu, il smbl qu soit conv sur [;9].

Plus en détail

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e

EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. 1 ln 1+ = 1. x x. x x. et sh x = e Ercic EXERCICES SUR LES LOGARITHMES ET LES EXPONENTIELLES. Démontrr qu : lim + ln + =. En déduir la limit suivant : lim + + [On pourra, par mpl, posr X = ] Ercic On considèr du fonctions, notés ch t sh,

Plus en détail

2.4 Logarithme Népérien et fonction exponentielle

2.4 Logarithme Népérien et fonction exponentielle 6 2.4 Logarithm Népérin t fonction ponntill Définition 20 (Logarithm Népérin). On appll Logarithm Népérin, noté ln, l uniqu fonction défini sur R + = ]0, + [ qui vaut 0 n = t dont la dérivé sur ]0, + [

Plus en détail

Condensateur. Un condensateur est constitué par deux conducteur séparé par un isolant.

Condensateur. Un condensateur est constitué par deux conducteur séparé par un isolant. I. Etud d un condnsatur plan A. ondnsation ds chargs ondnsatur On charg un élctroscop négativmnt. On approch un conductur métalliqu tnu à la main (donc rlié à la trr) initialmnt nutr. Il s charg positivmnt

Plus en détail

امتحانات شھادة الثانویة العامة فرع العلوم العامة مسابقة في الفیزیاء المدة: ثلاث ساعات

امتحانات شھادة الثانویة العامة فرع العلوم العامة مسابقة في الفیزیاء المدة: ثلاث ساعات وزارة التربیة والتعلیم العالي المدیریة العامة للتربیة داي رة الامتحانات امتحانات شھادة الثانویة العامة فرع العلوم العامة مسابقة في الفیزیاء المدة: ثلاث ساعات دورة سنة ۲۰۰٥ العادیة الاسم : الرقم : Ctt épruv,

Plus en détail

DIODES. anode cathode Représentation d une diode : On peut démontrer que la caractéristique de ce dipôle récepteur peut s écrire : qu

DIODES. anode cathode Représentation d une diode : On peut démontrer que la caractéristique de ce dipôle récepteur peut s écrire : qu DIODE I CAACTÉITIQUE D UNE DIODE À FONCTION PN I1 Dio à jonction PN Un io à jonction PN st constitué ux smi-conucturs mêm natur (silicium ou grmanium), opés ifférmmnt : l un typ N (ls élctrons sont ls

Plus en détail

Fonction exponentielle

Fonction exponentielle Chapitr 7 Fonction ponntill Sommair 7. Activités......................................................... 04 7.. Eponntill................................................... 04 7.. Qulqus propriétés d

Plus en détail

CONCEPTION ET CALCUL DES COUVRES- JOINTS DE CONTINUITE Continuité : cette solution rationalise souvent les sections.

CONCEPTION ET CALCUL DES COUVRES- JOINTS DE CONTINUITE Continuité : cette solution rationalise souvent les sections. CONCEPION E CALCUL DES COUVRES- JOINS DE CONINUIE Continuité : ctt solution rationalis souvnt ls sctions. Pour ls panns on put avoir dux solutions : Continuité réalisé par la pann ll mêm. Par xmpl pann

Plus en détail

MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES

MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES Mis n équation ds systèms linéairs. systèms du prmir ordr équation d la maill: u (t) = u R (t) + u C (t) mpl élctriqu: R i(t) = C du C u R (t) = RC du C u

Plus en détail

ELECTRICITE. Chapitre 7 Théorèmes de superposition, Thévenin et Norton appliqués à un réseau électrique linéaire en alternatif sinusoïdal.

ELECTRICITE. Chapitre 7 Théorèmes de superposition, Thévenin et Norton appliqués à un réseau électrique linéaire en alternatif sinusoïdal. TT nalys ds signaux t ds circuits élctriqus Michl Piou hapitr 7 Théorèms d suprposition, Thévnin t Norton appliqués à un résau élctriqu linéair n altrnatif sinusoïdal. dition /03/04 Tabl ds matièrs POUQUO

Plus en détail

TRAVAIL. 1. Etude de la fonction retard ou temporisation. Lire et étudier le cours sur la FONCTION RETARD OU TEMPORISATION. 1.1 Cas 1 : Temposimple

TRAVAIL. 1. Etude de la fonction retard ou temporisation. Lire et étudier le cours sur la FONCTION RETARD OU TEMPORISATION. 1.1 Cas 1 : Temposimple Fonction rtard ou tmporisation - TP 1.1 1/2 TRAVAIL 3 hurs 1. Etud d la fonction rtard ou tmporisation Lir t étudir l cours sur la FONCTION RETARD OU TEMPORIATION. 1.1 Cas 1 : Tmposimpl Chargr l application

Plus en détail

CHAPITRE IV EQUATIONS DIFFERENTIELLES

CHAPITRE IV EQUATIONS DIFFERENTIELLES CHAPITRE IV EQUATIONS DIFFERENTIELLES Objctifs Un équation différntill st un équation dans laqull l inconnu st un fonction f. D plus, ctt équation fait intrvnir la fonction f ainsi qu ss dérivés, d où

Plus en détail

TP HF Manipulation 6 CARACTERISATION D UN AMPLIFICATEUR MICRO ONDE

TP HF Manipulation 6 CARACTERISATION D UN AMPLIFICATEUR MICRO ONDE TP HF Manipulation 6 CARACTERIATION D UN AMPLIFICATEUR MICRO ONDE I. Introduction Ls amplificaturs micro onds sont aujourd hui utilisés dans ls chaîns d transmission ds systèms d télécommunications. Il

Plus en détail

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00 Mastr1 Msurs, Instrumntation t Procédés U.E. M15 : Capturs, Chaîns d msur 2 èm sssion Judi 18 Juin 29-9H Anné Univrsitair 28-29 Duré : 2H Documnts t calculatric autorisés Ls 2 partis sont indépndants t

Plus en détail

J AUVRAY Systèmes Electroniques LES COMPOSANTS ACTIFS

J AUVRAY Systèmes Electroniques LES COMPOSANTS ACTIFS J AUVRAY Systèms lctroniqus LS OMPOSANTS ATIFS L TRANSISTOR IPOLAIR Il st constitué d 3 couchs d smi-conductur rspctivmnt N P t N (ou PNP).La couch cntral, la bas,st minc, sa largur doit êtr très infériur

Plus en détail

SPE PSI DEVOIR LIBRE N 10 pour le 09/01/12

SPE PSI DEVOIR LIBRE N 10 pour le 09/01/12 SPE PSI DEVOIR LIBRE N 10 pour l 09/01/1 Problè d chii: Obtntion d dihydrogèn: 1/ L rforag à la vapur d au ds hydrocarburs légrs st un sourc iportant d hydrogèn. L étap iportant t n ju l équilibr suivant:

Plus en détail

Exercice 4 Amérique du Sud. Novembre Le point B est un point d'intersection de la courbe de f et de l'axe des abscisses donc f x B

Exercice 4 Amérique du Sud. Novembre Le point B est un point d'intersection de la courbe de f et de l'axe des abscisses donc f x B Ercic 4 Amériqu du Sud. Novmbr 007 La fonction f st défini sur ]0 ; [ par f = ln ln. La figur ci-dssous donn la courb rprésntativ d f. _ Absciss d B. L point B st un point d'intrsction d la courb d f t

Plus en détail

Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points)

Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points) TS Contrôl du mardi 7 mai 206 (50 min) rénom : Nom : Not :. / 20 arti (5 points : ) point ; 2 ) 4 points) L tmps d incubation, xprimé n hurs, du irus put êtr modélisé par un ariabl aléatoir X suiant un

Plus en détail

ECOLE NATIONALE DE L'AVIATION CIVILE ANNEE 2008 CONCOURS DE RECRUTEMENT D'ELEVES PILOTE DE LIGNE EPREUVE DE PHYSIQUE.

ECOLE NATIONALE DE L'AVIATION CIVILE ANNEE 2008 CONCOURS DE RECRUTEMENT D'ELEVES PILOTE DE LIGNE EPREUVE DE PHYSIQUE. ECOLE NATIONALE DE L'AIATION CIILE ANNEE 8 CONCOUS DE ECUTEMENT D'ELEES PILOTE DE LIGNE EPEUE DE PHYSIUE Cofficint : Duré : Hurs L sujt comport : pag d gard, pags (rcto-vrso) d'instructions pour rmplir

Plus en détail

Date : Communication technique. L isolement

Date : Communication technique. L isolement Kz5/z& Dat : Communication tchniqu Pag 2 L isolmnt. Problématiqu La prmièr msur d sécurité adopté pour la protction ds utilisaturs contr ls partis sous tnsion st l isolation ds partis activs. Toutfois,

Plus en détail

BAC S Liban 2014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points)

BAC S Liban 2014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) BAC S Liban 014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) L problèm posé par la natur ds «rayons cathodiqus» à la fin du XIX èm siècl fut résolu n 1897 par l'anglais JJ Thomson : il

Plus en détail

Chapitre II : Atomes polyélectroniques et Classification Périodique

Chapitre II : Atomes polyélectroniques et Classification Périodique Chapitr II : Atoms polyélctroniqus t Classification Périodiqu Plan : ********************** IV- EVOLUTION DES PROPRIETES PHYSIQUES DES ELEMENTS DANS LA CLASSIFICATION PERIODIQUE... 3 - Enrgi d... 3 a-

Plus en détail

Correction feuille TD 3 : probabilités conditionnelles, indépendance

Correction feuille TD 3 : probabilités conditionnelles, indépendance Univrsité d Nic-Sophia Antipolis -L2 MASS - Probabilités Corrction fuill TD 3 : probabilités conditionnlls, indépndanc Exrcic Dans ct xrcic, nous supposons pour simplir qu ls yux d'un êtr humain sont soit

Plus en détail

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. EXERCICE 5 points Commun tous ls candidats Au rayon «imag t son» d'un grand magasin, un télévisur t un lctur d DVD sont n promotion pndant un smain. Un prsonn s présnt : T st l'évènmnt : «la prsonn achèt

Plus en détail

CHAUDIERE A BOIS. Échangeur m e, θ e, c e. Chambre de combustion m a, θ a, c a. Bâti de la chaudière m b, θ b, c b

CHAUDIERE A BOIS. Échangeur m e, θ e, c e. Chambre de combustion m a, θ a, c a. Bâti de la chaudière m b, θ b, c b CPGE / Sins Industrills pour l Ingéniur TD34_ CHAUDIERE A BOIS L étud port sur l monté n tmpértur d l u qui srt à huffr ls piès u trvrs d rditurs Ctt tmpértur st otnu à prtir d un puissn lorifiqu fourni

Plus en détail

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES Cours t rcics d mathématiqus FONCTIONS EPONENTIELLES EERCICES CORRIGES Ercic n Résoudr dans ls équations suivants + 7 9 4 4 6 + 6 + 7 ln( ln 8 9 ln Ercic n Détrminr ls racins du polynôm + P + 4 En déduir

Plus en détail

La programmation à l école. Circonscription de Beauvais Sud 60

La programmation à l école. Circonscription de Beauvais Sud 60 La programmation à l écol. Circonscription d Bauvais Sud 60 1 u q -c t t s n o u i t Q a m r m a r n g g i la pro oi l ns u q r? u o l p o c à l é s d c av s é t i v i Act robots c n r fé é r d r d a C

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycé Municipal d Adults d la vill d Paris Mardi 5 févrir 04 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Duré d l épruv : 4 HEURES Ls calculatrics sont AUTORISÉES corrction obligatoir t spé L candidat doit

Plus en détail

REDRESSEMENT NON COMMANDE

REDRESSEMENT NON COMMANDE EDEEMEN NON COMMANDE I. INODUCION. i i 1. Définition. Un montag rdrssur prmt d obtnir un tnsion continu (d valur moynn non null) à partir d un tnsion altrnativ sinusoïdal (d valur moynn null). On distingu

Plus en détail

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N.

CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES 1. n N, α n N. SESSION 7 CONCOURS COMMUN POLYTECHNIQUE EPREUVE SPECIFIQUE-FILIERE PSI MATHEMATIQUES I Ls suits α t β I. Etud d la suit α I.. α =, α = α =, α = α + =, α 3 = 3α = t α 4 = 4α 3 + = 9. α =, α =, α = α 3 =

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017 Corrigé du baccalauréat S Nouvll-Calédoni mars 7 EXERCICE Commun à tous ls candidats 5 points On considèr la fonction f défini t dérivabl sur [ ; + [ par f (x)= x x. Parti A. On justifi ls informations

Plus en détail

Plan d études: Mathématiques 2e année

Plan d études: Mathématiques 2e année Modul 1 : J class t j fais ds suits Plan d étuds: Mathématiqus 2 anné E3 classr ds figurs à dux t à trois dimnsions, t érigr ds constructions t construir ds suits avc clls-ci C2 montrr qu il comprnd qu

Plus en détail

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que :

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que : Langags régulirs Ls langags régulirs sont ls langags ls plus simpls. Ils sont néanmoins très utilisés n informatiqu.. utomats finis Ils sont obtnus à partir ds langags finis n ffctuant la frmtur par ls

Plus en détail

Leçon 3 : Définitions et mises en équation des fonctions combinatoires complexes

Leçon 3 : Définitions et mises en équation des fonctions combinatoires complexes Leçon 3 : Définitions et mises en équation des fonctions combinatoires complexes GOKPEYA NESSEMOU ERIC @ INGENIEUR UVCI Septembre 2017 0.0.1 Légende Entrée du glossaire > Abréviation Référence Bibliographique

Plus en détail

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES I OBTENTION GÉNÉRALE DE L ÉQUATION DIFFÉRENTIELLE Dans un réactur, ont liu plusiurs réactions mttant n ju plusiurs spècs Soit A un spèc On va voir sur da un xmpl

Plus en détail

Document ressource TECHNOLOGIE ALU-VERRE-PVC

Document ressource TECHNOLOGIE ALU-VERRE-PVC E P A I S S E U R V I T R A G E V E R I F I C A T I O N Extrait d NF DTU 39 P4 d juillt 2012 Pour détrminr l épaissur mini d un vitrag (simpl, doubl ou tripl) il faut rspctr la méthod ci-dssous : PRINCIPE

Plus en détail

ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY

ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY Rodica Vilcu *, A. Dobrscu abstract: Ctt publication st consacré à l établissmnt d un modèl adéquat du domain oscillant d la réaction

Plus en détail

Progression de la maîtrise des compétences au cycle 4

Progression de la maîtrise des compétences au cycle 4 Progrssion d la maîtris ds compétncs au cycl S rpérr dans l tmps attndus d fin d attndus d fin d attndus d fin d cycl Situr un fait dans un époqu ou un périod donné associr un dat t un événmnt xpliqur

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

Transferts thermiques

Transferts thermiques IUT d St Dnis Départmnt Géni Industril t Maintnanc Modul THERMb (S2) Transfrts thrmiqus corrction ds xrcics Exrcic 1 01 01 01 01 01 01 01 01 01 01 01 isolant Flux thrmiqu00 11 Flux thrmiqu Rsistanc lctriqu

Plus en détail

TP DE VIBRATIONS TP n 4 Etude du Haut Parleur Electrodynamique

TP DE VIBRATIONS TP n 4 Etude du Haut Parleur Electrodynamique TP DE VIBRATIONS TP n 4 Etud du Haut Parlur Elctrodynaiqu L but d la anipulation st la odélisation t la sur ds différnts paraètrs du H-P. 0 Généralités : Vu d profil, un haut-parlur st ainsi constitué

Plus en détail

Correction DST optique ondulatoire

Correction DST optique ondulatoire PT Champagn 04 Corrction DST optiqu ondulatoir Sptmbr 04 Corrction DST optiqu ondulatoir Parti I. I..a L phénomèn obsrvé st la diffraction. I..b La formul avc d au dénominatur n st pas homogèn à un longuur.

Plus en détail

IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire:

IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire: IUT de Colmar - Département GTR - 1ière année. La Logique Combinatoire: Laurent MURA. 1 SOMMAIRE: 1. Introduction 2. Les fonctions logiques élémentaires 3. La forme algébrique 4 Fonctions logiques OU-NON

Plus en détail