Exercice 1 Problème 10 points

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Exercice 1 Problème 10 points"

Transcription

1 On révise... Eercice 1 Problème 10 points Partie A Soit g la fonction définie sur l intervalle ]0 ; [ par : g ()= 2 2 2ln() 1. Déterminer la fonction dérivée g de la fonction g et montrer que cette dérivée peut s écrire : g ()= 2( 2 1 ) 2. Étudier le signe de g () et établir le tableau de variations de la fonction g (les limites de la fonction g en 0 et en ne sont pas demandées). 3. En déduire le signe de g () sur l intervalle ]0 ; [. Partie B On considère maintenant la fonction f définie et dérivable sur ]0 ; [, d epression : f ()= 2ln() 1 Soit C la courbe représentant la fonction f dans le repère donné sur l annee jointe au sujet. 1. a) Calculer lim 0 f () et en déduire que la courbe C représentant la fonction f admet une asymptote dont on déterminera une équation. b) Calculer lim f (). -oo c) Justifier que la courbe C admet la droite d équation y = 1 comme asymptote. d) Étudier la position relative de la courbe C par rapport à la droite. e) Tracer la droite sur le graphique donné dans l annee, à rendre avec la copie. 2. a) Calculer la fonction dérivée f de f et montrer que f ()= g () 2. b) Déduire de la partie A le signe de f () et dresser le tableau de variations de f. 3. a) Donner une équation de la tangente T à la courbe C au point d abscisse 1. b) Représenter T sur le graphique joint en annee, à rendre avec la copie. Partie C 1. a) Calculer la dérivée de la fonction H définie sur ]0 ; [ par H()=[ln()] 2. b) En déduire une primitive de la fonction f. 2. Déduire de ce calcul la valeur eacte de l intégrale suivante : 4 1 f () d. 3. Cette intégrale correspond à l aire calculée en unités d aire d une surface. Hachurer cette surface sur le graphique de l annee, à rendre avec la copie. Page 1 sur??

2 Annee à rendre avec la copie y O Eercice 2 Problème 12 points Première partie La courbe (C ) donnée en annee est la représentation graphique d une fonction f définie et dérivable sur l intervalle [1 ; 3] dans le plan muni d un repère orthonormé d origine O. On désigne par f la dérivée de la fonction f sur l intervalle [1 ; 3]. La courbe (C ) passe par les points A, B et D d abscisses respectives 1, 2 et 3. Les points A, A, B et D ont des coordonnées entières. Page 2 sur??

3 La droite (BE), parallèle à l ae des abscisses, est tangente en B à la courbe (C ). La droite (AB ) est tangente en A à la courbe (C ). On répondra au questions ci-dessous par une lecture graphique. De ce fait, certains résultats seront donnés en valeurs approchées à 0,1 près. 1. Déterminer f (1), f (2) et f (3). 2. a) Déterminer une équation de la droite (AB ). b) Déterminer f (1) et f (2). 3. Dresser le tableau des variations de la fonction f et préciser le signe de sa dérivée f. 4. Calculer l aire du triangle AA B en unités d aires. Deuième partie La fonction représentée dans la première partie est définie sur l intervalle [1 ; 3] par : f ()= 2ln(). ( e 3 ) 1. Vérifier que f (3) = ln Soit F la fonction définie sur [1 ; 3] par : F()= ln. a) Vérifier que F est une primitive de f sur l intervalle [1 ; 3]. b) Calculer la valeur eacte de l intégrale I = graphique. 3 1 f () d et en donner une interprétation 3. Soit (P ) la partie du plan limitée par la courbe (C ), l ae des abscisses, la droite (AB ) et la droite (DD ). a) Hachurer (P ). b) Le domaine (P ) représente la maquette du logo d une société. Une unité sur le graphique représente 10 cm en réalité. Calculer l aire en cm 2 de ce logo en grandeur réelle, arrondie au cm 2. Page 3 sur??

4 y 2 1 E #» j 0,2 0 O #» 0 0,2*; 0,4*; ı 0,6*; 0,8*; Annee au problème A D B (C ) A B D Eercice 3 4 points Le plan complee est rapporté à un repère orthonormal direct ( O; #» u, #» v ). L unité graphique est 2 cm. On note i le nombre complee de module 1 et d argument π 2. Pour tout nombre complee z, on pose : P(z)= z 3 ( ) z 2 ( ) z Résolution de l équation P(z) = 0 a) Calculer P(2). b) Déterminer les deu nombres réels α et β tels que, pour tout nombre complee z : Page 4 sur??

5 P(z)=(z 2) ( z 2 αz β ). c) Résoudre dans l ensemble C des nombres complees l équation P(z)=0. 2. On considère les points A, B, C, d affies respectives : a= 2, b= 3i, c = 3 i. a) Déterminer le module et un argument des nombres complees b et c. b) En déduire que les points A, B, et C appartiennent à un cercle C dont on précisera le centre et le rayon. c) Placer les points A, B, C dans le repère ( O; #» u, #» v ) et tracer le cercle C. d) Démontrer que le triangle OBC est équilatéral. ( #» e) En déduire une mesure de l angle OB, OC #» ) ( #». En déduire une mesure de l angle AB, AC #» ). Eercice 4 5 points On dispose d un échantillon d os fossile contenant initialement une masse de 10 grammes de carbone 14. Le but de l eercice est d étudier l évolution de cette masse au fil des siècles, par deu méthodes différentes. Partie A : Première méthode On considère que la masse de carbone 14 dans un tel échantillon diminue à raison de 1,2 % par siècle. 1. Quelle masse de carbone 14 contiendra l échantillon : a) un siècle plus tard? b) deu siècles plus tard? 2. On note M n la masse de carbone 14 contenue dans l échantillon au bout de n siècles, où n est un entier naturel. a) Démontrer que la suite (M n ) est une suite géométrique de raison 0,988. b) Eprimer M n en fonction de n. 3. Déterminer au bout de combien de siècles, la masse de carbone 14 contenue dans l échantillon sera inférieure à 5 g. Partie B : Seconde méthode On note m(t ) la masse en gramme de carbone 14 contenue dans l échantillon à l instant t (en siècle). On admet que la fonction m est solution de l équation différentielle 1. Résoudre l équation différentielle (E). (E) : y 1, y = Déterminer la solution particulière de l équation différentielle (E), qui vérifie : m(0)= Déterminer au bout de combien de siècles, la masse de carbone 14 contenue dans l échantillon sera inférieure à 5 grammes. Page 5 sur??

6 Eercice 5 Problème11 points Le plan P est rapporté à un repère orthonormal ( O; #» ı, #» j ). L unité graphique est 2 cm. On considère la fonction f définie sur l ensemble R des nombres réels par : f ()= e 2 3. On note C la courbe représentative de la fonction f dans le repère ( O; #» ı, #» j ). Partie A : Étude d une fonction auiliaire On considère la fonction g définie sur l ensemble R des nombres réels par : g ()=e (1 ) Déterminer la limite de la fonction g en, puis en. 2. Étude des variations de la fonction g a) Calculer la fonction dérivée g de la fonction g et étudier son signe sur R. b) Dresser le tableau de variations de la fonction g sur R. 3. Étude du signe de la fonction g a) Démontrer que l équation g ()=0 possède une unique solution sur R. Démontrer que cette solution, notée α, appartient à l intervalle [ 1 ; 0]. b) Donner la valeur approchée de α arrondie au centième. c) Déduire des questions précédentes le signe de g () en fonction des valeurs de. Partie B : Étude de la fonction f 1. Étude des limites a) Déterminer la limite de la fonction f en. b) En remarquant que, pour tout réel, f ()= (e 2)3, déterminer la limite de f en. 2. Étude d une asymptote a) Montrer que la droite D d équation y = 2 3 est une asymptote à la courbe C en. b) Étudier la position relative de la droite D et de la courbe C. 3. Étude des variations de la fonction f a) Vérifier que pour tout nombre réel, f () = g () où g est la fonction définie dans la partie A et où f désigne la fonction dérivée de la fonction f. b) En utilisant le signe de la fonction g, obtenu précédemment, dresser le tableau de variations de la fonction f sur R. (On prendra : f (α) 3,2) 4. Construire la droite D puis la courbe C dans le repère ( O; #» ı, #» j ). Partie C : Calcul d aire 1. On note H la fonction définie sur R par : H()=( 1)e. Page 6 sur??

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle

Plus en détail

Bac Blanc GE épreuve de mathématiques Année 2005/2006

Bac Blanc GE épreuve de mathématiques Année 2005/2006 Bac Blanc GE épreuve de mathématiques Année 005/00 L usage de la calculatrice est autorisée. Le prêt de calculatrice entre les candidats n est pas autorisé. La qualité de la rédaction et de la présentation,

Plus en détail

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako Eercice 1 : Intégrer les équations différentielles suivantes y 1) y 5y = 0 ; y = ; 3y + 5y = 0 ; 9y =(y

Plus en détail

Page 1

Page 1 LSEl Riadh Eponentielles Mr Zribi Eercice : Partie I Soit g la fonction définie sur [ ; + [ par g() = e a) Montrer que, pour tout >, on a g () > En déduire le sens de variation de g sur [ ; + [ b) Calculez

Plus en détail

EXERCICES SUR LES EXPONENTIELLES

EXERCICES SUR LES EXPONENTIELLES EXERCICES SUR LES EXPONENTIELLES EXERCICE 1 : Domaine de définition Déterminer le domaine de définition des fonctions eponentielles suivantes : a) f() = e - b) f() = e - c) f() = e (1/) c) f() = ep( 1

Plus en détail

BTS domotique 1 -Équations différentielles

BTS domotique 1 -Équations différentielles BTS domotique -Équations différentielles Premier ordre 4. Déterminer la solution ϕ de l équation différentielle (E) qui vérifie la condition initiale ϕ() =. Exercice BTS (E) : y 2y = xε x où y est une

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

LPP ALBERT DE MUN B TRUCHETET 1/8

LPP ALBERT DE MUN B TRUCHETET 1/8 1/8 Limites de fonctions ln Dans les eercices suivants calculer les limites proposées Eercice 1 lim (ln 1) + Eercice lim (ln + ) + Eercice 3 lim ( ln ) + Eercice 4 4ln+ 3 lim ( ) + ln Eercice 5 lim (ln

Plus en détail

Baccalauréat ES Antilles Guyane juin 1999

Baccalauréat ES Antilles Guyane juin 1999 Baccalauréat ES Antilles Guyane juin 1999 Candidats n ayant pas choisi l enseignement de spécialité 4points Le plan est rapporté à un repère orthonormal, dont les unités sont 1 cm sur chaque ae. Construire

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Intégrale et aire On considère la fonction affine f dont la courbe ci-contre passe par les points A et B. ) Déterminer l epression de f(). ) En déduire une primitive F de f. ) a) Déterminer l intégrale

Plus en détail

2 ) Justifier que f est dérivable et calculer f'(x).

2 ) Justifier que f est dérivable et calculer f'(x). Eercice 1: Soit f la fonction définie sur IR - {-2 ; 0 } par f() = ( + 1) 2 2 + 2 1 ) Donner les limites de f au bornes de son ensemble de définition 2 ) Justifier que f est dérivable et calculer f'()

Plus en détail

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice 1 (sur 8 points)

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice 1 (sur 8 points) 5 ème /6 ème année décembre 2014 durée : 4 60 DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1 Eercice 1 (sur 8 points) PARTIE A Soit la onction g déinie sur 1. Calculer g. ; 0 par : 2 2 ln 1 g. 2.

Plus en détail

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options BACCALAURÉAT TECHNOLOGIQUE CORRIGÉ BAC BLANC 03 MATHÉMATIQUES STID Toutes options Durée de l épreuve : heures Coefficient : Ce sujet comporte pages numérotées (celle-ci comprise) L usage de la calculatrice

Plus en détail

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016

Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Durée : 1 heure 30 Épreuves communes ENI GEIPI POLYTECH Série S 11 mai 2016 Nous vous conseillons de répartir équitablement les 3 heures d épreuves entre les sujets de mathématiques et de physique-chimie

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES

BACCALAUREAT GENERAL MATHEMATIQUES GAN AMI Session Janvier 2014 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire et spécialité Durée de l épreuve : 4 heures Coefficient : 7 ou 9 Ce sujet comporte 4 pages. L utilisation

Plus en détail

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats Eercice sur 5 points Cet eercice est commun à tous les candidats Soit f une fonction définie sur ]0 ; + [. On note C f sa courbe représentative dans un repère orthonormal représentée en annee. - La courbe

Plus en détail

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses.

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses. Classe : TES1 Le 19/12/200 MATHEMATIQUES Devoir N Calculatrice autorisée Durée : h Eercice 1:,5 points) Le plan est rapporté à un repère orthonormal. Sur le graphique ci-contre, la courbe C) représente

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

ln(u) et exp(u) Chapitre ln(u) 8.2 exp(u) Sommaire

ln(u) et exp(u) Chapitre ln(u) 8.2 exp(u) Sommaire Chapitre 8 ln(u) et ep(u) Sommaire 8. ln(u)............................................................ 8. ep(u)........................................................... 8. Eercices.........................................................

Plus en détail

BAC TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES - GÉNIE

BAC TECHNOLOGIQUE SCIENCES ET TECHNOLOGIES INDUSTRIELLES - GÉNIE 1 sur 8 http://www.ilemaths.net/maths_t-sujet-bac-05-sti-electro-optique-co... BAC TECHNOLOGIQUE 2005 - SCIENCES ET TECHNOLOGIES INDUSTRIELLES - GÉNIE ÉLECTRONIQUE - GÉNIE ÉLECTROTECHNIQUE - GÉNIE OPTIQUE

Plus en détail

NOM : PRÉNOM : Série S

NOM : PRÉNOM : Série S Ne rien inscrire dans ce cadre NOM : PRÉNOM : Centre d'écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série S Mercredi 11 mai 2016 1 Nous vous conseillons de répartir équitablement

Plus en détail

Easy-Maths. Théorème des accroissements finis et suites numériques

Easy-Maths. Théorème des accroissements finis et suites numériques Easy-Maths Njionou Patrick, S pnjionou@yahoofr Lycée de Japoma BP : 7297, Douala, Cameroun Théorème des accroissements finis et suites numériques EXERCICE 1 Soit h la fonction définie sur R par : h(x)

Plus en détail

Baccalauréat ES Polynésie septembre 2006

Baccalauréat ES Polynésie septembre 2006 Baccalauréat ES Polynésie septembre 006 EXERCICE 1 Commun à tous les candidats Cet exercice est un questionnaire à choix multiples. Pour chacune des huit questions, trois réponses sont proposées ; une

Plus en détail

Baccalauréat STL 2002 L intégrale de juin à septembre 2002

Baccalauréat STL 2002 L intégrale de juin à septembre 2002 Baccalauréat STL 2002 L intégrale de juin à septembre 2002 Antilles-Guyane Biochimie juin 2002.................... 3 Métropole Biochimie, génie biologique juin 2002....... 5 Métropole Chimie de laboratoire

Plus en détail

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui :

Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Sommaire SAMEDI 28 JANVIER 2012 Vous trouverez dans ce dossier les documents correspondants à ce que nous allons travailler aujourd hui : Un rappel de cours sur les séries statistiques à deux variables

Plus en détail

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points)

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points) 5 ème /6 ème année décembre 2015 durée : 4 x 60 mn DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1 Exercice n 1 (sur 9,5 points) Partie A. On considère la fonction définie sur l intervalle par (

Plus en détail

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures

Lycée Polyvalent de Taaone. Mathématiques Série S (Mars-2014) Durée : 4 heures Mathématiques Série S (Mars-2014) Durée : 4 heures L usage de la calculatrice est autorisé Tout autre document est interdit Ce sujet s adresse aux élèves qui n ont pas suivi la spécialité Mathématiques

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

Devoir surveillé n 5 19 janvier 2011

Devoir surveillé n 5 19 janvier 2011 Devoir surveillé n 5 19 janvier 2011 Term ES Eercice 1 : (4 points) Soit f une fonction définie et dérivable sur R. On a tracé ci-contre sa courbe représentative C dans un repère orthonormal. On note f

Plus en détail

BACCALAURÉAT BLANC. OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT BLANC. OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT BLANC Mercredi 5 Septembre 03 3h 7 h MATHÉMATIQUES Série S OBLIGATOIRE et ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

4 e série Exercices sur les études de fonctions

4 e série Exercices sur les études de fonctions e série Eercices sur les études de fonctions Pour les courbes, on vérifiera sur calculatrice graphique On rappelle également que les tableau de variations (tableau récapitulatifs) doivent comporter les

Plus en détail

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés

Classe : TES1 Le 06/05/2003. MATHEMATIQUES Devoir N 7. Calculatrice et formulaire autorisés Classe : TES1 Le 06/05/2003 MATHEMATIQUES Devoir N 7 Calculatrice et formulaire autorisés Durée : 3h Exercice 1: (5 points) Une statistique publiée en l an 1998 donne le nombre d abonnés à Internet dans

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

EXERCICE n o 1 (France septembre 2006). Partie A : étude d une fonction auxiliaire. Soitg la fonction définie sur l intervalle ] 0 ; + [ par

EXERCICE n o 1 (France septembre 2006). Partie A : étude d une fonction auxiliaire. Soitg la fonction définie sur l intervalle ] 0 ; + [ par EXERCICE n o (France septembre 6) Partie A : étude d une fonction auiliaire Soitg la fonction définie sur l intervalle ] ; + [ par g() = 4 ln + 4 Déterminer la fonction dérivéeg de la fonctionget prouver

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

Fiche 9 Taux d accroissement Dérivée Variations d une fonction

Fiche 9 Taux d accroissement Dérivée Variations d une fonction Université Paris Est Créteil DAEU Fiche 9 Taux d accroissement Dérivée Variations d une fonction 1 Taux de variation Dans cette fiche on découvre l outil qui permet d obtenir de manière directe les variations

Plus en détail

Baccalauréat L 2001 L intégrale de juin à septembre 2001

Baccalauréat L 2001 L intégrale de juin à septembre 2001 Baccalauréat L 2001 L intégrale de juin à septembre 2001 Antilles-Guyane juin 2001............................... 3 Métropole juin 2001..................................... 5 Métropole septembre 2001..............................

Plus en détail

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives Amerinsa - Ecole d été Limites : Eercices Eercice : Notions intuitives Dans la figure ci-contre, vers quoi tend f() lorsque tend vers : a) - b) + c) 0 d) -4 e) 4 Eercice : Notions intuitives Vers quelle

Plus en détail

MATHÉMATIQUES. Série : S Enseignement spécifique

MATHÉMATIQUES. Série : S Enseignement spécifique BAC BLANC 19 MARS 2013 MATHÉMATIQUES Série : S Enseignement spécifique Durée de l épreuve : 4 heures L utilisation d une calculatrice est autorisée Le sujet comporte 6 pages Le candidat doit traiter les

Plus en détail

Page 1

Page 1 Exercice : définie sur ]0,+ [ les points A et B appartiennent à (C) la droite (AB) est la tangente à (C) en A (C) admet au voisinage de + une branche parabolique de direction ( O, j) la droite d équation

Plus en détail

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2

des plans P 1 et P 2, a pour représentation paramétrique x = 4t 2 Sujet Amérique du Nord 2013 EXERCICE 1. [5 pts] Géométrie On se place dans l espace muni d un repère orthonormé. On considère les points A(0 ; 4 ; 1), B(1 ; 3 ; 0), C(2 ; 1 ; 2) et D(7 ; 1 ; 4). 1. Démontrer

Plus en détail

La fonction logarithme

La fonction logarithme La fonction logarithme Simplification et ensemble de définition Eercice 1 Simplifier les écritures suivantes : 1) A=e ln 3 ; B= e3+ln 8 e 2+ln 4 ; C= eln 8 e 3 ln 2 2) f )=e ln 1)+ln ; g)=ln e 1 + e ln

Plus en détail

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014 Mise à niveau en mathématiques Licences de mathématiques et d informatique 25 août 2014 1 1 Calculs dans R 1.1 Fractions Eercice 1 Pour a = 4/9 et b = 5/12, calculer a + b, a b, ab et a/b. On donnera le

Plus en détail

PRIMITIVES. Introduction 1. Introduction 2

PRIMITIVES. Introduction 1. Introduction 2 PRIMITIVES Introduction Tracer dans le plan rapporté à un repère orthonormé d'unité 5cm la courbe représentative de la fonction pour [0 ; ]. Évaluer l'aire de la partie du plan limitée par la courbe, l'ae

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

Baccalauréat S Amérique du Sud 16 novembre 2011

Baccalauréat S Amérique du Sud 16 novembre 2011 Durée : 4 heures Baccalauréat S Amérique du Sud 6 novembre 20 Exercice Soit f la fonction définie sur l intervalle ] ; + [ par : On considère la suite définie pour tout n N par : f x)=3 4 x+. { u0 = 4

Plus en détail

Corrigé du Baccalauréat S Antilles-Guyane 18 juin 2010

Corrigé du Baccalauréat S Antilles-Guyane 18 juin 2010 Corrigé du Baccalauréat S Antilles-Guane 8 juin EXERCICE Commun à tous les candidats points Les justifications n étaient pas demandées, elles sont données ici à titre purement pédagogique.. On tire au

Plus en détail

Fonction exponentielle Bac Série S

Fonction exponentielle Bac Série S Fonction exponentielle Bac Série S - 3 EXERCICE N Pondichéry 6 avril Partie On s intéresse à l évolution de la hauteur d un plant de maïs en fonction du temps. Le graphique ci-après représente cette évolution.,,8,6,4,,,8,6,4,

Plus en détail

Baccalauréat S (obligatoire) Polynésie septembre 2009

Baccalauréat S (obligatoire) Polynésie septembre 2009 Baccalauréat S (obligatoire) Polynésie septembre 2009 EXERCICE 1 Commun à tous les candidats 4 points On considère le cube OABCDEFG d arête de longueur 1 représenté ci-dessous. Il n est pas demandé de

Plus en détail

Exercices et Annales Maths Terminale S

Exercices et Annales Maths Terminale S Stages intensifs Exercices et Annales Maths Terminale S www.groupe-reussite.fr contact@groupe-reussite.fr 1 Chapitre 1 Fonction exponentielle, logarithme népérien et logarithme décimal 1.1 Exercices préliminaires

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin

Athénée Royal d Uccle 1. Cours de Mathématique 6 ème année Révision de juin Athénée Royal d Uccle 1 Cours de Mathématique 6 ème année Révision de juin A.Droesbeke Version : 016 Chapitre 1 Algèbre 1.1 Exercices { (1 + i)x + y = 1 i 1. Résoudre dans C : x iy = i. Démontrer que

Plus en détail

BAC BLANC TS ELEVES NE SUIVANT PAS L ENSEIGNEMENT DE SPECIALITE MATHS

BAC BLANC TS ELEVES NE SUIVANT PAS L ENSEIGNEMENT DE SPECIALITE MATHS AC LANC TS ELEVES NE SUIVANT PAS L ENSEIGNEMENT DE SPECIALITE MATHS La qualité de la rédaction, la clarté et la précision des raisonnements seront pris en compte dans l appréciation des copies Eercice

Plus en détail

BACCALAURÉAT GÉNÉRAL

BACCALAURÉAT GÉNÉRAL BACCALAURÉA GÉNÉRAL EION 00 MAHÉMAIQUE ÉRIE : DURÉE DE L ÉPREUVE : heures COEFFICIEN : 7 Ce sujet comporte pages L'utilisation d'une calculatrice est autorisée. L'usage des formulaires de mathématiques

Plus en détail

DEVOIR SURVEILLÉ N 9

DEVOIR SURVEILLÉ N 9 DEVOIR SURVEILLÉ N 9 Devoir «type Bac» Le 20 mai 2015 Le plus grand soin doit être apporté aux calculs et à la rédaction Soulignez ou encadrez vos résultats Exercice 1 (5 points) On considère la fonction

Plus en détail

EXERCICES : LA FONCTION EXPONENTIELLE

EXERCICES : LA FONCTION EXPONENTIELLE Chapitre 7 wicky-math.fr.nf La fonction eponentielle EXERCICES : LA FONCTION EXPONENTIELLE Eercice : En utilisant le résultat suivant e ) lim ; lim e 0 + e lim =, déterminer les limites suivantes : 0 et

Plus en détail

NOM.PRENOM :... QUESTIONS REPONSES POINTS A B C D Divers Fonctions

NOM.PRENOM :... QUESTIONS REPONSES POINTS A B C D Divers Fonctions NOM.PRENOM :... QUESTIONS REPONSES POINTS A B C D Divers 3 4 5 6 7 8 9 0 Fonctions 3 4 5 6 Dérivées 7 8 9 0 Limites 3 Intégration, 4 5 6 Complees 7 8 9 Equations différentielles 30 3 Algèbre 3 33 Géométrie

Plus en détail

M A T H E M A T I Q U E S

M A T H E M A T I Q U E S UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/2 11 G 26 A 01 Durée : 4 heures OFFICE DU BACCALAUREAT Coef. 5 Téléfa (221) 33 824 65 81 - Tél. : 33 824 95 92-33 824 65 81 M A T H E M A T I Q U E S Les calculatrices

Plus en détail

BACCALAURÉAT GÉNÉRAL Session 2007 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9. Commun à tous les candidats

BACCALAURÉAT GÉNÉRAL Session 2007 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9. Commun à tous les candidats Dans nos classes 797 BACCALAURÉAT GÉNÉRAL Session 2007 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément à la réglementation

Plus en détail

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques

Sujet abordé : exponentielle (lecture graphique) Exercice 1 (BAC ES national 2010). Classe de terminale ES Mathématiques Classe de terminale ES Mathématiques Sujet abordé : exponentielle (lecture graphique) Exercice (BAC ES national ). Un nouveau modèle de mini-ordinateur portable est mis sur le marché. Soit x la quantité

Plus en détail

Fiche 10 Taux d accroissement Dérivée Variations d une fonction

Fiche 10 Taux d accroissement Dérivée Variations d une fonction Université Paris Est Créteil DAEU Fiche 10 Taux d accroissement Dérivée Variations d une fonction 1 Taux de variation Dans cette fiche on découvre l outil qui permet d obtenir de manière directe les variations

Plus en détail

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations...

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations... calcul intégral Table des matières intégrale d une fonction. activité.................................................... à retenir.................................................. 7. eercices...................................................

Plus en détail

MISE A NIVEAU MATHEMATIQUES. Recueil d exercices

MISE A NIVEAU MATHEMATIQUES. Recueil d exercices STIA 3 MISE A NIVEAU MATHEMATIQUES Recueil d eercices CHAPITRE : Généralités sur les fonctions Eercice. Déterminer l ensemble de définition des fonctions suivantes : Eercice. Etudier la parité des fonctions

Plus en détail

courbe n 1 courbe n 2 courbe n 3

courbe n 1 courbe n 2 courbe n 3 TES A-B Devoir n 7 mardi 0 mars 05 Eercice. sur.5 points Dans un terrain de camping il y a 3% de français et 68% d étrangers. 70% des français et 30% des étrangers savent jouer à la pétanque. On rencontre,

Plus en détail

Baccalauréat S Asie juin 2006

Baccalauréat S Asie juin 2006 Baccalauréat S Asie juin 2006 EXERCICE 1 4 points ( Le plan complexe est muni d un repère orthonormal direct O, u, v (unité graphique : 2 cm. On rappelle que pour tout vecteur w non nul, d affixe z, on

Plus en détail

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail

Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée

Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée Épreuve de Mathématiques - Série S - Durée : 4 heures Vendredi 13 janvier Calculatrice Autorisée Le sujet comporte 4 exercices : Les élèves n ayant pas choisi l option Mathématiques en spécialité traiteront

Plus en détail

Bac Blanc Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths. 18 avril 2011

Bac Blanc Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths. 18 avril 2011 Lycée Marlioz - Aix les Bains Bac Blanc 0 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 8 avril 0 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Exercice 3 : La courbe représentant la fonction f est donnée ci-dessous :

Exercice 3 : La courbe représentant la fonction f est donnée ci-dessous : AP ère ES L Nombre dérivé 2 Exercice : La courbe représentant la fonction f est représentée ci-dessous. ) Donner par lecture grapique f( 2) et f(6). 2) Donner par lecture grapique f ( 2), f (2) et f (6).

Plus en détail

EXPONENTIELLES. I Fonction exponentielle de base q. Exercice 01. Exercice 02

EXPONENTIELLES. I Fonction exponentielle de base q. Exercice 01. Exercice 02 EXPONENTIELLES I Fonction exponentielle de base q Exercice 0 Les lois de Moore sont des conjectures énoncées par Gordon Moore (un des trois fondateurs d Intel). En 965, Moore postulait que la complexité

Plus en détail

Baccalauréat S Pondichéry 8 avril 2014

Baccalauréat S Pondichéry 8 avril 2014 Baccalauréat S Pondichéry 8 avril 014 EXERCICE 1 Commun à tous les candidats 4 points Dans cet exercice, sauf indication contraire, les résultats seront arrondis au centième. 1. La durée de vie, exprimée

Plus en détail

La fonction exponentielle

La fonction exponentielle Exercices 16 octobre 014 La fonction exponentielle Opération sur la fonction exponentielle Exercice 1 Simplifier les écritures suivantes : a) (e x ) 3 e x b) ex 1 e x+ e) e 3x f) ex e y (e x ) e x e x

Plus en détail

EXERCICES CONTINUITÉ

EXERCICES CONTINUITÉ EXERCICES CONTINUITÉ On sait déjà calculer l aire de polygone, mais qu en est-il de figure dont les côtés ne sont pas des segments? Exercice 1. On cherche l aire A de la figure délimitée, sur l intervalle

Plus en détail

TRIGONOMÉTRIE REPÉRAGE POLAIRE

TRIGONOMÉTRIE REPÉRAGE POLAIRE TRIGNMÉTRIE REPÉRAGE PLAIRE I Angles orientés Remarque n considère le cercle de centre et de rayon, que l'on appelle cercle trigonométrique. Le périmètre de ce cercle est. n considère la droite graduée

Plus en détail

EXERCICES SUR LES FONCTIONS DÉRIVÉES. h(x) = k(x) = x + 5. k(x) = ( 2x

EXERCICES SUR LES FONCTIONS DÉRIVÉES. h(x) = k(x) = x + 5. k(x) = ( 2x EXERCICES SUR LES FONCTIONS DÉRIVÉES Eercice 1 Dériver les fonctions définies ci-dessous : ƒ() = g() = 3 4 3 + 5 4 h() = k() = 1 1 + 5 + 1 Eercice Dériver les fonctions définies ci-dessous : ƒ() = 4 3

Plus en détail

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011 S Devoir surveillé n 7 : lundi avril 0 Sujet A Eercice Pour les parties A et B, indiquer pour chaque affirmation si elle est e ou fausse. Chaque réponse eacte rapporte un demi-point et chaque réponse fausse

Plus en détail

Fonction dérivée 3 ème

Fonction dérivée 3 ème Fonction dérivée 3 ème Mathématiques Exercice 1 Déterminer dans chaque cas la fonction dérivée de la fonction indiquée tout en précisant le domaine de dérivabilité de. = 3 +2 5 ;= 3 1 2+1 ; +3 1 = +1 ;

Plus en détail

Baccalauréat STI L intégrale de mars à novembre 2006

Baccalauréat STI L intégrale de mars à novembre 2006 Baccalauréat STI 2006 L intégrale de mars à novembre 2006 Pour un accès direct cliquez sur les liens bleus Métropole Arts appliqués juin 2006..................... 3 Métropole Arts appliqués septembre 2006..............

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

x x π. En déduire que le point J a pour affixe i.

x x π. En déduire que le point J a pour affixe i. Asie juin EXERCICE 5 points Commun à tous les candidats Le plan est rapporté à un repère orthonormal ( O ; i, j ).. Étude d une fonction f On considère la fonction f définie sur l intervalle ] ; + [ par

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Baccalauréat STI2D/STL spécialité SPCL Antilles-Guyane 16 juin 2016

Baccalauréat STI2D/STL spécialité SPCL Antilles-Guyane 16 juin 2016 Durée : 4 heures Baccalauréat STI2D/STL spécialité SPCL Antilles-Guyane 6 juin 206 EXERCICE 3 points Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule

Plus en détail

Sujet de révision n 3

Sujet de révision n 3 ème année Section : Maths Sujet de révision n AFIF BEN ISMAIL 00-0 Thèmes abordés : Similitude ; Arithmétique ; Espace ; Equations différentielles du second ordre ; primitives et intégrales. Eercice n

Plus en détail

Baccalauréat STI L intégrale de juin à novembre 2007

Baccalauréat STI L intégrale de juin à novembre 2007 Baccalauréat STI 2007 L intégrale de juin à novembre 2007 Pour un accès direct cliquez sur les liens bleus Métropole Arts appliqués juin 2007...................... 3 Métropole Arts appliqués septembre

Plus en détail

NOM : DERIVATION 1ère S

NOM : DERIVATION 1ère S Exercice Dériver les fonctions suivantes : f(x) = x g(x) = 3x x 3 + 5x h(x) = ( x ) x k(x) = x + 5 x + D. LE FUR /?? Exercice Dériver les fonctions suivantes : f(x) = x 3x + g(x) = (x + 3)(3x 7) h(x) =

Plus en détail

64 = + (b ( 5)) 2 = Pour que le triangle soit équilatéral il faut en plus, par exemple, que AB = BC. Ce qui donne 3 =

64 = + (b ( 5)) 2 = Pour que le triangle soit équilatéral il faut en plus, par exemple, que AB = BC. Ce qui donne 3 = 1ES Correction du problème sur les paraboles. Dans tout ce qui suit le plan sera muni du repère orthonormé (O, ı, j). 1. Soient A(3, 5), B( 8, ) et C ( 1 3, 5) trois points du plan. Calculer les distances

Plus en détail

Série STI2D-STL. Mercredi 13 mai 2015

Série STI2D-STL. Mercredi 13 mai 2015 NOM : PRÉNOM : Centre d'écrit : N Inscription : SUJET DE MATHÉMATIQUES Ne rien inscrire ci-dessous Série STI2D-STL Mercredi 13 mai 2015 1 Nous vous conseillons de répartir équitablement les 3 heures d

Plus en détail

Annales : fonctions

Annales : fonctions Annales -5 : fonctions Annales -5. : fonctions Annee E. correction Antilles 7 6 C. Soit f la fonction définie sur [ ; + [ par 5 4 f () = e. 3 (a) Déterminer la limite de la fonction f en + et étudier le

Plus en détail

Baccalauréat S Amérique du Nord mai 2006

Baccalauréat S Amérique du Nord mai 2006 Baccalauréat S Amérique du Nord mai 006 EXERCICE 3points Commun à tous les candidats Pour chacune des 3 questions, une seule des trois propositions est exacte. Le candidat indiquera sur la copie le numéro

Plus en détail

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire

Recueil d annales en Mathématiques. Terminale S - Enseignement obligatoire Recueil d annales en Mathématiques Terminale S - Enseignement obligatoire Frédéric Demoulin Dernière révision : 8 août 5 frederic.demoulin@voila.fr Tableau récapitulatif des exercices indique que cette

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

EXERCICE I ( 6 points ) Correction: centres étrangers 2007 modifié

EXERCICE I ( 6 points ) Correction: centres étrangers 2007 modifié Lycée de la Plaine de l Ain - Ambérieu en Bugey. Année scolaire 0 / 03. TERMINALES SCIENTIFIQUES BAC BLANC - mathématiques - CORRIGé EXERCICE I ( 6 points ) Correction: centres étrangers 007 modifié Le

Plus en détail