Équations du second degré

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Équations du second degré"

Transcription

1 Équations du second degré Racines du trinôme et factorisation Soit le trinôme, avec. Transformation de l écriture de : ( ) [ ] [ ]. On a donc l égalité : [ ] pour tout réel. La factorisation éventuelle de dépend du signe de. Définition On appelle discriminant du trinôme, avec, le nombre réel. Remarque Le nombre est appelé discriminant car c est lui qui permet de différencier les différents cas possibles dans la résolution des équations du second degré. Propriété Si,, le trinôme s écrit [( ) ( ) ] [ ( ) ] ( ) ( ) [ ( )] [ ( )] [ ( )] [ ( )] ) [ ( )] [ ( )] est la forme factorisée du trinôme N. Duceux - LFIB Année 2014/15 Page 1

2 Soit la fonction définie sur par. Déterminer le discriminant de, ses racines et sa forme factorisée. Si, le trinôme s écrit ( ) : ( ) est la forme factorisée de Soit la fonction définie sur par. Déterminer le discriminant de, sa racine double et sa forme factorisée. Si, alors et ( ) Comme n est pas nul, le trinôme n est jamais nul et donc n admet aucune racine réelle. Il n existe aucun réel tel que le trinôme se factorise par (sinon serait une racine). Soit la fonction définie sur par. Montrer que l on ne peut pas factoriser. N. Duceux - LFIB Année 2014/15 Page 2

3 Théorème Solutions de l équation et factorisation du trinôme Solution(s) de l équation Pas de solution Une solution «double» : Deux solutions distinctes : Factorisation de Pas de factorisation par des termes du premier degré. ) s a) Résoudre dans l équation. C est une équation du type avec. On calcule le discriminant Comme, l équation a deux solutions distinctes : et b) Résoudre dans l équation c) Résoudre dans l équation N. Duceux - LFIB Année 2014/15 Page 3

4 Théorème Signe de Étude du signe du trinôme Le trinôme est du signe de sauf entre les racines si elles existent. Plus précisément : Si Le polynôme a deux racines distinctes et. est du signe de à l extérieur des racines, c est-à-dire : C est une fonction du type avec. On calcule le discriminant, la fonction a deux racines distinctes : et Comme, on obtient le tableau de signes suivant : Exercice Si Le polynôme a une racine unique. est du signe de sauf en où il est nul, c est-à-dire : N. Duceux - LFIB Année 2014/15 Page 4

5 C est une fonction du type avec. On calcule le discriminant Comme, la fonction a une racine double: Comme, on obtient le tableau de signes suivant : Exercice Si Le polynôme n a pas de racine. est du signe de, c est-à-dire : C est une fonction du type avec. On calcule le discriminant N. Duceux - LFIB Année 2014/15 Page 5

6 , donc la fonction n a pas de racine. Comme, on obtient le tableau de signes suivant : Exercice... Application - Résolution d équations et d inéquations Résolution de l équation a) Déterminer les valeurs de pour lesquelles cette équation est définie. b) Résoudre l équation. c) En utilisant les résultats des questions précédentes résoudre l inéquation N. Duceux - LFIB Année 2014/15 Page 6

7 Exercice Équations et inéquations se ramenant au second degré Résoudre les équations suivantes Exercice Avec un paramètre Soit un réel et la fonction définie sur par 1) Pour quelles valeurs de l équation est un polynôme de degré 2? 2) On suppose. Pour quelles valeurs de l équation a-t-elle une seule solution? Calculer alors cette solution. 3) Quel est l ensemble des nombres pour lesquels l équation a deux solutions distinctes? N. Duceux - LFIB Année 2014/15 Page 7

8 4) Quel est l ensemble des nombres pour lesquels l équation pour tout nombre réel. 5) Vérifier les résultats sur Geogebra après avoir créé un curseur et une fonction Exercice Position relative de deux courbes Soit les fonctions définies sur par: et. On note et les courbes respectives de dans le repère orthogonal 1) a) Résoudre par le calcul l inéquation b) Résoudre par le calcul l inéquation 2) a) Résoudre par le calcul l équation. N. Duceux - LFIB Année 2014/15 Page 8

9 b) Déterminer les coordonnées des points d intersection de et 3) a) Déterminer le signe de suivant les valeurs de. b) En déduire la position relative des courbes 4) Après avoir donné un tableau de valeurs pour chacune des courbes, tracer soigneusement les courbes et dans le repère Unités graphiques : 1cm sur l axe des abscisses et 0,25 cm sur l axe des ordonnées. N. Duceux - LFIB Année 2014/15 Page 9

Équations du second degré

Équations du second degré Équations du second degré Racines du trinôme factorisation Soit le trinôme, avec. Transformation de l écriture de : ( ) [ ] [ ]. On a donc l égalité : [ ] pour tout réel. La factorisation éventuelle de

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

x² - 6x = (x - )² - x² + 4x = (x + )² - x² + 8x = ( )² - x² + 3x = ( )² -

x² - 6x = (x - )² - x² + 4x = (x + )² - x² + 8x = ( )² - x² + 3x = ( )² - 1 ère ES1 Le second degré Introduction à la factorisation feuille n 1 Partie 1 : correction 1) Factoriser les expressions suivantes : x² - 8x + 16 x² + 6x + 9 16x² - 81 ( 4x 1 )² - 9 ( 2x 1 )² - ( x +

Plus en détail

COURS N 2 : POLYNÔMES. par ², est appelée polynôme du second degré (ou encore trinôme du second degré).

COURS N 2 : POLYNÔMES. par ², est appelée polynôme du second degré (ou encore trinôme du second degré). II- POLYNÔME DU SECOND DEGRÉ 1) Introduction Exemple : 2) Définition Définition : pour tous réels a, b et c avec a différent de 0. La fonction P définie sur par ², est appelée polynôme du second degré

Plus en détail

Exercices supplémentaires Second degré

Exercices supplémentaires Second degré Exercices supplémentaires Second degré Partie A : Forme canonique, équations, inéquations, factorisation Mettre sous forme canonique les trinômes suivants 8 ; 3 1 ; 5 ; 3 4 Exercice On considère : 5 6

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

Fonctions affines. Introduction 1) On considère la fonction définie par a) Compléter le tableau de valeurs suivant :

Fonctions affines. Introduction 1) On considère la fonction définie par a) Compléter le tableau de valeurs suivant : Introduction 1) On considère la fonction définie par a) Compléter le tableau de valeurs suivant : Fonctions affines b) Dans un repère orthonormal d origine O, placer tous les points de coordonnées du tableau

Plus en détail

Fonctions affines. Introduction 1) On considère la fonction définie par a) Compléter le tableau de valeurs suivant :

Fonctions affines. Introduction 1) On considère la fonction définie par a) Compléter le tableau de valeurs suivant : Introduction 1) On considère la fonction définie par a) Compléter le tableau de valeurs suivant : Fonctions affines b) Dans un repère orthonormal d origine O, placer tous les points de coordonnées du tableau

Plus en détail

1 Equation du second degré ax 2 + bx+ c = 0, a 0

1 Equation du second degré ax 2 + bx+ c = 0, a 0 1 Equation du second degré ax 2 + bx+ c = 0, a 0 1.1 Trinôme : Définition Définition 1. Un polynôme du second degré est une fonction x ax 2 + bx+ c, où a,b,c sont des réels avec a 0. On dit aussi trinôme.

Plus en détail

Chapitre II : Fonctions polynômes du second degré

Chapitre II : Fonctions polynômes du second degré Chapitre II : Fonctions polynômes du second degré Extrait du programme : I. Forme canonique d un polynôme du second degré Définition : Dire qu une fonction f définie sur est une fonction polynôme de degré

Plus en détail

FONCTIONS POLYNÔMES et SECOND DEGRE

FONCTIONS POLYNÔMES et SECOND DEGRE FONCTIONS POLYNÔMES et SECOND DEGRE I/ Fonctions polynômes et rationnelles a- Fonctions polynômes Une fonction polynôme (ou plus simplement un polynôme) est une fonction définie sur R par: f (x) = a n

Plus en détail

Fonctions polynômes du second degré

Fonctions polynômes du second degré Fonctions polynômes du second degré Classes de première ES - Lycée Saint-Charles Patrice Jacquet - www.mathxy.fr - 2013/2014 Objectifs : Connaître les différentes formes d une fonction polynôme du second

Plus en détail

I - Équations à une inconnue

I - Équations à une inconnue 1/ Définition I - Équations à une inconnue Une équation à une inconnue est une égalité dans laquelle figure une lettre représentant une valeur inconnue que l on cherche à déterminer. s : (E 1 ) : x + 1

Plus en détail

Fonctions linéaires. Une fonction est linéaire lorsque l image de la variable est le produit de par un nombre constant.

Fonctions linéaires. Une fonction est linéaire lorsque l image de la variable est le produit de par un nombre constant. Introduction 1) On considère la fonction définie par a) Compléter le tableau de valeurs suivant : Fonctions linéaires b) Dans un repère orthonormal d origine O, placer tous les points de coordonnées avec

Plus en détail

TRINÔME DU SECOND DEGRE

TRINÔME DU SECOND DEGRE I. Le trinôme du second degré? ) Définition TRINÔME DU SECOND DEGRE Soit a, b et c trois réels tels que a 0. On appelle fonction trinôme du second degré, ou plus simplement trinôme du second degré, la

Plus en détail

TS Nombres complexes Cours

TS Nombres complexes Cours TS Nombres complexes Cours I. Le plan complexe 1. Définitions générales Théorème( admis ) Il existe un ensemble noté, appelé ensemble des nombres complexes qui possède les propriétés suivantes : contient

Plus en détail

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

1 ère S Mathématiques DS n 3 : «Fonctions et second degré»

1 ère S Mathématiques DS n 3 : «Fonctions et second degré» 1 ère S Mathématiques DS n : «Fonctions et second degré» Le 15/11/006 CORRECTION Eercice 1 (1,5 pt) Trouver un trinôme ayant 5 et comme racines et prenant la valeur 4 en 1. On sait que quand D > 0, la

Plus en détail

Seconde 3 DS4 fonctions de référence Sujet

Seconde 3 DS4 fonctions de référence Sujet Seconde 3 DS4 fonctions de référence Sujet 1 29-21 Exercice 1 : fonction carré (3 points) On considère trois carrés de côtés respectifs x ; 2x et 3x. 1) Pour chacun d un, exprimer en fonction de x, le

Plus en détail

Second degré (1ESL) Page 1/9

Second degré (1ESL) Page 1/9 TRINÔME DU SECOND DEGRÉ Activité de recherche : Résoudre un problème démographique A l issue d une étude, des démographes font des projections concernant la population de deux villages A et B de la campagne

Plus en détail

SECOND DEGRE ACTIVITES

SECOND DEGRE ACTIVITES SECOND DEGRE ACTIVITES Activité 1 : Forme canonique d un polynôme de degré 2. Définition : f est une fonction polynôme de degré 2 définie sur par : f ( x) ax² bx c ( a 0 ). Nous montrerons à la fin de

Plus en détail

Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes

Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes Exercice 1 (1 question) Niveau : facile Résoudre dans les équations suivantes

Plus en détail

Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010.

Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010. NOM : Prénom : Exercice 1 : calcul du prix de la rentrée (4,5 points) Une enquête de l association Familles de France a étudié l évolution du coût de la rentrée pour un élève de Sixième de 2004 à 2010.

Plus en détail

DERNIÈRE IMPRESSION LE 4 octobre 2016 à 8:57. Le second degré

DERNIÈRE IMPRESSION LE 4 octobre 2016 à 8:57. Le second degré DERNIÈRE IMPRESSION LE 4 octobre 016 à 8:57 Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré....................... 1. Quelques exemples de formes canoniques...............

Plus en détail

CH V Le second degré :

CH V Le second degré : CH V Le second degré : I) Les fonctions polynômes (Rappels) : 1) Développer, factoriser : Rappels : Pour tout réels a, b et c a( b + c) = ab + ac On dit que l on lorsque l on passe de a( b + c) à ab +

Plus en détail

Second degré et polynômes Résolution d équation, inéquations et problèmes du second

Second degré et polynômes Résolution d équation, inéquations et problèmes du second Second degré et polynômes Résolution d équation, inéquations et problèmes du second degré Y. Morel Table des matières 1 Trinôme du second degré 1 1.1 Equations du second degré...............................

Plus en détail

POLYNOMES. Table des matières. Fonction polynôme. I.1 Fonction polynôme de degré n

POLYNOMES. Table des matières. Fonction polynôme. I.1 Fonction polynôme de degré n POLYNOMES Table des matières I Fonction polynôme 1 I.1 Fonction polynôme de degré n.................................. 1 I.2 Egalité de deux polynômes................................... 1 I.3 Racine d un

Plus en détail

POLYNOME DU SECOND DEGRE

POLYNOME DU SECOND DEGRE POLYNOME DU SECOND DEGRE 1 Fonctions polynômes Définition 1.1 On appelle fonction polynôme de degré n toute fonction P définie sur R de la forme : P () =a n n + a n1 n1 + + a p p + + a 2 2 + a 1 + a 0

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Contrôle du mardi 10 novembre 2015 (50 minutes) 1 ère S1

Contrôle du mardi 10 novembre 2015 (50 minutes) 1 ère S1 ère S Contrôle du mardi 0 novembre 05 (50 minutes) ) Tracer avec soin sur le graphique ci-dessous la courbe C ainsi que la droite D d équation y Prénom et nom : Note : / 0 I ( point) On considère la fonction

Plus en détail

Chapitre 7 : Exercices d approfondissement

Chapitre 7 : Exercices d approfondissement Chapitre 7 : Exercices d approfondissement Corrigés des exercices du chapitre 7 Exercice I Dans chaque cas, on va travailler avec la forme la plus adaptée aux données. Ici, on connaît le sommet S (3 ;

Plus en détail

Fonctions polynômes du second degré.

Fonctions polynômes du second degré. Fonctions polynômes du second degré. Définition I. Définition. On appelle fonction polynôme de degré 2 ou trinôme du second degré, toute fonction f définie sur IR par une expression de la forme : f(x)=ax²

Plus en détail

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8 Polynômes D. CRESSON 15 octobre 2008 D. CRESSON () Cours Première STL 15 octobre 2008 1 / 8 I fonction polynôme On appelle monôme, une expression du type ax n, où n est un entier naturel, a une constante

Plus en détail

Année Les Polynômes. b2 4ac 4a 2 Une telle écriture (où les x n apparaissent qu une seule fois) s appelle la forme canonique du trinôme.

Année Les Polynômes. b2 4ac 4a 2 Une telle écriture (où les x n apparaissent qu une seule fois) s appelle la forme canonique du trinôme. Chap 2 : Les Polnômes I Trinôme du second degré Définition 1 : Un trinôme du second degré est une epression de la forme a 2 + b+ c, avec a 0 Eemple : 2, 2 2 + 1, 10000 2 30000 Nous allons déterminer une

Plus en détail

Racine carrée d un nombre positif ou nul

Racine carrée d un nombre positif ou nul Racine carrée d un nombre positif ou nul Introduction (Sésamath) 1) Quelques racines carrées simples a) Trouver tous les nombres dont le carré est 16 b) Même question avec 0,81 c) Donner la mesure du côté

Plus en détail

EQUATIONS ET INEQUATIONS CHOISIR LA FORME LA MIEUX ADAPTEE

EQUATIONS ET INEQUATIONS CHOISIR LA FORME LA MIEUX ADAPTEE Exercice n 1. On pose, pour tout réel x, EQUATIONS ET INEQUATIONS CHOISIR LA FORME LA MIEUX ADAPTEE f x x x = 6 + 8 1) Montrer que pour tout réel x, f x ( x ) = 1 ) Déduisez-en une factorisation de f (

Plus en détail

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2

x 2 n est pas une fonction polynôme. b2 4ac. En effet, x+ b ) 2 Lcée JANSON DE SAILLY 04 septembre 014 SECOND DEGRÉ 1 re STID I POLYNÔMES DU SECOND DEGRÉ 1 DÉFINITION Une fonction polnôme de degré est une fonction f définie surrpar f)=a + b+c où a, b, c sont des réels

Plus en détail

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50]

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50] Fonctions du second degré - Exemple d étude d un problème. Activité. La recette R(x) d un spectacle dépend du prix x de la place suivant la relation R(x) = 450x 9x². Pour chaque spectacle, les frais fixes

Plus en détail

Second degré Équations et inéquations

Second degré Équations et inéquations Second degré Équations et inéquations Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Fonction trinôme du second degré 1.1 Définition et rappels sur le sens de variation..............................

Plus en détail

Seconde Fiche d objectifs du chapitre

Seconde Fiche d objectifs du chapitre Chapitre 7 : Fonctions affines Seconde Fiche d objectifs du chapitre 7 2016-2017 SAVOIR Variations d une fonction affine Représenter graphiquement une fonction affine Coefficient directeur Ordonnée à l

Plus en détail

Fonction valeur absolue

Fonction valeur absolue Fonction valeur absolue Valeur absolue et distance Introduction Sur un axe gradué, on a placé quatre points A, B, C et D. Les abscisses de ces points sont x A = 3, x B = 6, x C = 2 et x D = 8,5. Comment

Plus en détail

Exercices supplémentaires Dérivation

Exercices supplémentaires Dérivation Exercices supplémentaires Dérivation Partie A : Lecture graphique et tracé de tangente Exercice Lire graphiquement le coefficient directeur s il existe de chacune des droites représentées ci-dessous. -

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ On appelle fonction polynôme, toute fonction f définie sur IR pour laquelle, il existe un entier naturel n et des réels a 0 ; a ; a 2 ;... ; a n avec a n 0 tels que : f(x) = a 0

Plus en détail

Fonctions polynômes Définition et factorisation Exercices corrigés

Fonctions polynômes Définition et factorisation Exercices corrigés Fonctions polynômes Définition et factorisation Exercices corrigés Exercice 1 (1 question) Niveau : facile Les fonctions numériques suivantes sont-elles des fonctions polynômes? Correction de l exercice

Plus en détail

S5-4 périodes semaine Page 1 sur 12

S5-4 périodes semaine Page 1 sur 12 1. Rappel : Résoudre dans IR Chapitre 3 : Equation du second degré a) 3x x = 0 b) 7 x + 3 = 0 c) 4x 9 = 0 d) x 7 = 1 e) x² = 7 f) x² = 0 g) -4x² + 100 = 0 h) 3x² - 7x = 0 i) -5x² - 50 = 0 j) x² + 8x -6

Plus en détail

Trinômes du second degré

Trinômes du second degré Trinômes du second degré A. Fonctions trinômes du second degré On appelle fonction trinôme une fonction qui à tout réel associe a + b + c, avec a, b et c réels et a non nul. a + b + c est la forme développée

Plus en détail

NOM : SECOND DEGRE 1ère S

NOM : SECOND DEGRE 1ère S Exercice 1 Dans un triangle ABC rectangle en A, on place les points D et E respectivement sur [AC] et [AB] tels que AD = BE = x. Déterminer x pour que l aire du triangle ADE soit égale à la moitié de celle

Plus en détail

Second degré. Second degré. Classe de première S et ES/L.

Second degré. Second degré. Classe de première S et ES/L. Second degré Classe de première S et ES/L. Second degré Introduction... Séquence 1...3 I. Fonction polynôme de degré...3 II. Forme canonique d'une fonction polynôme de degré...3 III. Variations et représentation

Plus en détail

1 Équations du second degré.

1 Équations du second degré. 1 Équations du second degré. Signe du trinôme ÉQUATINS ; INÉQUATINS DU PREMIER DEGRÉ b L'équation ax b = 0, a \ {0}, b a pour solution x. a Le signe de ax b, a \ {0}, b est donné dans le tableau suivant

Plus en détail

FONCTIONS POLYNÔMES DU SECOND DEGRE

FONCTIONS POLYNÔMES DU SECOND DEGRE 1. Définition FONCTIONS POLYNÔMES FONCTIONS POLYNÔMES DU SECOND DEGRE Définition Une fonction polynôme du second degré de la variable (ou fonction du second degré), est une fonction f définie sur par :

Plus en détail

Trinôme. Table des matières

Trinôme. Table des matières Trinôme Table des matières I. Fonctions polynômes... II. Fonctions polynômes du second degré (trinôme)... III. Forme canonique du trinôme... 3 IV. Résolution de l équation ax² + bx + c = 0 et factorisation....

Plus en détail

exercicen 1 exercicen 2 Equation /Inéquation de Second degré / Polynôme 1. Écriture 2. Équations 3) a) 7x 5x 2 0 b) 7x 5x 2 0 c) 2x x 2 1 0

exercicen 1 exercicen 2 Equation /Inéquation de Second degré / Polynôme 1. Écriture 2. Équations 3) a) 7x 5x 2 0 b) 7x 5x 2 0 c) 2x x 2 1 0 Écriture eercicen Ecrire sous la forme : a ( ) ( ) ) ² - 6 + 9 ) ² - + ) -9² + - 4 4 ) ² + 4 5 5 )² - + 7 6 ) -² + 0 +8 7 ) -² - 4 7 8 )-² + + 0 9 ) ² - 6 0 ) -² + 4 - ) ² + 6 + ) ² + 6 eercicen Ecrire

Plus en détail

SECOND DEGRE (Partie 2)

SECOND DEGRE (Partie 2) 1 SECOND DEGRE (Partie ) I. Résolution d'une équation du second degré Définition : Une équation du second degré est une équation de la forme ax + bx + c 0 où a, b et c sont des réels avec a 0. Une solution

Plus en détail

Problèmes du 2 ème degré

Problèmes du 2 ème degré Chapitre 2 Problèmes du 1 er degré et Problèmes du 2 ème degré I Problèmes du 1 er degré Equations du 1 er degré Inéquations du 1 er degré 1 On procède de la manière suivante pour la résolution d un problème

Plus en détail

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient

Mathématiques. Pour faciliter le travail personnel de révisions en fin de vacances, ce fichier contient Mathématiques Préparation à la 1 ère ES - L - STMG Le programme de 1 ère s appuie sur les notions étudiées en 2 nde. L acquisition de ces bases est donc essentielle à la réussite en 1 ère. Pour faciliter

Plus en détail

Chapitre IX Fonctions de référence

Chapitre IX Fonctions de référence Chapitre IX Fonctions de référence I. La fonction carré Définition : La fonction carré est la fonction qui, à tout nombre réel, associe son carré ². C est donc la fonction f définie sur par : f Eemple

Plus en détail

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ I OBJECTIFS L objectif de ce chapitre est de maîtriser parfaitement les fonctions polynômes du second degré, différentes formes, racines du polynôme,

Plus en détail

Fonctions et équations

Fonctions et équations Le Centre d éducation en mathématiques et en informatique Ateliers en ligne Euclide Atelier n o Fonctions et équations c 014 UNIVERSITY OF WATERLOO Ateliers en ligne Euclide Atelier n o # FONCTIONS ET

Plus en détail

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit

1) Existe-t-il une position de M telle que l aire de la surface rose pale soit Exercice 1 : On considère un demi-cercle de diamètre AB = 5. M est un point du segment [AB]. On construit les demi-cercles de diamètres [AM] et [MB] comme l indique la figure ci-dessous. 1) Existe-t-il

Plus en détail

2 FONCTIONS CARREES 1.0

2 FONCTIONS CARREES 1.0 FONTIONS ARREES Exercices de base : Soit f la fonction carrée. alculer les images par f des nombres réels : 5 00 0 0. 5 6 7 8 9 0 5 5 5 5 9 5 0 6 8x0 7 5 0 8 + 9 8 0 6 Soit f la fonction carrée. Déterminer

Plus en détail

Études de signes et inéquations, cours de seconde

Études de signes et inéquations, cours de seconde Études de signes et inéquations, cours de seconde F.Gaudon 16 février 2009 Table des matières 1 Étude du signe des fonctions affines 2 2 Études de signes de produits et de quotients 2 2.1 Exemple d étude

Plus en détail

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calculs dans l ensemble des nombres complexes (addition, soustraction, multiplication,

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Chapitre 3 - Fonctions exponentielles

Chapitre 3 - Fonctions exponentielles Chapitre 3 - Fonctions exponentielles I Fonctions exponentielles de base q TD1 : Du discret au continu On étudie la croissance d une population de bactéries dans une culture. Le nombre de bactéries (exprimé

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

Résoudre dans IR les équations et inéquations suivantes : B : = 1 C : x 3 9x x 2x

Résoudre dans IR les équations et inéquations suivantes : B : = 1 C : x 3 9x x 2x Octobre 2003(1 ère S 4 ) Les calculatrices sont autorisées. Lisez l énoncé en entier avant de commencer et répondez bien au questions qui vous sont posées. Vous pouvez faire les eercices dans l ordre que

Plus en détail

x + 3 Classes de Premières S Mathématiques 7 décembre 2016 Nom : Prénom : Classe : a) 2x² + 3x - 9 = 0 -6 x² = - 1 x - 3

x + 3 Classes de Premières S Mathématiques 7 décembre 2016 Nom : Prénom : Classe : a) 2x² + 3x - 9 = 0 -6 x² = - 1 x - 3 Nom : Prénom : Classe : Note : /30 Durée 2 heures Observations : Il sera tenu compte de la clarté et de la présentation de la copie. La calculatrice est autorisée. Exercice 1 : /6 pts 1) Résoudre dans

Plus en détail

Trinôme du second degré

Trinôme du second degré 1 Trinôme du second degré I. POLYNÔMES résumés de cours Polynôme Un polynôme de degré n est une fonction définie sur qui s écrit sous la forme n n1 an an 1... a 1 a0 où a n, an 1,, a 0 sont des nombres

Plus en détail

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11

Table des matières. Cours. Méthodes. Entraînement Corrigés Chapitre 1 Les trinômes du second degré 11 Table des matières Chapitre 1 Les trinômes du second degré 11 I. Les trinômes du second degré : caractérisation... 1 II. Variations des fonctions trinôme du second degré... 13 III. Représentation graphique...

Plus en détail

Chapitre : EQUATIONS. Exercice 1. Résoudre l inéquation : 4x x 4 0. D. Le FUR 1/??

Chapitre : EQUATIONS. Exercice 1. Résoudre l inéquation : 4x x 4 0. D. Le FUR 1/?? Exercice 1 Résoudre l inéquation : 4x 2 + 10x 4 0. D. Le FUR 1/?? Exercice 2 Résoudre l inéquation : ( x 5)(x 2 4x + 3) 0. NB : on utilisera un tableau de signes. D. Le FUR 2/?? Exercice 3 Pour chacun

Plus en détail

La forme canonique. Quand on ne sait pas!

La forme canonique. Quand on ne sait pas! La forme canonique Quand on ne sait pas! La plupart des polynômes du second degré peuvent s écrire sous 3 formes : développée, factorisée et canonique. EXEMPLE Ax ( ) EXEMPLE ( ) = æ x 3 ö ç +. çè Ici,

Plus en détail

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE

Lycée Privé Catholique Maintenon TERMINALE FASCICULE MATHEMATIQUES M. MAGNE Lycée Privé Catholique Maintenon TERMINALE FASCICULE --------------- DE --------------- MATHEMATIQUES DEVOIRS MAISON Année 2010/2011 M. MAGNE Thème : Les Fonctions Devoir Maison à rendre le : Partie A

Plus en détail

1 ère S Exercices sur le second degré (1) Réponses. 9 Résoudre dans à l aide du discriminant réduit l équation A changer de place

1 ère S Exercices sur le second degré (1) Réponses. 9 Résoudre dans à l aide du discriminant réduit l équation A changer de place 1 ère S Eercices sur le second degré (1) 1 Résoudre dans l équation ( ) ( )( 1) 0. Résoudre dans l équation 0. 1 Résoudre dans l équation 1. 1 1 Résoudre dans l équation (5 1) ( 1) 0. 5 Résoudre dans les

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Chapitre 3 : Second degré et fonction polynôme

Chapitre 3 : Second degré et fonction polynôme Lycée Jean Durand, Castelnaudary Classe de 1 ère S Chapitre 3 : Second degré et fonction polynôme D. Zancanaro C. Aupérin 2009-2010 Télécharger c est tuer l industrie, tuons les tous Thurston Moore Dernière

Plus en détail

Fonction exponentielle 1

Fonction exponentielle 1 Fonction eponentielle 1 Unicité de la solution de l équation différentielle Conséquences 1. Si f est une solution de l équation différentielle y = y, y(0) = 1, alors, pour tout réel, f( )f() = 1 et f()

Plus en détail

ETUDES DE FONCTIONS. Méthode : Déterminer l expression d une fonction polynôme de degré 2

ETUDES DE FONCTIONS. Méthode : Déterminer l expression d une fonction polynôme de degré 2 ETUDES DE FONCTIONS I. Fonctions polynômes de degré 1. Définition Une fonction polynôme de degré f est définie sur IR par des nombres réels donnés et a 0. ax bx c, où a, b et c sont Exemples : - f x x

Plus en détail

Les fonctions affines

Les fonctions affines TABLE DES MATIÈRES 1 Les fonctions affines Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Définition et représentation d une fonction 2 1.1 Définition..................................

Plus en détail

Devoir de mathématiques n 2

Devoir de mathématiques n 2 Page Prénom :. Jeudi 3 décembre 05 Devoir de mathématiques n Calculatrice autorisée. Le sujet contient 3 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des

Plus en détail

Exercices supplémentaires : ln

Exercices supplémentaires : ln Exercices supplémentaires : ln Partie A : Propriétés algébriques Exprimer en fonction de ln2 : Exercice 2 Simplifier les expressions suivantes ln 1 2 ; ln8 ; ln64 ; ln2 ; ln64 ; ln 32 ; ln 2 ; ln 32 ln

Plus en détail

FICHE METHODE sur les EQUATIONS de DEGRE DEUX I) A quoi sert une équation de degré 2?

FICHE METHODE sur les EQUATIONS de DEGRE DEUX I) A quoi sert une équation de degré 2? FICHE METHODE sur les EQUATIONS de DEGRE DEUX I) A quoi sert une équation de degré 2? Exemples : 1 Je veux une piscine carrée d aire égale à 40m²! Quelle doit-être la mesure du coté du carré? x² = 40 2

Plus en détail

FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES

FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES 1 FICHE METHODE : THEOREME DES VALEURS INTERMEDIAIRES Ci-après figure le tableau de variations d une fonction définie sur R 1) Déterminer le nombre de solutions de l équation = 2) Déterminer le nombre

Plus en détail

) est centre de symétrie de la courbec. Etude de fonction. On note C est sa courbe représentative dans un repère orthonormé du plan.

) est centre de symétrie de la courbec. Etude de fonction. On note C est sa courbe représentative dans un repère orthonormé du plan. Etude de fonction Eercice On considère la fonction f définie par f ( ) a + b+c dont la parabole P est représentée si contre. P passe par les points A(0 ; ) et B( ; ) Les tangentes à P au points A et B

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ Définition On appelle fonction trinôme du second degré, toute fonction f définie sur IR qui, à x associe f(x) = ax 2 + bx + c, a, b et c étant trois réels avec a 0. Exemple Les

Plus en détail

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n =

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n = La maison Ecole d ' Devoir de type bac n o 4 Classe de terminale ES Variations, limites, continuité, asymptotes, fonction logarithme, suites... Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence

Plus en détail

FONCTIONS POLYNOMES DU SECOND DEGRE

FONCTIONS POLYNOMES DU SECOND DEGRE FONCTIONS POLYNOMES DU SECOND DEGRE I- Comparaison de deux nombres réels Exemple On veut comparer les nombres a et a 2 pour a nombre réel positif on nul quelconque. Si a = 0, 5, alors a 2 = 0, 25 et on

Plus en détail

Les droites affines Les fonctions polynômes Les fonctions rationnelles... 5

Les droites affines Les fonctions polynômes Les fonctions rationnelles... 5 Les droites affines... ) Rappels... ) Eemples... ) Tangente à une courbe... Les fonctions polynômes... ) Plan d étude... ) Tableau des dérivées utiles pour les fonctions polynômes... ) Fonctions du ème

Plus en détail

64 = + (b ( 5)) 2 = Pour que le triangle soit équilatéral il faut en plus, par exemple, que AB = BC. Ce qui donne 3 =

64 = + (b ( 5)) 2 = Pour que le triangle soit équilatéral il faut en plus, par exemple, que AB = BC. Ce qui donne 3 = 1ES Correction du problème sur les paraboles. Dans tout ce qui suit le plan sera muni du repère orthonormé (O, ı, j). 1. Soient A(3, 5), B( 8, ) et C ( 1 3, 5) trois points du plan. Calculer les distances

Plus en détail

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y.

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. LES FONCTIONS I - RAPPELS I-1 - Définition Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. L ensemble des point tel f(x)=y est représenté

Plus en détail

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements

Rappels de 3eme. A Factorisation et developpement. 1/ Somme produit. 2/ Développements A Factorisation et developpement Rappels de 3eme 1/ Somme produit Un calcul est appelé somme si la dernière opération à effectuer est une addition. Chacun des nombres qui composent cette addition est appelé

Plus en détail

Chapitre 7 Fonction du second degré, algèbre, équations

Chapitre 7 Fonction du second degré, algèbre, équations Chapitre 7 Fonction du second degré, algèbre, équations TABLE DES MATIÈRES page -1 Chapitre 7 Fonction du second degré, algèbre, équations Table des matières I Exercices I-1 1................................................

Plus en détail

Le second degré. Dans chaque cas, écrire le trinôme sous sa forme canonique. a) x 2 + 6x 8 b) x 2 5x+3

Le second degré. Dans chaque cas, écrire le trinôme sous sa forme canonique. a) x 2 + 6x 8 b) x 2 5x+3 Exercices dernière impression le 6 octobre 2015 à 10:47 Le second degré Forme canonique Exercice 1 Dans chaque cas, écrire le trinôme sous sa forme canonique. a) x 2 + 6x 8 b) x 2 5x+3 c) 2x 2 + 6x+4 d)

Plus en détail

Le second degré. On présente souvent un trinôme du second degré sous la forme : qu'on appelle forme.

Le second degré. On présente souvent un trinôme du second degré sous la forme : qu'on appelle forme. Le second degré. 1 Les différentes formes d'un polynômes du second degré. 1.1 Forme développée (vidéo 1) Une fonction polynôme de degré 2 exprimée sous forme, est une fonction f définie sur R par...où

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

On factorise par a : et on remarque que x 2 + b a x = x2 + 2 b. EXERCICE N O 2 Donner la forme canonique des expressions suivantes :

On factorise par a : et on remarque que x 2 + b a x = x2 + 2 b. EXERCICE N O 2 Donner la forme canonique des expressions suivantes : CAL1 1 DU CÔTÉ DU SECND DEGRÉ TRAVAILLER AVEC DES PLYNÔMES DE DEGRÉ 2 U 3 CADRE DE TRAVAIL ET/U NTATINS) UTILISÉES) Dans tout ce chapitre, sauf mention contraire, a, b c désigneront trois réels avec notamment

Plus en détail

Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE

Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE PBP Chapitre M4(A7) Page 1/15 Chapitre M4 Algèbre 7 DU PREMIER AU SECOND DEGRE Capacités Utiliser les TIC pour compléter un tableau de valeurs, représenter graphiquement, estimer le maximum ou le minimum

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS LES FONCTIONS : GENERALITES ET VARIATIONS I. Vocabulaire et notations 1. Exemple d introduction : Avec une ficelle de longueur 10 cm, on fabrique un rectangle. On désigne par x la longueur d un côté de

Plus en détail

Ch.2èSECOND DEGRÉ. 1ere S. ( )( 1 x) x! 3x 2. I. Fonction trinôme du second degré. a > 0 x α + 1 ) définition et rappels sur le sens de variation

Ch.2èSECOND DEGRÉ. 1ere S. ( )( 1 x) x! 3x 2. I. Fonction trinôme du second degré. a > 0 x α + 1 ) définition et rappels sur le sens de variation LFA / première S COURS Mme MAINGUY I. Fonction trinôme du second degré définition Ch.èSECOND DEGRÉ ) définition et rappels sur le sens de variation ere S f x = ax + x+ c Un trinôme du second degré est

Plus en détail

EXERCICES VARIATIONS DE FONCTION

EXERCICES VARIATIONS DE FONCTION EXERCICES VARIATIONS DE FONCTION I ) Racine carré Exercice 1 : On a représenté graphiquement dans un repère les fonctions f, g, h et k définies par : f (x)= x+ 2 g (x)= 2 x h(x)= x 2 k(x)= x 2 + 1 Associer

Plus en détail