Géométrie dans l'espace

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Géométrie dans l'espace"

Transcription

1 Terminale S Ch.8 PARTIE Géométrie dans l'espace Ú La perspective cavalière C'est un ensemble de règles permettant de représenter un volume dans un plan; ce n'est pas ce que nous voyons dans la réalité. En effet, en perspective cavalière : deux droites parallèles dans la réalité sont représentées par des droites parallèles ; les milieux des segments et les rapports de longueur sont conservés ; les longueurs et les angles ne sont en général pas conservés ; les arêtes cachées sont représentées en pointillés. I. Règles de base de la géométrie dans l'espace Ú Règle Il existe une et une seule droite de l'espace passant par deux points distincts. Ú Règle Il existe un et un seul plan de l'espace passant par trois points non alignés. Ú Théorème Si deux plans distincts ont un point commun, alors leur intersection est une droite. exemple : le livre ouvert Ú Définition Quatre points (ou plus) appartenant à un même plan sont dits "coplanaires". Deux droites ou plus appartenant à un même plan sont dites "coplanaires". Ú Règle 3 Quand tous les éléments (points, droites,...) d'un problème de l'espace sont coplanaires, toutes les règles de géométrie plane s'appliquent (Thalès, Pythagore, etc...) On comprendra mieux les règle et définition en donnant les analogies dans le plan : Par deux points, il passe une droite et une seule. Trois points appartenant à une même droite sont dits "alignés". Exercice P est un plan. A,B,C sont trois points non alignés qui n'appartiennent pas à P. On suppose que ( AB ) coupe P en C, que ( AC ) coupe P en B et que ( BC ) coupe P en A. Montrer que les points A,B,C sont alignés. Solution A,B,C sont trois points non alignés n'appartenant pas à P donc (règle ), il existe un unique plan P contenant ces trois points. Comme AetB sont deux points de AB est contenue dans P. De la même façon, on peut affirmer que ( AC ) et ( ) P, alors la droite ( ) BC sont incluses dans P. A est un point commun à P et P donc l'intersection de ces deux plans est une droite passant par A (théorème). B et C étant communs à P et P, l'intersection de P et P est une droite passant par ces deux points. On en déduit que l'intersection de P et P est une droite passant par les trois points A,BetC qui sont donc alignés.

2 II. Positions relatives de droites et de plans de l'espace Ú Positions relatives de deux droites Deux droites de l'espace sont soit coplanaires, soit non coplanaires. Si elles sont coplanaires (dans un même plan), on distingue alors trois cas : elles peuvent être : sécantes strictement parallèles confondues Si elles sont non coplanaires, aucun plan ne les contient toutes les deux. elles ont un seul point elles n'ont aucun point leur intersection est vide commun commun Remarque Attention: dans l'espace, deux droites n'ayant aucun point commun ne sont donc pas toujours parallèles. Schématisation non coplanaires coplanaires sécantes parallèles confondues srictement parallèles Ú Positions relatives d'une droite et d'un plan Une droite et un plan de l'espace sont soit sécants, soit parallèles. sécants parallèles d et P ont un point d'intersection : B d et P sont strictement parallèles, d est contenue dans P. leur intersection est vide.

3 Schématisation 3 la droite et le plan sont sécants la droite est parallèle au plan la droite est strictement parallèle au plan la droite est contenue dans le plan Ú Positions relatives de deux plans Deux plans de l'espace sont soit sécants, soit parallèles. sécants parallèles P et P ' ont une droite d'intersection : d P et P ' sont strictement parallèles, P et P ' sont confondus. leur intersection est vide. Ainsi, deux plans sont parallèles lorsqu'ils ne sont pas sécants. Schématisation sécants parallèles strictement parallèles confondus Exercice Dans le cube ABCDEFGH, on note I le milieu de [AB], J le milieu de [DH], K le milieu de [HG] et L le milieu de [EF]. Quelle est la nature de l'intersection des plans (IJK) et (BCL)? Solution Dans le plan (FGH) : K milieu de [HG] et L milieu de [FE]. Or HG = EF On en déduit que GK = FL. De plus comme (GH) // (FE) alors on a aussi (GK) // (FL) On peut donc conclure que GKFL est un parallélogramme; Ses côtés sont parallèles deux à deux d'où (KL) // (GF) De même, on justifie que (DA) // (IJ) Ainsi : (KL) // (GF) // (BC) // (DA) // (IJ)

4 Le plan (BCL) contient la droite passant par L et parallèle à (BC) : c'est (KL). De même, le plan (IJK) contient la droite passant par K et parallèle à (IJ) : c'est (KL) Les deux plans (BCL) et (IJK) n'étant pas confondus, l'intersection de ces deux plans est la droite (KL) 4 III. Parallélisme dans l'espace Ú Parallélisme de droites : propriétés admises P Si deux droites sont parallèles, alors toute parallèle à l'une est parallèle à l'autre. P Si deux droites sont parallèles, tout plan qui coupe l'une coupe l'autre. Ú Parallélisme de plans : propriétés admises P3 Si deux plans sont parallèles, alors tout plan parallèle à l'un est parallèle à l'autre. P// P P// P P // P P4 Si deux droites sécantes d et d d'un plan P sont parallèles à un plan P, alors P et P sont parallèles. d P et d P d et d secantes d // P et d // P P// P P5 Si deux plans P et P sont parallèles, alors tout plan qui coupe P, coupe P et les droites d'intersection d et d sont parallèles. aussi P// P Π P = d Π P = d d// d Ú Parallélisme d'une droite et d'un plan : propriétés admises P6 Si une droite Δ est parallèle à une droite d contenue dans un plan P alors Δ et P sont parallèles. d//δ d P Δ//P P7 Si une droite d est parallèle à deux plans P et P sécants suivant une droite Δ, alors d et Δ sont parallèles. d//p et d// P P P = Δ d//δ

5 5 Théorème du toit d et d sont deux droites parallèles, d contenue dans P et d contenue dans P Si deux plans P et P sont sécants, alors leur droite commune Δ est parallèle à d et d. d P et d P d //d P P = Δ Δ//d et Δ//d IV. Orthogonalité dans l'espace / droites orthogonales Ú Définition Dans l'espace, dire que deux droites ( d ) et ( ) d sont orthogonales signifie qu'on peut trouver un point I tel que les parallèles à ces droites passant par I sont perpendiculaires. On écrit ( d ) ( d ) Ú Théorème (admis) Si deux droites sont parallèles alors toute orthogonale à l'une est orthogonale à l'autre. ( d) //( d) ( d ) ( ) On écrit ( d ) ( d ) Δ ( d ) ( Δ ) / droites perpendiculaires à un plan Ú Définition ( ) sont perpendiculaires signifie que ( d ) est ( ) passant par I. I est l'intersection d'une droite ( d ) et d'un plan P Dire que ( d ) et P perpendiculaire à deux droites ( d ) et ( d ) de P Remarque On admet alors que ( d ) est perpendiculaire à toute droite ( Δ) de ( P) passant par I.

6 Ú Théorème Si une droite ( d ) est perpendiculaire à un plan P orthogonale à toute droite ( Δ ) contenue dans P ( ), alors ( ) d est 6 Démonstration Soit ( Δ ) une droite contenue dans le plan P ( d ) étant perpendiculaire à P I et parallèle à ( Δ ). ( Δ ) ( ) // Δ Ainsi : ( d ) ( Δ ) ( ) ( d ) Ú Théorème Δ ( ) alors ( ) On veut montrer que ( ) d est perpendiculaire à ( ) d est en particulier perpendiculaire à ( Δ ), droite de P ( d ) est donc orthogonale à ( Δ ). ( ) soient perpendiculaires, il faut et il suffit Pour qu'une droite ( d ) et un plan P que ( d ) soit orthogonale à deux droites sécantes de P Δ. ( ) sécante à ( ) d en Conséquences ( ), alors elles sont parallèles. ( d ) ( P) ( d ( d ) ( P) )//( d ) ( ) et ( P ) sont perpendiculaires à une même droite ( ) ( P ) ( d) ( P ( P ) ( d) )//( P ) / si deux droites sont perpendiculaires à même plan P / si deux plans P Exercice 3 ABCDEFGH est un cube. / Démontrer l'orthogonalité de la droite ( DA ) et du plan ( ) / En déduire que les droites ( DA ) et ( HC ) sont orthogonales. 3 / En déduire l'orthogonalité de la droite ( HC ) et du plan ( ) des droites ( HC ) et ( DF ). Solution DCH. DGA puis celle d, alors ils sont parallèles. / D est le point d'intersection des droites ( DH ) et ( DC ) qui sont deux droites du plan ( DCH ). Par définition du cube, ( DA ) est perpendiculaire aus droites ( DH ) et ( DC ). Par définition, ( DA ) est perpendiculaire au plan ( DCH ). / ( DA ) étant perpendiculaire au plan ( DCH ), ( DA ) est donc orthogonale à toute droite contenue dans ( DCH ) et en particulier à la droite ( HC ). 3 / ( HC ) est orthogonale aux deux droites ( DA ) et ( DG ) qui sont toutes deux contenues dasn le plan ( DGA ) et sécantes en D. Donc ( HC ) est perpendiculaire au plan ( DGA ). D et F sont deux points de ( DGA ) donc la droite ( DF ) est contenue dans ( DGA ). D'autre part, ( HC ) étant perpendiculaire au plan ( DGA ), elle est orthogonale à toute droite de ce plan et en particulier à la droite ( DF ).

7 7 PARTIE I. Vecteurs de l espace / Vecteurs colinéaires théorème Dire que les vecteurs u et v non nuls sont colinéaires signifie qu'il existe un nombre réel k tel que : v = k u. Dire que les points A, B, C sont alignés signifie que les vecteurs AB et AC sont colinéaires. Il existe un réel k tel que : AC = k AB. définition Deux vecteurs AB sont parallèles. et CD sont colinéaires revient à dire que les droites ( AB) et ( CD) Par convention, le vecteur nul est colinéaire à tout vecteur de l'espace. / Vecteurs coplanaires définition On dit que les vecteurs u, v et w de l'espace sont coplanaires si et seulement si leurs représentants de même origine O ont des extrémités A, B, C telles que les quatre points O, A, B, C appartiennent à un même plan. Théorème Soient u, v et w trois vecteurs de l'espace tels que u et v ne sont pas colinéaires. Les vecteurs u, v et w sont coplanaires si et seulement si il existe deux réels x et y tels que w = x u + y v Démonstration Soit O, A, B, C tels que OA = u " ; OB = v " et OC = w ". Puisque u et v ne sont pas colinéaires, ces deux vecteurs dirigent le plan OAB Par définition " u, v et w coplanaires " signifie que C appartient au plan OAB deux réels x et y tels que OC = x u " + y v " soit : w = x u + y v ( ) ce qui revient à dire qu'il existe Conséquences Dire que quatre points sont coplanaires équivaut à dire que les vecteurs AB, AC, AD sont coplanaires. OU BIEN Dire que les droites AB, AC, AD sont coplanaires ( ) et ( CD) sont coplanaires équivaut à dire que les vecteurs AB Dire que deux plans sont parallèles équivaut à dire que deux vecteurs non colinéaires de l'un et deux vecteurs non colinéaires de l'autre, sont coplanaires.

8 exercice 4 : démontrer que quatre points sont coplanaires (Il s agit de démontrer que trois vecteurs sont coplanaires en écrivant l un en fonction des deux autres) 8 Soit ABCD un tétraèdre, I le milieu de AB ", E et F les points définis par AE tel que BCGD soit un parallélogramme. ) Exprimer les vecteurs IE ", IF " et IG " en fonction de AB, AC et AD. ) En déduire qu il existe deux réels α et β tels que IG " = α IE " + β IF ". 3) En déduire que les points I, E, G, F sont coplanaires. = 3 AC " et AF = 3 AD et G le point solution ) IE " = " IA + AE = AB + 3 AC " IG = IA + AD + DG = AB + AD + BC = AB " + AD + BA + AC ; IF " = IA " " + AF = AB " + 3 AD = 3 AB + AD + AC ) Dire qu il existe deux réels α et β tels que IG " = α IE " + β IF " signifie que : 3 AB α + AD + AC = AB α + 3 AC β AB β + 3 AD = α + β α AB + 3 AC β + 3 AD α + β = 3 α 3 = α = β = 3 β 3 = D où IG " = 3 IE " + 3 IF ". 3) On en déduit que les vecteurs IE ", IF " et IG " sont coplanaires, donc les points I, E, G et F sont coplanaires. Théorème 3 / Vecteurs non-coplanaires Soient u, v et w trois vecteurs non coplanaires de l'espace alors pour tout vecteur t, il existe un unique triplet a, b et c de réels tel que t = a u + b v + c w. Démonstration " Existence O est un point de l'espace et P le plan défini par O et les vecteurs non colinéaires u et v. On pose t """ = OM. La droite passant par M de vecteur directeur w et le plan P ne sont pas parallèles car u, v et w ne sont pas coplanaires. On note M leur point d'intersection. M appartient à P, donc il existe des nombres réels a et b tels que O M = a u " + b v ". D'autre part : OM = O M + M M. Or M M et w sont colinéaires, donc il existe un réel c tel que M M = c w ". Finalement, t """ = OM = a u + b v + c w

9 " Unicité On suppose qu'il existe deux triplets ( a, b c ) et ( a, b c ) de nombres réels tels que : t = a u + b v + c w = a u + b v + c w Si c c, alors w = a a u + b b v, or ceci est impossible puisque u, v et w sont non coplanaires. c c c c Donc c= c. On obtient alors a u + b v = a u + b v donc a= a et b= b car u et v sont non colinéaires. 9 II. Repérage dans l'espace / Repère et coordonnées Définition et propriété ( ) Un repère de l'espace noté O ; i ; j ; k est formé d'un point O et d'un triplet i ; j ; k de vecteurs non coplanaires. ( ) Pour tout point M de l'espace, il existe un unique triplet ( ; ; ) nombres réels tels que OM = x i " + y " j + z k ". x y z de ( x; y; z ) est le triplet de coordonnées du point M dans le repère O ; i ; j ; k Démonstration Les vecteurs i ; j ; k ne sont pas coplanaires donc d'après le théorème précédent, le vecteur OM façon unique en fonction des vecteurs i ; j ;et k. se décompose de Formulaire L'espace est muni d'un repère O ; i ; j ; k Pour deux points Ax ( ; y ; z ) et ( ; ; ) le vecteur AB A A A le milieu I du segment [ ] Si u x y z et v B x y z : B B B a pour coordonnées ( x x ; y y ; z z ) x y z ; B A B A B A xa + xb ya + yb za + zb AB a pour coordonnées ; ; ; alors u + x + x v y + y et pour tout réel λ, λ λx u λ y. z + z λz Exercice 5 ABCDEFGH est le cube représenté ci-contre. I est le centre de la face ADHE, J est le centre de la face ABCD et K est le milieu du segment IJ. " L'espace est rapporté au repère A ; AB ; AD ; AE / Déterminer les coordonnées des points I ; J et K. / Les points A, K, G sont-ils alignés? Justifier.

10 0 Solution / I milieu de AH J milieu de AH donc : AI donc : AJ K milieu de IJ donc : = AH = AD + AE = AC = AB + AD x K = x I + x J y K = y I + y J z K = z I + z J = 4 = = 4 / A, K, G alignés λ réel tel que AG = λ AK. Or AG = AB + BG = AB + # AH = AB + AD + AE AD+ AE Sachant que K 4 ; ; 4 et G ;; On en déduit que A, K, G ne sont pas alignés. ; d'où I 0 ; ;. ; d'où J ; ; 0 d'où K 4 ; ; 4 d'où G( ;;). ( ), il n'existe pas de réel λ vérifiant AG = λ AK. / Représentation paramétrique d'une droite Propriété L'espace est muni d'un repère O ; i ; j ; k Soit D la droite passant par ( ; ; ) coordonnées ( x; y; z ). AxA ya z A et dirigée par le vecteur u a b c et soit M un point de l'espace de On a l'équivalence : M D il existe un réel t tel que x = xa + at y = ya + bt z = za + ct Ce système s'appelle une représentation paramétrique de la droite D. Démonstration M D u et AM colinéaires il existe un réel t tel que AM = t u " x xa a y ya = t b ; on en déduit le résultat. z z A c

11 Exercice 6 L'espace est muni d'un repère O ; i ; j ; k. On donne les points ( ;3;) / Écrire une représentation paramétrique de la droite ( AB ). / Les points N ( 9;4;4) et ( ;;) P appartiennent-ils à cette droite? A et ( 5;; ) B. Solution / Soit M( x; y; z ) un point de l'espace. M ( AB) AM et AB colinéaires. t tel que AM = t AB x xa xb xa y ya = t yb ya z z A zb z A x + 5+ y 3 = t 3 z / " N ( 9;4;4) est un point de ( AB ) " revient à dire qu'il existe t réel tel que cad : P ( AB ) 9= + 7t 7t = 7 4= 3 t t = t = 4 3t = 3t = 3 t tel que AP = t AB Le système n'a pas de solution ; P ( AB).. D'où N ( AB). x= + 7t y = 3 t où t. z = 3t xn = + 7t yn = 3 t zn = 3t xp = + 7t = + 7t 4 = 7t t = yp = 3 t = 3 t = t t = zp 3t 3t 0 3t = = = t = 0

Séquence 10. Géométrie dans l espace. Sommaire

Séquence 10. Géométrie dans l espace. Sommaire Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,

Plus en détail

1S Modèles de rédaction Enoncés

1S Modèles de rédaction Enoncés Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ.

c) Calculer MP. 3) Déterminer l'arrondi au degré de la mesure de Dˆ. Exercice :(Amiens 1995) Les questions 2, 3 et 4 sont indépendantes. L'unité est le centimètre. 1) Construire un triangle MAI rectangle en A tel que AM = 8 et IM = 12. Indiquer brièvement les étapes de

Plus en détail

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5

Créer des figures dynamiques en 3 dimensions avec GeoGebra 5 Créer des figures dynamiques en 3 dimensions avec GeoGebra 5, 1/46 I. Pour débuter...3 IV. 9. Obtenir une sphère ou un cône tronqué...21 I. 1. Téléchargement...3 V. Illustration d'exercices...22 I. 2.

Plus en détail

Le théorème de Thalès et sa réciproque

Le théorème de Thalès et sa réciproque Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre

Plus en détail

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points)

PARTIE 1 : ACTIVITÉS NUMÉRIQUES (12 points) COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2011 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors

Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation )

Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Projection orthogonale sur une droite du plan, projection vectorielle associée. Applications (calculs de distances et d angles, optimisation ) Introduction : On se place dans plan affine euclidien muni

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Corrigé du baccalauréat S Asie 21 juin 2010

Corrigé du baccalauréat S Asie 21 juin 2010 Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites

Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Cours d Analyse. Fonctions de plusieurs variables

Cours d Analyse. Fonctions de plusieurs variables Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous

Exercice 1 : sur 2,5 points 1) Lire graphiquement les équations des droites D 1, D 2 et D 3 tracées dans le repère ci-dessous NOM : Seconde A B C H J Mardi 19 janvier 010 Exercice 1 : sur,5 points 1) Lire graphiquement les équations des droites D 1, D et D tracées dans le repère ci-dessous ) Dans le même repère, tracer la droites

Plus en détail

JUIN : EXERCICES DE REVISIONS

JUIN : EXERCICES DE REVISIONS . Les fonctions JUIN : EXERCICES DE REVISIONS y 30 0 0-8 -7-6 - - 0 3 4 6 7 8 x -0 - -0 0 Fonction n : f(x) = y = 30x Fonction n : f(x) = y = -x³ + 3x² + x - 3 Fonction n 3 : f3(x) = y = -x + 30 Fonction

Plus en détail

Géométrie dans l espace

Géométrie dans l espace Géométrie dans l espace Mabrouk Brahim Université Virtuelle de Tunis 2007 Ce cours a pour objet la présentation des différents concepts de la géométrie de l espace comme une continuation de ceux vus en

Plus en détail

Exercices de géométrie

Exercices de géométrie Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente

Plus en détail

Séquence 2. Repérage dans le plan Équations de droites. Sommaire

Séquence 2. Repérage dans le plan Équations de droites. Sommaire Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis

Plus en détail

Chapitre 7 Proportionnalité.

Chapitre 7 Proportionnalité. Chapitre 7 Proportionnalité. Voir 5 ème, chapitres 5 et 7 ; 4 ème, chapitres 4, 5 et 12. I) Pourcentages, indices A) Augmentation (ou diminution) Eemple : Le pri d un objet est passé de à 14. Calculer

Plus en détail

LE PRODUIT SCALAIRE ( En première S )

LE PRODUIT SCALAIRE ( En première S ) LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation

Plus en détail

CHAPITRE 4: La projection de MONGE

CHAPITRE 4: La projection de MONGE CHAPITRE 4: La projection de MONGE 1. Introduction Né en 1746 à Beaune (France), Gaspard Monge enseigne dès l'âge de 16 ans, au collège de Lon, puis à l'ecole Roale du Génie à Méières. En 1763, ses talents

Plus en détail

Triangle rectangle et cercle

Triangle rectangle et cercle Objectifs : 1 Savoir reconnaître et tracer une médiane. 2 Connaître et savoir utiliser la propriété qui caractérise le triangle rectangle par son inscription dans un demi-cercle. 3 Connaître et savoir

Plus en détail

Quelques contrôle de Première S

Quelques contrôle de Première S Quelques contrôle de Première S Gilles Auriol auriolg@free.fr http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage

Plus en détail

Mathématiques (10 points)

Mathématiques (10 points) Mathématiques (10 points) Exercice 1 (3 points) Philippe achète 3 planches pour fabriquer une étagère. Le prix de chaque planche est de 5,40. 1. Calculer le prix total des 3 planches. 2. Il obtient une

Plus en détail

Devoir commun de seconde, mars 2006

Devoir commun de seconde, mars 2006 Devoir commun de seconde, mars 006 calculatrices autorisées On rappelle que le soin et la qualité de rédaction entrent pour une part non négligeable dans l appréciation de la copie. Eercice (7 points).

Plus en détail

Activités numériques [13 Points]

Activités numériques [13 Points] N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible

Plus en détail

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS

Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin

Plus en détail

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts

Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2. ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Collège Henri Meck lundi 4 mai 2009 Molsheim BREVET BLANC DE MATHEMATIQUES N 2 ( Extraits d'épreuves du brevet de 2007 et 2008 ) PRESENTATION 4 pts Rappel : Présenter les parties de l'épreuve sur feuilles

Plus en détail

Corrigé du baccalauréat S Pondichéry 12 avril 2007

Corrigé du baccalauréat S Pondichéry 12 avril 2007 Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires

Plus en détail

Correction du Brevet Blanc Shanghai mars 2013

Correction du Brevet Blanc Shanghai mars 2013 Correction exercice 1(4 points) Correction du Brevet Blanc Shanghai mars 2013 1. Calculer les expressions suivantes A et B et donner le résultat sous la forme d une fraction irréductible : 2. Calculer

Plus en détail

Brevet Juin 2007 Liban Corrigé Page 1 sur 6

Brevet Juin 2007 Liban Corrigé Page 1 sur 6 Brevet Juin 007 Liban Corrigé Page 1 sur 6 Exercice 1 : 1) A = 500 (10 3 ),4 10 7 8 10 4 = 500 10 6 4 10 1 10 7 8 10 4 500 4 = 8 = 500 3 8 8 = 500 3 100 10 4 = 1500 10 0 + 4 = 1500 10 4 = 1,5 10 3 10 4

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE

CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En

Plus en détail

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé

PAD - Notes de cours. S. Rigal, D. Ruiz, et J. C. Satgé ALGÈBRE PAD - Notes de cours S. Rigal, D. Ruiz, et J. C. Satgé November 23, 2006 Table des Matières Espaces vectoriels Applications linéaires - Espaces vectoriels............................... 3 -. Approche

Plus en détail

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =

AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x = LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Méthode d'exhaustion pour un calcul d'aire

Méthode d'exhaustion pour un calcul d'aire Méthode d'exhaustion pour un calcul d'aire R. Danflous Niveau : Première et anticipation de la Terminale S Diculté : Dicile Durée : plus d'une heure Rubriques : Géométrie analytique plane, Suites La petite

Plus en détail

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.

Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère

Plus en détail

Applications des nombres complexes à la géométrie

Applications des nombres complexes à la géométrie Chapitre 6 Applications des nombres complexes à la géométrie 6.1 Le plan complexe Le corps C des nombres complexes est un espace vectoriel de dimension 2 sur R. Il est donc muni d une structure naturelle

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

Devoir commun Décembre 2014 3 ème LV2

Devoir commun Décembre 2014 3 ème LV2 Devoir commun Décembre 2014 3 ème LV2 Collège OASIS Corrigé de l Epreuve de Mathématiques L usage de la calculatrice est autorisé, mais tout échange de matériel est interdit Les exercices sont indépendants

Plus en détail

Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 2003 C.I.R.

Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 2003 C.I.R. EXEMPLE DE DOSSIER Sarl XYZ EFFORT de RECHERCHE et de DEVELOPPEMENT EXERCICE 23 C.I.R. STRATEGIE & ACCOMPAGNEMENT FINANCIER 7 Rue DENFERT-ROCHEREAU 38 GRENOBLE France Tél fax : ( 33 ) 4 76 43 47 11 SIRET

Plus en détail

Tournez la page S.V.P.

Tournez la page S.V.P. 17 Tourne la page S.V.P. Le problème est constitué de quatre parties indépendantes La mesure de l intensité d un courant électrique peut nécessiter des méthodes très éloignées de celle utilisée dans un

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

BREVET BLANC DE MAI 2012

BREVET BLANC DE MAI 2012 COLLEGE GASPARD DES MONTAGNES BREVET BLANC DE MAI 2012 Ce sujet comporte 8 pages numérotées de 1/8 à 8/8, dont une feuille annexe à remettre avec la copie. L usage de la calculatrice est autorisé. Notation

Plus en détail

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014

COLLÈGE LA PRÉSENTATION. BREVET BLANC Février 2014 COLLÈGE LA PRÉSENTATION BREVET BLANC Février 2014 ÉPREUVE DE MATHÉMATIQUES Classe de 3 e Durée : 2 heures Présentation et orthographe : 4 points Les calculatrices sont autorisées, ainsi que les instruments

Plus en détail

CONCOURS SEPTEMBRE 2011 SUJETS

CONCOURS SEPTEMBRE 2011 SUJETS CONCOURS SEPTEMBRE 2011 SUJETS Florilège COPIRELEM Page 155 CERPE groupement 1 - septembre 2011 (corrigé page 171) GROUPEMENT 1 septembre 2011 EXERCICE 1 : Dans cet exercice, six affirmations sont proposées.

Plus en détail

D34: Méthodes de calcul efficaces et sécurisées

D34: Méthodes de calcul efficaces et sécurisées D34: Méthodes de calcul efficaces et sécurisées Arithmétique des courbes elliptiques Nicolas Méloni Master 2: 1er semestre (2014/2015) Nicolas Méloni D34: Méthodes de calcul efficaces et sécurisées 1/20

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

CRPE 2011-2012 derniers réglages avant l écrit (2).

CRPE 2011-2012 derniers réglages avant l écrit (2). CRPE 2011-2012 derniers réglages avant l écrit (2). Problème 1 OAB et OAC sont deux triangles distincts, tous les deux isocèles en O et tels que AOB = AOC. D est le symétrique de B par rapport à O. Démontrer

Plus en détail

6. Les différents types de démonstrations

6. Les différents types de démonstrations LES DIFFÉRENTS TYPES DE DÉMONSTRATIONS 33 6. Les différents types de démonstrations 6.1. Un peu de logique En mathématiques, une démonstration est un raisonnement qui permet, à partir de certains axiomes,

Plus en détail

Solides et patrons. Cours

Solides et patrons. Cours Solides et patrons EXERCICE 1 : Cours 1) Représenter un cube en perspective cavalière. 2) Qu est-ce qu un polyedre? 3) Qu est-ce qu un prisme droit? Si les bases du prisme ont n côtés combien le prisme

Plus en détail

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11

Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11 Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et

Plus en détail

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures

BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures BREVET BLANC de MATHEMATIQUES n 1 Janvier 2012 - durée : 2 heures Les calculatrices sont autorisées. L orthographe, le soin et la présentation sont notés sur 4 points. Activités numériques (12 points)

Plus en détail

Démonstrations exigibles au bac

Démonstrations exigibles au bac Démonstrations exigibles au bac On donne ici les 11 démonstrations de cours répertoriées comme exigibles dans le programme officiel. Toutes ces démonstrations peuvent donner lieu à une «restitution organisée

Plus en détail

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point

Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point 03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de

Plus en détail

Envoi no. 6 : géométrie

Envoi no. 6 : géométrie Envoi no. 6 : géométrie Exercice 1. Soit un triangle rectangle isocèle en. Soit un point de l arc du cercle de centre passant par et, H son projeté orthogonal sur (). On note I le centre du cercle inscrit

Plus en détail

TD d exercices de Géométrie dans l espace.

TD d exercices de Géométrie dans l espace. TD d exercices de Géométrie dans l espace. Exercice 1. (Brevet 2006) Pour la pyramide SABCD ci-contre : La base est le rectangle ABCD de centre O. AB = 3 cm et BD = 5cm. La hauteur [SO] mesure 6 cm. 1)

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Vecteurs Géométrie dans le plan Exercices corrigés

Vecteurs Géométrie dans le plan Exercices corrigés Vecteurs Géométrie dans le plan Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : notion de vecteur, transformation de points par translation et vecteurs égaux Exercice 2 : parallélogramme

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES 6 cm I) Synthèse sur la proportionnalité : 1) Définition : Grandeurs proportionnelles : Dire que deux grandeurs sont proportionnelles revient à dire

Plus en détail

Bref, c'est difficile, mais tout le monde doit y arriver.

Bref, c'est difficile, mais tout le monde doit y arriver. Bonjour à tous, les colles de mardi m'ont permis de vérifier que les notions de base du chapitre espaces vectoriels sont loin d'être acquises. Comme je vous le disais, il est essentiel d'apprendre régulièrement

Plus en détail

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques

La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant

Plus en détail

RA/8000/L2, RA/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 32 à 125 mm

RA/8000/L2, RA/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 32 à 125 mm A/8000/L, A/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 3 à 5 mm Avec piston magnétique ou non selon ISO 555, ISO 643, VDMA 456 et NFE 49-003- Blocage de sécurité de la tige de

Plus en détail

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites

( x )= 2 3 ( x 1) f 3 ( x)=( x+1)2 ( x 1) ( x+1) f 4. ( x )=5 x 2 1. ( x)=3 2 x f 2. 212 nom: DS ( 1h) : Sujet A fonctions affines droites 212 nom: DS ( 1h) : Sujet A fonctions affines droites Exercice 1: 1 ) Dans chacun des cas suivants,: Dire si la fonction est affine ou non. Préciser si elle est linéaire. Si la fonction est affine, donner

Plus en détail

2 Nombres complexes. et trigonométrie CHAPITRE

2 Nombres complexes. et trigonométrie CHAPITRE CHAPITRE Nombres complexes et trigonométrie A Les nombres complexes 66 B Représentation géométrique Affixe Module Argument 67 1 Image d un complexe Affixe d un point, d un vecteur 67 Module 68 3 Nombres

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Brevet Amérique du sud novembre 2011

Brevet Amérique du sud novembre 2011 ACTIVITÉS NUMÉRIQUES (12 POINTS) Exercice 1 Cet exercice est un exercice à choix multiples (QCM). Pour chaque question, une seule réponse est exacte. Une réponse correcte rapportera 1 point. L absence

Plus en détail

Vecteurs. I Translation. 1. Définition :

Vecteurs. I Translation. 1. Définition : Vecteurs I Translation Soit A et B deux points du plan. On appelle translation qui transforme A en B la transformation du plan qui a tout point M associe le point M tel que [AM ] et [BM] aient le même

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

Ce document regroupe les 6 devoirs à la maison proposés dans la progression.

Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Ce document regroupe les 6 devoirs à la maison proposés dans la progression. Le document a été paginé de façon à ce que chaque devoir corresponde à une page pour en faciliter l impression. Page 2... Devoir

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux

315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité

Plus en détail

INFORMATIONS DIVERSES

INFORMATIONS DIVERSES Nom de l'adhérent : N d'adhérent :.. INFORMATIONS DIVERSES Rubrique Nom de la personne à contacter AD Date de début exercice N BA Date de fin exercice N BB Date d'arrêté provisoire BC DECLARATION RECTIFICATIVE

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

Inégalités. c a + b 3 2,

Inégalités. c a + b 3 2, DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient

Plus en détail

TOUT SUR LE TRIANGLE

TOUT SUR LE TRIANGLE PROBLEME de niveu sup rédigé pr R. Ferreol ferreol@mthcurve.com TOUT SUR LE TRIANGLE. DONNÉES ET NOTATIONS 3 points A, B, C non lignés d un pln ffine euclidien P orienté de fçon à ce que (AB, AC ) soit

Plus en détail

Chapitre 2 : Vecteurs

Chapitre 2 : Vecteurs 1 Chapitre 2 : Vecteurs Nous allons définir ce qu'est un vecteur grâce à une figure (le parallélogramme), mais au préalable nous allons aussi définir une nouvelle transformation (la translation). Nous

Plus en détail

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4.

SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES. f(0)= 5 0 + 4= 0 + 4 = 4. 196 Séquence 7 SÉQUENCE 7 FONCTIONS LINÉAIRES ET AFFINES Ce que tu devais faire Les commentaires du professeur Séance 1 JE RÉVISE LES ACQUIS DE LA 4 e 5 4 0 9 L image de 0 par la fonction f est le nombre

Plus en détail

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés :

Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigés d exercices sections 3 à 6. Liste des exos recommandés : LM323 Envoi 2 2009-2010 Contenu de cet envoi Devoir 2 avec une figure en annexe, à renvoyer complétée. Corrigé du devoir 1. Un exercice de révision sur le chapître 1. Exercices sur l inversion. Corrigés

Plus en détail

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués

Baccalauréat Polynésie 11 juin 2013 Sciences et technologies du design et des arts appliqués Baccalauréat Polynésie juin 0 Sciences et technologies du design et des arts appliqués EXERCICE points Cet exercice est un Questionnaire à Choix Multiples. Pour chaque question, une seule réponse est exacte.

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

BILAN - ACTIF PLASTIRISQ - 92400 COURBEVOIE SIRET 50062021600019. Période N du 01/01/2014 au 31/12/2014 Période N-1 du 01/01/2013 au 31/12/2013

BILAN - ACTIF PLASTIRISQ - 92400 COURBEVOIE SIRET 50062021600019. Période N du 01/01/2014 au 31/12/2014 Période N-1 du 01/01/2013 au 31/12/2013 BILAN - ACTIF Exercice N Exercice N - 1 Brut Amortissements, provisions Net Net Capital souscrit non appelé (I) AA Frais d'établissement AB AC ACTIF CIRCULANT ACTIF IMMOBILISÉ DIVERS CRÉANCES STOCKS IMMOBILISATIONS

Plus en détail

Définition : «interconnection» et «networks». nterconneconnexion des années 60 des années 70 ARPANET des années 80 les années 90 Aujourd'hui

Définition : «interconnection» et «networks». nterconneconnexion des années 60 des années 70 ARPANET des années 80 les années 90 Aujourd'hui I N T R O D U C T I O N D I n t e r n e t e s t l e p l u s g r a n d r é s e a u a u m o n d e a v e c d e s c e n t a i n e s d e m i l l i o n s da o r d i n a t e u r é s e a u x c o n n e c t é sa

Plus en détail

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE

Seconde MESURER LA TERRE Page 1 MESURER LA TERRE Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une

Plus en détail

PARTIE NUMERIQUE (18 points)

PARTIE NUMERIQUE (18 points) 4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Corrigés Exercices Page 1

Corrigés Exercices Page 1 Corrigés Exercices Page 1 Premiers algorithmes Questions rapides 1 1) V ; ) F ; 3) V ; 4) F. 1) a ; ) b ; 3) a et b ; 4) b. 3 L'algorithme répond à la question : "le nombre entré estil positif?". 4 a (remarque

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Chapitre 2. Matrices

Chapitre 2. Matrices Département de mathématiques et informatique L1S1, module A ou B Chapitre 2 Matrices Emmanuel Royer emmanuelroyer@mathuniv-bpclermontfr Ce texte mis gratuitement à votre disposition a été rédigé grâce

Plus en détail