Corrigé du Baccalauréat S Antilles-Guyane 23 juin 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Corrigé du Baccalauréat S Antilles-Guyane 23 juin 2009"

Transcription

1 Corrigé du Baccalauréat S Antilles-Guyane 3 juin EXERCICE 4 points. On peut dénombrer les cas possibles à l aide d un tableau : Dé Dé A B C D A AA AB AC AD B BA BB BC BD C CA CB CC CD D DA DB DC DD Les deux dés peuvent être supposés équilibrés, il y a donc situation d équiprobabilité et :. a. p(e = 6 ; p(e = 6 6 = 3 8 ; p(e = 6. Nombre de Nombre de faces «A» faces «A» er lancer ème lancer b. Il y a trois façons distinctes de gagner pour le joueur : il obtient deux faces «A» au premier lancer, ou bien il obtient une face «A» au premier lancer, et une face «A» au deuxième, ou bien il n obtient aucune face «A» au premier lancer, et deux faces «A» au second. À l aide de l arbre pondéré ci-dessus, la probabilité de gagner est donc égale à : = c. Notons X la variable aléatoire désignant le gain algébrique du joueur. X = 5 lorsque le joueur gagne, donc p(x = 5= X = lorsqu un seul dé repose sur la face «A», cela peut avoir lieu au premier ou au deuxième lancer, donc d après l arbre : p(x = = =

2 X = 5 lorsque le joueur n obtient aucune face «A», donc p(x = 5= 6 6 = On peut résumer la loi de X dans le tableau suivant : x 5 5 Total p(x = x L espérance mathématique de X est alors égale à : E(X = le jeu est donc défavorable au joueur = 6 56 <, EXERCICE Candidats ayant choisi l enseignement de spécialité 5 points Dans chacun des cas suivants, indiquer si l affirmation proposée est vraie ou fausse et justifier la réponse.. L écriture complexe de f est de la forme z = az+b avec a C et b C. D après le cours, f est donc une similitude directe. De plus : a= +i 3, donc a = +( 3 = et f a pour rapport. ( 3 a= + i = e i π 3, donc arg(a= π 3 (π et f a pour angle π 3. (+i 3 i + 3=i 3+ 3=i, donc f (A= A. La première affirmation est donc vraie.. On a : 3 (7. De plus 3 (7 et 3 3 (7 donc 3 6 (7. Comme = on en déduit que : 3 ( (7 c est-à-dire 3 ( (7, d où : 3 ( (7, soit : 3 (7. On a finalement (7. La deuxième affirmation est donc fausse. 3. Soit a et b deux entiers relatifs quelconques, n et p deux entiers naturels premiers entre eux. Supposons que a b (p, alors na nb (p par compatibilité de la multiplication avec les congruences. Réciproquement, supposons que na nb (p. Alors p divise na nb, c està-dire p divise n(a b. Comme n et p sont premiers entre eux, le théorème de Gauss entraîne que p divise a b, c est-à-dire que a b (p. L équivalence est donc démontrée. La troisième affirmation est donc vraie. 4. Soit M(x; y; z un point de l espace, alors : ( ( ( M S y = 3 et x + y = z y = 3 et x + = z. Dans le plan d équation y = 3, z = x + est l équation d une parabole. La quatrième affirmation est donc fausse. 5. Soit M(x; y; z un point de l espace à coordonnées entières appartenant à P et au plan (yoz. M = O vérifie ces conditions, puisque x=, + = 3 et Z. Supposons que M soit distinct de O. Alors x = car M (yoz. On a donc : y = 3z. Comme z (car sinon y serait nul et M serait confondu avec O, on obtient y z = 3, ce qui signifierait que y z est irrationnel (égal à ± 3, ce qui est faux, car y Z et z Z. L hypothèse «M est distinct de O» est donc absurde. Antilles - Guyane 3 juin

3 Le seul point vérifiant les conditions précédentes est donc le point O. La cinquième affirmation est donc vraie. EXERCICE 5 points Candidats n ayant pas choisi l enseignement de spécialité ( (. M E AM = B M. E est donc bien la médiatrice du segment [AB]. La première affirmation est vraie. c a ( c a (. b a = i entraîne que : arg = arg(i (π, c est-à-dire que : AB ; AC = b a π (π. Le triangle ABC est donc rectangle en A, ce qui entraîne que A appartient au cercle de diamètre [BC]. La deuxième affirmation est vraie. 3. Si z = e i π 7, alors z = e i π 7 = e 87iπ. Par conséquent : arg ( z = 87π (π, et comme 87 est impair, cela entraîne que z est un réel strictement négatif. La troisième affirmation est donc fausse. 4. D après le théorème de réduction : M A + MB + MC = 3MG. Donc : ( ( 3 ( =6 M F MG MG =. F est donc la sphère de centre G et de rayon. La quatrième affirmation est vraie. 5. La sphère S a pour rayon 5 et pour centre O(;;. + 5 La distance du point O au plan P est égale à + + = 5 = <, donc la sphère et le plan ne sont pas sécants, et leur intersection est vide. La cinquième affirmation est donc fausse. EXERCICE 3 PARTIE A. 7 points. f est solution de l équation différentielle y = y+, donc d après un théorème du cours, il existe une constante k telle que, pour tout t : f (t = ke t = ke t +. La condition f (= entraîne alors que k+ =, c est-à-dire k =. Finalement : f (t=e t +.. a. f est dérivable sur R + en tant que combinaison simple de fonctions qui le sont, et, pour tout t : f (t= e t < ; la fonction f est donc strictement décroissante sur R +. b. lim t = et t + lim e X =, donc par composition lim t X t + e =. On en déduit par opérations que lim f (t= ; ce qui signifie que la droite t + D d équation y = est asymptote horizontale à la courbe C au voisinage de+. Antilles - Guyane 3 3 juin

4 Baccalauréat S f (t en C C y = 56 4 D 3, t (en heures FIG. exercice 3, question c c. Voir figure. 3. a. Graphiquement, f (t=5 pour t = 3,8, soit 3 heures et 48 minutes environ. PARTIE B. b. Résolvons : f (t=5 e t + =5 e t = 3 e t = 3 t ( 3 = ln ( 3 t = ln On retrouve bien le résultat précédent. 3,7 à, près. a. À l aide de la calculatrice, au dixième près : d 78,7, d 47,7, d 8,. b. Comme lim t + que : lim d n =. n + f (t =, il est clair que lim f (n = lim f (n+ donc n + n + Antilles - Guyane 4 3 juin

5 . On déterminer à partir de quel entier naturel n on a d n 5. d n 5 e n e n+ 5 ( e n e 5 ( 4 e e n ln 4 e n ln 4 e n et comme ln 4 e 5,5 (au dixième près, la plus petite valeur de l entier n à partir de laquelle l abaissement de température est inférieur à 5 C est donc n= 6. Remarque : on pouvait aussi démontrer que la suite (d n est décroissante, puis calculer d 5 et d 6 et conclure. EXERCICE 4 4 points. a. La fonction f est dérivable sur R + comme combinaison simple de fonctions qui le sont, et pour tout réel x : f (x= x+ = x >. La + x fonction f est donc strictement croissante sur R +, et pour tout x on a alors f (x f (, c est-à-dire x ln(+ x, d où : ln(+ x x. ( b. Soit n N, ln(u n = n ln + et n n R+, donc d après la question précédente : ln(u n n n, c est-à-dire ln(u n. c. Pour tout n N, ln(u n, donc u n e et la suite (u n est majorée par e, elle ne peut donc pas diverger vers+. (. a. v n = ln(u n = n ln +, en posant x= n n on a donc : v ln(+ x n =. x ln(+ x b. lim = d après une limite du cours. Quand n +, on a x, x x donc : lim v n =. n + c. v n = ln(u n, donc u n = e v n, et comme (v n converge vers, on en déduit que (u n converge vers e. Antilles - Guyane 5 3 juin

Baccalauréat S Antilles-Guyane ჼ septembre 2011

Baccalauréat S Antilles-Guyane ჼ septembre 2011 Baccalauréat S Antilles-Guyane ჼ septembre 011 EXERCICE 1 Commun à tous les candidats ( point) On considère la fonction f définie ]0 ; + [ par : f (x) = x ln x 1. Partie A : Étude d une fonction 1. a.

Plus en détail

Corrigé du baccalauréat S Centres étrangers 15 juin 2009

Corrigé du baccalauréat S Centres étrangers 15 juin 2009 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers 5 juin 9 EXERCICE 5 points Restitution organisée de connaissances : ) a Démontrer que pb)=pb A)+ p B A b Démontrer que, si les évènements A

Plus en détail

Correction du baccalauréat S Polynésie 10 juin 2010

Correction du baccalauréat S Polynésie 10 juin 2010 Correction du baccalauréat S Polynésie 0 juin 00 Exercice Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct O, u, ) v. 5 points Prérequis Partie A - Restitution

Plus en détail

Baccalauréat S Centres étrangers 10 juin 2015

Baccalauréat S Centres étrangers 10 juin 2015 Corrigé Baccalauréat S Centres étrangers 10 juin 015 A. P. M. E. P. Exercice 1 Commun à tous les candidats 4 points Partie A 1. On a p = 0, 0 et n = 500. Un intervalle de fluctuation au seuil de 95 % est

Plus en détail

Correction Bacalauréat S Centres Etrangers Juin 2007

Correction Bacalauréat S Centres Etrangers Juin 2007 Correction Bacalauréat S Centres Etrangers Juin 00 Exercice. Modélisation de l expérience aléatoire : l univers Ω est l ensemble des combinaisons (choix non ordonnés et sans répétition de trois éléments

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

Baccalauréat S Polynésie, correction

Baccalauréat S Polynésie, correction Baccalauréat S Polynésie, correction 0 juin 00 Exercice 5 points Commun à tous les candidats. Le plan complexe est rapporté à un repère orthonormal direct (O; u ; v). Partie A - Restitution organisée de

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane Septembre 2015

Corrigé du baccalauréat S Antilles-Guyane Septembre 2015 Corrigé du baccalauréat S Antilles-Guyane Septembre 5 EXERCICE Commun à tous les candidats 6 points Soit n un entier naturel non nul. On considère la fonction f n définie et dérivable sur l ensemble R

Plus en détail

Représenter graphiquement (sur un même schéma) ces trois ensembles.

Représenter graphiquement (sur un même schéma) ces trois ensembles. PCSI DEVOIR SURVEILLÉ de MATHÉMATIQUES n 4 07/1/001 Durée : 4 heures EXERCICE 1 : Calculatrices interdites Dans le plan complee rapporté au repère orthonormal (O; e 1, e, on définit une transformation

Plus en détail

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h.

Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIVERSITAIRE 2016 Samedi 20 février 2016 MATHÉMATIQUES durée de l épreuve : 3 h. Corrigé entrée à Sciences Po ADMISSION AU COLLÈGE UNIERSITAIRE 206 Samedi 20 février 206 MATHÉMATIQUES durée de l épreuve : 3 h A. P. M. E. P. Les calculatrices sont autorisées. Problème La partie A est

Plus en détail

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015

Corrigé du baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé du baccalauréat S Antilles-Guyane juin 15 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 6 POINTS 1. Pour toutes les courbes, on a g a (1)= a. Donc on a de bas en haut les courbes Γ,5, Γ,1,

Plus en détail

Corrigé du baccalauréat série S Amérique du Nord juin 2003

Corrigé du baccalauréat série S Amérique du Nord juin 2003 Corrigé du baccalauréat série S Amérique du Nord juin EXERCICE 1 Commun à tous les candidats points 1. Réponse b.. En égalant les deu intégrales on obtient : e λt 1= e λt 1=e λt e λt = 1 et par croissance

Plus en détail

Baccalauréat S Amérique du Nord 31 mai 2012 Corrigé de A. Saoud Manal

Baccalauréat S Amérique du Nord 31 mai 2012 Corrigé de A. Saoud Manal Baccalauréat S Amérique du Nord mai Corrigé de A. Saoud Manal EXERCICE. Un quart des femmes et un tiers des hommes adhère à la section tennis, donc p F (T)= et p F (T)=. % des membres de cette association

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2006

Corrigé du baccalauréat S Polynésie juin 2006 Durée : heures Corrigé du baccalauréat S Polynésie juin 006 EXERCICE. Si z, z = z z+ z + z = z z = z = i ou z = i. Les points invariants par f sont les deux points d affixes i et i ) z. a. z, z )z+ )=

Plus en détail

Correction du sujet de mathématiques, section S [Baccalauréat] à la REUNION. Ile de la REUNION, juin 2011

Correction du sujet de mathématiques, section S [Baccalauréat] à la REUNION. Ile de la REUNION, juin 2011 Correction du sujet de mathématiques, section S [Baccalauréat] à la REUNION. Ile de la REUNION, juin 11 Exercice 1 : commun à tous les candidats 1. Réponse : Le plan P et la droite D n ont aucun point

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

Corrigé du baccalauréat S Centres étrangers 16 juin 2011

Corrigé du baccalauréat S Centres étrangers 16 juin 2011 Corrigé du baccalauréat S Centres étrangers 6 juin EXERCICE Commun à tous les candidats 4 points. a. A O A A 4 A 6 A 5 A A On a a a a,5, puis a,75, a 4,65 a 5,6875 et a 6,6565 b. c. Puisque le point A

Plus en détail

Corrigé de l examen de mathématiques

Corrigé de l examen de mathématiques Collège notre Dame de Jamhour Juin 2014 Classe de première S Corrigé de l examen de mathématiques Exercice 1 1. a. admet pour vecteur directeur ; admet pour vecteur directeur Alors et sont orthogonales.

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011 Corrigé du baccalauréat S Métropole La Réunion 16 septembre 11 EXERCICE 1 Partie A 1 La loi suivie par la variable aléatoire X prenant pour valeur le nombre de moteurs tombant en panne est une loi binomiale

Plus en détail

On dit que M est l origine du vecteur et N son extrémité.

On dit que M est l origine du vecteur et N son extrémité. ❶ - Vecteurs I-- Définition d un vecteur Définition : Lorsqu on choisit deux points distincts M et N dans cet ordre, on définit : - une direction : celle des droites parallèles à (MN) ; - un sens : de

Plus en détail

BACCALAUREAT GENERAL

BACCALAUREAT GENERAL BACCALAUREAT GENERAL Session de juin 9 MATHEMATIQUES - Série S - Enseignement de Spécialité Centres étrangers EXERCICE 1 1) Restitution organisée de connaissances a) Les événements B A et B A constituent

Plus en détail

Classe: TSI DS5 jeudi 14 janvier 2010

Classe: TSI DS5 jeudi 14 janvier 2010 Exercice 1 (D'après Bac S France septembre 008) Dans une kermesse un organisateur de jeux dispose de roues de 0 cases chacune. La roue A comporte 18 cases noires et cases rouges. La roue B comporte 16

Plus en détail

Bac S Corrigé de l épreuve de mathématiques de Métropole

Bac S Corrigé de l épreuve de mathématiques de Métropole Bac S 11 - Métropole Bac S 11 - Corrigé de l épreuve de mathématiques de Métropole http://blogdemaths.wordpress.com Exercice 1 : Comme demandé dans l énoncé, tous les résultats sont donnés sous forme décimale,

Plus en détail

Corrigé du bac blanc TS 2008

Corrigé du bac blanc TS 2008 Corrigé du bac blanc TS 008 Exercice Conjectures D après la figure donnée sur le sujet, il semble que : f est strictement croissante sur [ 3; ], la courbe représentative de f est en dessous de l axe x

Plus en détail

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle

Plus en détail

Sujet du baccalauréat S Asie 18 juin 2008

Sujet du baccalauréat S Asie 18 juin 2008 Sujet du baccalauréat S Asie 8 juin 2008 www.mathoman.com Exercice Commun à tous les candidats 4 points A - Vrai ou faux? Pour chacune des propositions suivantes, indiquer si elle est vraie ou fausse et

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie

Soutien illimité 7j/7 en maths: Coach, profs, exercices & annales, cours. Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie Sujet de Bac 2010 Maths S Obligatoire & Spécialité - Polynésie EXERCICE 1 : 5 points Le plan complexe est rapporté à un repère orthonormal direct (0; u, v). Partie A : Restitution organisée de connaissances

Plus en détail

Mathématique ECS 1 03 Sept Devoir surveillé 1.

Mathématique ECS 1 03 Sept Devoir surveillé 1. Mathématique ECS 0 Sept. 06 Devoir surveillé. Veillez à bien justifier vos réponses : un exercice bien traité rapporte des points, un exercice traité de façon non rigoureuse ne rapporte pas de points.

Plus en détail

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé

Baccalauréat S Nouvelle-Calédonie 17 novembre 2014 Corrigé Baccalauréat S Nouvelle-Calédonie 17 novembre 014 Corrigé A. P. M. E. P. Exercice 1 Commun à tous les candidats Une fabrique de desserts glacés dispose d une chaîne automatisée pour remplir des cônes de

Plus en détail

Corrigé du baccalauréat série S Amérique du Sud 17 novembre 2014

Corrigé du baccalauréat série S Amérique du Sud 17 novembre 2014 orrigé du baccalauréat série S Amérique du Sud 17 novembre 014 A. P. M. E. P. Exercice 1 ommun à tous les candidats 6 points Une entreprise est spécialisée dans la fabrication de ballons de football. ette

Plus en détail

BAC BLANC TS. x = t y = 2 t z = 2 2 t t. Proposition 5 : «la droite (AG) admet pour représentation paramétrique

BAC BLANC TS. x = t y = 2 t z = 2 2 t t. Proposition 5 : «la droite (AG) admet pour représentation paramétrique BAC BLANC TS La qualité de la rédaction, la clarté et la précision des raisonnements seront prises en compte dans l appréciation des copies. Exercice (5 points, non spécialistes) Polynésie juin 6 Pour

Plus en détail

4. Calculer. En déduire la nature du triangle DAC.

4. Calculer. En déduire la nature du triangle DAC. Nouvelle-alédonie novembre 2011 EXERIE 1 5 points ommun à tous les candidats Le plan complexe est muni d un repère orthonormal direct (O ; u, v). On prendra 1 cm pour unité graphique. 1. Résoudre dans

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

Antilles Guyane. Septembre Enseignement spécifique. Corrigé

Antilles Guyane. Septembre Enseignement spécifique. Corrigé Antilles Guyane Septembre 15 Enseignement spécifique Corrigé EXERCICE 1 Partie A : étude de la fonction f 1 1) a) f 1 est dérivable sur R en tant que produit de fonctions dérivables sur R et pour tout

Plus en détail

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015

Lycée Marlioz - Aix les Bains. Bac Blanc Mathématiques - Terminale S. 2 avril 2015 Lycée Marlioz - Aix les Bains Bac Blanc 205 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 2 avril 205 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

Géométrie de l espace

Géométrie de l espace [http://mp.cpgedupuydelome.fr] édité le 4 septembre 06 Enoncés Géométrie de l espace Notions communes Exercice [ 087 ] [Correction] À quelle(s) condition(s) simple(s) l intersection de trois plans de l

Plus en détail

La Réunion 2010 BAC S Corrigé maths

La Réunion 2010 BAC S Corrigé maths La Réunion BAC S Corrigé maths J.-P. W. er juillet Exercice (commun) 6 points Partie A ) a) Sur ] ;+ [, la fonction affine (x x+ ) est strictement croissante et est à valeurs dans ];+ [, intervalle sur

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 01 mars 2016 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 01 mars 2016 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycée Municipal d Adultes de la ville de Paris Mardi 0 mars 06 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Durée de l épreuve : 4 HEURES Les calculatrices sont AUTORISÉES correction obligatoire et spé

Plus en détail

Cours : SIMILITUDES PLANES.

Cours : SIMILITUDES PLANES. A la fin de ce chapitre vous devez être capable de : définir une similitude plane à partir de la conservation des rapports des distances. en déduire la définition du rapport de similitude. faire le lien

Plus en détail

Baccalauréat ES Antilles Guyane 12 septembre 2013 Corrigé

Baccalauréat ES Antilles Guyane 12 septembre 2013 Corrigé Baccalauréat ES Antilles Guyane 12 septembre 2013 Corrigé A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Partie A 1. Comme il y a équiprobabilité, pour la première roue, la probabilité que le repère

Plus en détail

Exercice On vérifient simplement que AB. CD = 0, donc (AB) et (CD) sont orthogonales.

Exercice On vérifient simplement que AB. CD = 0, donc (AB) et (CD) sont orthogonales. Corrigé Baccalauréat S National 26 Exercice 1 1. Les coordonnées des trois A, B et C vérifient bien l équation 2x + 2y z 11 =. De plus, ces trois points ne sont pas alignés et définissent donc bien un

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

ANNALES DE MATHEMATIQUES BACCALAUREAT S CENTRES ETRANGERS 2000

ANNALES DE MATHEMATIQUES BACCALAUREAT S CENTRES ETRANGERS 2000 ANNALES DE MATHEMATIQUES BACCALAUREAT S CENTRES ETRANGERS 2000 ELEMENTS DE SOLUTIONS EXERCICE 1 1. a) Nous sommes dans un cas d équiprobabilité, et donc p(e 1 ) = C1 C1 3 C1 2 C 3 = 12 55 puisque l on

Plus en détail

Corrigé du bac S Antilles-Guyane juin 2014

Corrigé du bac S Antilles-Guyane juin 2014 orrigé du bac S Antilles-Guyane juin 204 EXERIE ommun à tous les candidats Partie A 5 points. a. L arbre pondéré est le suivant : 0,80 0,85 J 0,20 0,5 J 0,0 b. D après l arbre : 0,90 ( ) p J = 0,5 0,0=0,05.

Plus en détail

Bac Blanc GE épreuve de mathématiques Année 2005/2006

Bac Blanc GE épreuve de mathématiques Année 2005/2006 Bac Blanc GE épreuve de mathématiques Année 005/00 L usage de la calculatrice est autorisée. Le prêt de calculatrice entre les candidats n est pas autorisé. La qualité de la rédaction et de la présentation,

Plus en détail

Bac S Polynésie juin 2010

Bac S Polynésie juin 2010 Bac S Polynésie juin 2010 EXERCICE 1 (5 points) Le plan complexe est rapporté à un repère orthonormal direct O u v. Partie A - Restitution organisée de connaissances Prérequis Soit z un nombre complexe

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

Courbe n 2. Courbe n 3 b. Montrer que, pour toute fonction f de (E), I f 0.

Courbe n 2. Courbe n 3 b. Montrer que, pour toute fonction f de (E), I f 0. Polynésie septembre 007 EXERCICE 7 points Commun à tous les candidats On désigne par (E) l ensemble des fonctions f continues sur l intervalle [0 ; ] et vérifiant les conditions (P ), (P ) et (P ) suivantes

Plus en détail

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL MATHÉMATIQUES. Série S ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL Session 2010 MATHÉMATIQUES Série S ENSEIGNEMENT OBLIGATOIRE Durée de l épreuve : 4 heures Coefficient : 7 Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Corrigé du baccalauréat S (spécialité) Polynésie 9 septembre 2015

Corrigé du baccalauréat S (spécialité) Polynésie 9 septembre 2015 Corrigé du baccalauréat S spécialité) Polynésie 9 septembre 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats 7 points Partie A 1. Soit u le nombre complexe 1 i. u = 1 + 1) = ; donc u= 1 1 ) i

Plus en détail

0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0

0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 5,5 6,0 EXERCICE 1 - POUR TOUS LES CANDIDATS 7 points Partie A Voici deux courbes C 1 et C 2 qui donnent pour deux personnes P 1 et P 2 de corpulences différentes la concentration C d alcool dans le sang taux

Plus en détail

b) Montrer que le vecteur 2 est normal au plan (ABE).

b) Montrer que le vecteur 2 est normal au plan (ABE). Baccalauréat S Liban 3mai 206\ XRCIC (4 points Commun à tous les candidats On considère un solide ADCBF constitué de deux pyramides identiques ayant pour base commune le carré ABCD de centre I. Une représentation

Plus en détail

Montrer que le vecteur n

Montrer que le vecteur n Polynésie juin 4 EXERCICE (5 points) Dans un repère orthonormé de l espace, on considère les points A (5 ; 5 ; ), B ( ; ; ), C ( ; ; ) et D (6 ; 6 ; ).. Déterminer la nature du triangle BCD et calculer

Plus en détail

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n Correction du Contrôle commun de Mathématiques - Sujet A - TS Exercice 5 points. n N, u n = n n( n + = n ) n( + = n ) n + n Or par somme, on a lim n = et lim + n =. Ainsi par quotient, lim u n = réponse

Plus en détail

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES

GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES GEOMETRIE ANALYTIQUE EQUATIONS DE DROITES Géométrie analytique C est Descartes (1596-1650) qui a développé l idée de représenter les figures géométriques dans un repère, les points du plan étant définis

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

Géométrie plane. 1. Points, segments, droites, demi-droites

Géométrie plane. 1. Points, segments, droites, demi-droites Géométrie plane 1 Points, segments, droites, demi-droites Définition L espace de travail de la géométrie plane est le plan, noté Π Il peut être visualisé comme une feuille d'épaisseur nulle qui s'étend

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 36

Sylvain ETIENNE 2003/2004 PLC1, groupe 1 Exposé 36 THEOREME DE L ANGLE INSCRIT : ENSEMBLE DES POINTS M DU PLAN TELS QUE L ANGLE ORIENTE DE DROITES OU DEMI-DROITES (MA MB SOIT CONSTANT COCYCLICITE APPLICATIONS Niveau : complémentaire Pré-requis : Vecteurs

Plus en détail

Correction du Baccalauréat S Polynésie 13 juin 2014

Correction du Baccalauréat S Polynésie 13 juin 2014 Correction du Baccalauréat S Polynésie 3 juin 4 Eercice Commun à tous les candidats Dans un repère orthonormé de l espace, on considère les points A(5 ; 5 ; ), B( ; ; ), C( ; ; ), et D(6 ; 6 ; ). Nature

Plus en détail

Baccalauréat S Pondichéry 17 avril 2015

Baccalauréat S Pondichéry 17 avril 2015 Baccalauréat S Pondichéry 17 avril 2015 EXERCICE 1 Commun à tous les candidats Partie A 4 points Soit f la fonction définie sur R par f x)= 3 1+e 2x Sur le graphique ci-après, on a tracé, dans un repère

Plus en détail

(6 points) c. En déduire les dimensions de la boîte ayant le plus grand volume et donner la valeur de volume maximal. (5 points)

(6 points) c. En déduire les dimensions de la boîte ayant le plus grand volume et donner la valeur de volume maximal. (5 points) Bac Blanc - Maths - 1S - 08/0/01 (sur 0 durée : h - calculatrice autorisée La présentation et la qualité de rédaction seront prises en compte dans la note EXERCICE 1 Un chocolatier veut faire fabriquer

Plus en détail

Les implications dans le raisonnement mathématique

Les implications dans le raisonnement mathématique I Les implications dans le raisonnement mathématique I.1 L implication - L équivalence 1 (De la logique en français) Une réunion de cosmonautes du monde entier a lieu à Paris. Les cosmonautes américains

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

( ) Exercice 1. Exercice 5

( ) Exercice 1. Exercice 5 Exercice 1 1. Effectuer : A 11 5 4 B F + 5 4 6 7 C G 7 1 + 7 Exercice 5 1 5 5 5 5 D 1 6 1+ 6 E 1 H 18 0. Compléter alors le tableau suivant en utilisant le symbole ou. A B C D E F G H IN On donne Ax x

Plus en détail

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions

Seconde Sujet 1 DST1 configurations du plan généralités sur les fonctions Seconde 2 2-24 Sujet Exercice : ( points) DBG est un triangle équilatéral. C est le demi-cercle de centre A et de diamètre [BD]. ) Montrer que (DP) et (BG) sont perpendiculaires. M est le point d intersection

Plus en détail

Bac blanc février 2013

Bac blanc février 2013 Lycée Louise MICHEL Terminales S MATHEMATIQUES Année 0/0 Bac blanc février 0 (Durée : 4 heures.) Les calculatrices sont autorisées, mais l échange de tout matériel est interdit. Les brouillons ne sont

Plus en détail

Bac Blanc Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths. 18 avril 2011

Bac Blanc Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths. 18 avril 2011 Lycée Marlioz - Aix les Bains Bac Blanc 0 Mathématiques - Terminale S Candidats n ayant pas choisi la spécialité maths 8 avril 0 Pour cette épreuve, la rédaction, la clarté et la précision des explications

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 9 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

Cours géométrie dans l espace

Cours géométrie dans l espace I. Solides usuels : volume et section par un plan avé droit yramide Tétraèdre a b c V = abc Si le plan est parallèle à une arête, la section est un rectangle. V = 1 Base hauteur Si est parallèle à la base,

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2010

Corrigé du baccalauréat S Amérique du Sud novembre 2010 Durée : 4 heures Corrigé du baccalauréat S Amérique du Sud novembre 2 EXERCICE Commun à tous les candidats points La droite D a pour vecteur directeur u ( ; 3 ; lequel n est manifestement pas colinéaire

Plus en détail

ABCD est un carré donc les distances des côtés sont égales. On note.

ABCD est un carré donc les distances des côtés sont égales. On note. Exercice 1 ABCD est un carré donc les distances des côtés sont égales. On note. Pour construire E et F, on a tracé un quart de cercle de centre D passant par B. On peut ainsi noter car ils correspondent

Plus en détail

() Compléments de géométrie 1 / 33

() Compléments de géométrie 1 / 33 Compléments de géométrie () Compléments de géométrie 1 / 33 1 Compléments de géométrie dans le plan complexe 2 Calcul barycentrique 3 Transformations du plan complexe () Compléments de géométrie 2 / 33

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2005

Corrigé du baccalauréat S Amérique du Sud novembre 2005 Corrigé du baccalauréat S Amérique du Sud novembre 5 EXERCICE 4 points Partie A. On a une loi binomiale de paramètres n = 5 et p =,. On a donc px = )= 5),,98 48,858,9.. La probabilité cherchée est px >

Plus en détail

NOM : PRODUIT SCALAIRE 1ère S

NOM : PRODUIT SCALAIRE 1ère S Exercice 1 R D Q C Soit un carré ABCD. On construit un rectangle AP QR tel que : P et R sont sur les côtés [AB] et [AD] du carré ; AP = DR. Le problème a pour objet de montrer que les droites (CQ) et (P

Plus en détail

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE

BACCALAUREAT GENERAL. MATHEMATIQUES Série S. ENSEIGNEMENT de SPECIALITE Session 2006 BACCALAUREAT GENERAL Session 2006 MATHEMATIQUES Série S ENSEIGNEMENT de SPECIALITE Durée de l épreuve : 4 heures Coefficient : 9 Les calculatrices électroniques de poche sont autorisées, conformément

Plus en détail

Baccalauréat série S Amérique du Sud 17 novembre 2014 Corrigé

Baccalauréat série S Amérique du Sud 17 novembre 2014 Corrigé Baccalauréat série S Amérique du Sud 17 novembre 014 orrigé A. P. M. E. P. Exercice 1 6 points ommun à tous les candidats Une entreprise est spécialisée dans la fabrication de ballons de football. ette

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Baccalauréat S Métropole juin 2005

Baccalauréat S Métropole juin 2005 Baccalauréat S Métropole juin 2005 EXERCICE 1 Commun à tous les candidats Cet exercice constitue une restitution organisée de connaissances. Partie A : question de cours 4 points On suppose connus les

Plus en détail

Type bac janvier Corrigé

Type bac janvier Corrigé Exercice (Métropole 24) Commun à tous les élèves Type bac janvier 27 - Corrigé Partie A ) L image de par la fonction f est : f () +e. Le point d abscisse sur la courbe C, représentative de la fonction

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h)

BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S. DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) BACCALAURÉAT BLANC DU LYCÉE PRÉVERT. SESSION DE FÉVRIER 2013 MATHÉMATIQUES SÉRIE : S DURÉE DE L ÉPREUVE : 4 HEURES (8h 12h) COEFFICIENT : 7 Ce sujet comporte 5 pages numérotées de 1 à 5 L utilisation d

Plus en détail

Baccalauréat S Asie 16 juin 2015 Corrigé

Baccalauréat S Asie 16 juin 2015 Corrigé Baccalauréat S Asie 16 juin 015 Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats Partie A Un concurrent participe à un concours de tir à l arc, sur une cible circulaire. À chaque

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Concours Fesic Puissance mai 2015

Concours Fesic Puissance mai 2015 Concours Fesic Puissance 6 mai 05 Calculatrice interdite ; traiter exercices sur les 6 en h 30 ; répondre par Vrai ou Faux sans justification + si bonne réponse, si mauvaise réponse, 0 si pas de réponse,

Plus en détail

Droites et plans de l espace - Vecteurs

Droites et plans de l espace - Vecteurs Chapitre 8 Droites et plans de l espace - Vecteurs Objectifs du chapitre : item références auto évaluation étude de la position relative de droite(s) et de plan(s) vecteurs de l espace formules dans un

Plus en détail

x 1 0 et que, sur l intervalle ; 2 4

x 1 0 et que, sur l intervalle ; 2 4 Polynésie septembre 015 EXERCICE 1 7 points Commun à tous les candidats Les parties A et B peuvent être traitées de façon indépendante. On rappelle que la partie réelle d un nombre complexe z est notée

Plus en détail

Corrigé du baccalauréat S Métropole juin 2004

Corrigé du baccalauréat S Métropole juin 2004 Corrigé du baccalauréat S Métropole juin 4 EXERCICE. On a pour tout n N, u n+ = u n + n+, donc u n+ u n = n+. Or n+>, donc u n+ u n > quel que soit n N. Conclusion : la suite (u n ) est strictement croissante..

Plus en détail

Baccalauréat S Métropole 19 juin 2014

Baccalauréat S Métropole 19 juin 2014 Baccalauréat S Métropole 19 juin 2014 EXERCICE 1 Partie A A. P. M. E. P. Dans le plan muni d un repère orthonormé, on désigne par C 1 la courbe représentative de la fonction f 1 définie sur R par : f 1

Plus en détail

Baccalauréat Blanc 2016 : correction

Baccalauréat Blanc 2016 : correction Baccalauréat Blanc 016 : correction EXERCICE 1 Le chikungunya est une maladie virale transmise d un être humain à l autre par les piqûres de moustiques femelles infectées. Un test a été mis au point pour

Plus en détail

Plan complexe avec GéoPlan

Plan complexe avec GéoPlan Plan complexe avec GéoPlan Des carrés autour d'une figure - études de configurations avec les complexes. Sommaire 1. Trois carrés Deux triangles rectangles isocèles - Médiane de l'un, hauteur de l'autre

Plus en détail

Équations cartésiennes de plans et de droites

Équations cartésiennes de plans et de droites Chapitre 4 Équations cartésiennes de plans et de droites Sommaire 4.1 Équation cartésienne d un plan........................................... 25 4.1.1 Équation cartésienne d un plan........................................

Plus en détail

Corrigé - Baccalauréat S Métropole La Réunion 12 septembre 2016

Corrigé - Baccalauréat S Métropole La Réunion 12 septembre 2016 Corrigé - Baccalauréat S Métropole La Réunion septembre 6 A. P. M. E. P. EXERCICE COMMUN À TOUS LES CANDIDATS 6 POINTS Partie On estime qu en la population mondiale est composée de 4,6 milliards de personnes

Plus en détail

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr

Sujet Bac Maths SUJET 3 ANTILLES - GUYANE alainpiller. fr Sujet Bac Maths SUJET 3 ANTILLES - GUYANE 2016 alainpiller. fr Sujets Bac Maths 2016 Annales Mathématiques Bac 2016 Sujets + Corrigés - Alain Piller Antilles - Guyane Annales Bac Maths 2016 BACCALAURÉAT

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail

Correction Ecricome 2007 Voie technologique

Correction Ecricome 2007 Voie technologique ECRICOME 27 Voie Technologique Correction Page Correction Ecricome 27 Voie technologique La correction comporte pages. Exercice. Etude d une fonction g auxiliaire. _ (a) Soit P la fonction polynomiale

Plus en détail

L ensemble R des nombres réels

L ensemble R des nombres réels L ensemble R des nombres réels Plan du chapitre 1 L ensemble des nombres réels page 11 Description géométrique des réels page 1 Inégalités dans R page 1 Distance entre deux réels Intervalles de R page

Plus en détail