LEÇON N 56 : 56.1 Monotonie de la suite

Dimension: px
Commencer à balayer dès la page:

Download "LEÇON N 56 : 56.1 Monotonie de la suite"

Transcription

1 LEÇON N 56 : Étude de suites de nombres réels définies par une relation de récurrence u n+1 = f(u n ) et une condition initiale. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation d une calculatrice. Pré-requis : Suites numériques : monotonie, convergence, divergence ; Théorème des valeurs intermédiaires ; R est complet : toute suite de Cauchy y est convergente. Notations : Soient I un intervalle non vide de R et f une application définie sur I telle que f(i) I. Il existe alors une unique suite (u n ) n N (notée simplement (u n ) dans la suite) définie par : { u0 I, On note encore F = {x I f(x) = x}. u n+1 = f(u n ), n N Monotonie de la suite Théorème 1 : (i) Si f est croissante sur I alors (u n ) est monotone et de plus, a. Si f(u 0 ) u 0, alors (u n ) est croissante, b. Si f(u 0 ) u 0, alors (u n ) est décroissante ; (ii) Si f est décroissante sur I, alors (u n ) n est pas monotone, mais les sous-suite (p n ) = (u 2n ) et (i n ) = (u 2n+1 ) le sont, et a. Si u 2 u 0, alors (p n ) est croissante et (i n ) décroissante, b. Si u 2 u 0, alors (p n ) est décroissante et (i n ) croissante. (i) Montrons par récurrence que pour tout entier naturel n, u n+1 u n (resp. ). L initialisation est assurée par l hypothèse. Supposons alors que u n u n 1 (resp. ). Alors f croissante f(u n ) f(u n 1 ) (resp. ) déf. u n+1 u n (resp. ).

2 2 Étude des suites définie par une relation de récurrence u n+1 = f(u n ) (ii) Supposons que u n 1 u n. Alors f décroissante f(u n 1 ) f(u n ) (resp. ) déf. u n u n+1 (resp. ), donc (u n ) n est pas monotone. Notons que p n+1 = f f(p n ) et i n+1 = f f(i n ), et f f est croissante. En supposant u 2 u 0 (resp., ce qui précède nous permet d affirmer que u 3 u 1 (resp. ). Par application de (i), on en déduit que (p n ) est croissante (resp. décroissante) et (i n ) décroissante (resp. croissante). Représentation et interprétation graphiques Dans un repère orthonormé, on trace la première bissectrice (la droite d équation y = x) et la courbe représentative de f. Expliquer comment on construit la suite (u n ). y = x u 0 u 2 u 4 u 6 u 5 u 3 u 1 Remarque 1 : Si I est un fermé, alors toute suite (u n ) monotone converge dans I. À partir de maintenant, on suppose que I est fermé Comportement asymptotique de la suite Notons F l ensemble des points fixes de la fonction f. Proposition 1 : Supposons f continue sur I. Si la suite (u n ) converge vers une limite finie L, alors L F.

3 Étude des suites définie par une relation de récurrence u n+1 = f(u n ) 3 Supposons que (u n ) converge vers une limite finie L. Dans ce cas, ( ) lim u n = lim u n+1 = lim f(u n) fcont. = f lim u n. n n n n Puisque lim n u n = L I (car I fermé), on a L = f(l) par unicité de la limite. Remarque 2 : Il en résulte qu une condition nécessaire pour que (u n ) converge est que F Cas où f est croissante D après le théorème 1, (u n ) est monotone. Si I = [a,b], alors (u n ) converge et donc F. Étudions le cas (u n ) croissante (l autre cas s étudiant de manière analogue). Proposition 2 : (i) Si F [u 0, + [ =, alors lim n = + ; (ii) Si F [u 0, + [, alors (u n ) converge en croissant vers min(f [u 0, + [). (i) On raisonne par contraposée. Supposons u n L < +. Alors L F (proposition 1), et (u n ) est croissante implique que L u 0, d où F [u 0, + [. (ii) Puisque nous sommes dans le cas où f est croissante, et qu il en est de même de (u n ) par supposition, le théorème 1 nous assure que f(u 0 ) u 0. Puisque f est continue, et que F [u 0, + [, on en déduit qu il existe un espace entre la courbe de f et la première bissectrice (entre les abscisses u 0 et min(f [u 0, + [)), dans lequel reste l escargot de la construction de la suite (u n ) strictement croissante (en effet, si la suite possédait deux termes consécutifs égaux, c est qu à partir de ce rang, u n = min(f [u 0, + [), et la convergence est assurée). La suite (u n ) est strictement croissante et bornée dans [ u 0, min(f [u 0, + [) ], elle converge donc vers une limite finie L qui est donc un point fixe de f (proposition 1). Le seul point fixe de cet intervalle est min(f [u 0, + [). Représentations graphiques : u 0 u 1 u 2 u3 u 4u5 u 0 u 1 u 2 Cas (i) Cas (ii)

4 4 Étude des suites définie par une relation de récurrence u n+1 = f(u n ) Cas où f est décroissante Proposition 3 : La suite (u n ) converge si et seulement si ses sous-suites (i n ) = (u 2n+1 ) et (p n ) = (u 2n ) sont adjacentes. " " : Trivial, en utilisant le théorème 1. " " : Par la proposition 1, les suites (i n ) et (p n ) convergent chacune vers un point fixe de f f. Notons L leur limite commune et soit ε > 0. Il existe alors N N tel que n N vérifie u 2n L < ε et u 2n+1 L < ε. Par inégalité triangulaire, on trouve que u 2n u 2n+1 < 2ε. Soient p, q N tels que p < q. On a alors u p u q u p u p u q 1 u q = u p+i 1 u p+i (q p) 2ε, donc (u n ) est une suite de Cauchy dans I, qui converge alors vers une valeur notée l I (I fermé). D après la proposition 1, l = f(l), donc l = f(l) = f f(l) et l est point fixe de f f, d où L = l. q p i= Cas où f est contractante Définition 1 : f est dite contractante si k [0, 1[ x, y I, f(x) f(y) k x y. Théorème 2 : Si f est contractante, alors f admet un unique point fixe L vers lequel converge la suite (u n ), convergence contrôlée par l inégalité u n L k n u 0 L. Convergence : Montrons que la suite (u n ) est une suite de Cauchy. Pour tous entiers n et p, on a Posons alors S n = u n+p u n u n+i+1 u n+i f(u n+i ) f(u n+i 1 ) k u n+i u n+i 1 k i u n+1 u n ( ) k i u n+1 u n ( ) k i+n u 1 u 0. n k i, de sorte que k i+n = S n+ S n 1. ( ) k i k n u 1 u 0

5 Étude des suites définie par une relation de récurrence u n+1 = f(u n ) 5 Or k [0, 1[, donc (S n ) est convergente, et est donc une suite de Cauchy. On en déduit que Finalement, on trouve que ε > 0, N N n N, p N, S n+ S n 1 < ε. u n+p u n S n+ S n 1 u 1 u 0 < ε u 1 u 0, nous amenant à écrire que (u n ) est une suite de Cauchy, qui converge donc vers une limite L I. Existence du point fixe : Par la proposition 1, L est point fixe de f. Unicité du point fixe : Supposons qu il existe deux points fixes distincts L et L de f. Alors ce qui est impossible. L L = f(l) f(l ) k L L < L L car k < 1, Convergence contrôlée : On vérifie l inégalité par récurrence. L initialisation au rang n = 0 est évidente. Supposons alors l hypothèse de récurrence (H.R.) vraie au rang n, et montrons qu elle l est toujours au rang (n + 1) : u n+1 L = f(u n ) f(l) k u n L H.R. k n+1 u 0 L. Remarque 3 : Soit (u n ) une suite définie par une relation de récurrence qui converge vers une limite L inconnue. À la calculatrice, lorsqu il s agit de trouver l entier N tel que n N, u n L 10 p (p donné), il faut utiliser l une des méthodes suivantes : Si (u n ) est non monotone, alors (proposition 3) les sous-suites (i n ) et (p n ) sont adjacentes, donc il suffit de comparer p n i n à 10 p. Si (u n ) est monotone, alors il est nécessaire d avoir une majoration a priori de l erreur, par exemple par le théorème 2. ATTENTION : Soit u n = n. À cause de la précision limitée des calculatrices (10 ou 12 chiffres, généralement) en mode "flottant" (calculs avec virgule), cette suite convergera vers la valeur N, 1 où N sera l entier tel que = 0 (au sens de la calculatrice!! en effet, au bout d un certain temps, le N+1 nombre 1 devient si petit quand n augmente que la calculatrice le remplacera par 0). Or cette suite tend n clairement vers + (série harmonique), donc la convergence à la calculatrice n entraîne pas celle en réalité Applications Méthode des Babyloniens Soient a R + et la suite de Héron définie par u 0 R + u n+1 = 1 2 (u n + aun ), n N.

6 6 Étude des suites définie par une relation de récurrence u n+1 = f(u n ) (i) Montrer que pour tout entier naturel n, on a u n+1 a = (u n a) 2. (ii) En déduire que (u n ) est décroissante et que (u n ) converge vers a. Solution : (i) Soit n N. Alors (u n a) 2 = un 2 a + a = un 2 a + a = u n+1 a. Remarquons alors que puisqu un carré est toujours positif et que u n 0 (facile à montrer par récurrence), on a alors u n+1 a 0 pour tout n N. (ii) On a que u n+1 u n = a>0 = (u n a) 2 0 (rem. du (i)) {}}{ ( a un ) 2 u n }{{} 0 u n + a = un 2 a + a 0 ( {}} ) { a + un 0. 2un 2 + a = a u2 n prouvant ainsi que la suite (u n) est décroissante. De plus, elle est minorée par 0 puisque tous ses termes sont par construction positifs, donc elle converge vers une limite L qui (d après la proposition 1) vérifie L = 1 ( L + a ) 1 2 L 2 L = 1 a 2 L L2 = a, en utilisant la fonction f : R + R + x 1 ( x + 1 ). 2 x On en déduit alors que L = a, l autre solution de l équation précédente ne convient pas puisque a R Méthode de Newton Supposons f strictement convexe sur I = [a,b] et f(a) f(b) < 0. Par le théorème des valeurs intermédiaires, il existe un unique x ]a,b[ tel que f(x) = 0. La suite définie par converge alors vers x. u 0 [a,b] u n+1 = u n f(u n) f (u n ), n N Exemple : f(x) = x 2 a, pour a > 0. On a alors f (x) = 2x, d où u n+1 = u n u2 n a = 1 2 (u n + aun ). On pourra montrer, par approfondissement, que la convergence de cette suite vers a est beaucoup plus rapide qu avec la méthode des Babyloniens. c 2010 par Martial LENZEN. Aucune reproduction, même partielle, autres que celles prévues à l article L du code de la propriété intellectuelle, ne peut être faite sans l autorisation expresse de l auteur.

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N

ETUDE des SUITES RECURRENTES. 1 Intervalle stable par f - Existence et encadrement des termes de (u n ) n N Lycée Dominique Villars ECE COURS ETUDE des SUITES RECURRENTES On appelle suite récurrente toute suite (u n ) n N telle qu il existe une fonction réelle f : I R telle que : n N, u n+ = f(u n ) On va voir

Plus en détail

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone.

LEÇON N 60 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. LEÇON N 6 : Image d un intervalle par une fonction continue, cas d un segment. Cas d une fonction continue strictement monotone. Pré-requis : I est un intervalle si a,b I a b, [a,b] I ; Toute partie non

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application.

LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. LEÇON N 54 : Suites divergentes. Cas des suites admettant une limite infinie : comparaison, opérations algébriques, composition par une application. Pré-requis : Suites : définition, bornées, convergentes,

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2

Suites numériques. Z, auctore. 4 octobre u n+1 = u n + r. (1) u n = u 0 + n r (2) u 0 + u 1 + u u n = (n + 1) u 0 + u n 2 Suites numériques Z, auctore 4 octobre 005 1 Suites arithmétiques Définition. Une suite de nombres (u n ) n N est arithmétique lorsqu il existe un nombre r tel que pour tout entier n on ait Ce nombre r

Plus en détail

Fonction homographique - tangente à une courbe - suite récurrente

Fonction homographique - tangente à une courbe - suite récurrente f est la fonction définie sur D = ]- ;3[ ]3 ;+ [ par f(x) = x + 1 3 - x. 1) a) Etudier les variations de f sur D, ses limites aux bornes de D puis construire sa représentation graphique C f dans un repère

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Chapitre 12 : Étude locale des fonctions : limites

Chapitre 12 : Étude locale des fonctions : limites Chapitre 12 : Étude locale des fonctions : limites Dans tout ce chapitre, I désigne un intervalle de R, x 0 R, f est une fonction définie sur son domaine de définition D f à valeurs réelles. C f désigne

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

LEÇON N 66 : Théorème de Rolle. Applications.

LEÇON N 66 : Théorème de Rolle. Applications. LEÇON N 66 : Théorème de Rolle. Applications. Pré-requis : Notions de limite, continuité, dérivabilité ; Théorème des valeurs intermédiaires ; L image d un segment par une application continue est un segment.

Plus en détail

Continuité des fonctions réelles

Continuité des fonctions réelles Chapitre 2 Continuité des fonctions réelles 2.1 Généralités Définition 2.1.1. Une fonction réelle f est une application d une partie D de R dans R. La partie D est appelée ensemble (ou domaine) de définition

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

Les suites numériques

Les suites numériques Les suites numériques chapitre 4 I Premier regard Définition : suite numérique Une suite numérique est une liste de nombres réels, numérotés généralement par des indices, entiers naturels consécutifs 0,

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

TD 3 Analyse (Bolzano-Weierstrass, fonctions numériques, point fixe, Newton)

TD 3 Analyse (Bolzano-Weierstrass, fonctions numériques, point fixe, Newton) Centre Condorcet 1 TD 3 Analyse (Bolzano-Weierstrass, fonctions numériques, point fixe, Newton) Divers exercice 1 Soit a ]0, 1[ fixé. Il s agit de trouver toutes les applications f : IR IR continues en

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre V : Suites numériques 1 Un peu de topologie de R On a vu dans le chapitre

Plus en détail

Suite récurrente définie par une fonction

Suite récurrente définie par une fonction Suite récurrente définie par une fonction Rédigé par un enseignant et un élève de l Ecole Polytechnique (Vincent Langlet). Niveau : Approfondir la Terminale S ou Première Année post bac Difficulté : Exercice

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

1 Introduction sur les suites numériques

1 Introduction sur les suites numériques ISEL - Année Mathématiques SUITES NUMERIQUES Introduction sur les suites numériques. Dénition Dénition On appelle suite réelle toute application U d'une partie A de IN dans IR. A IR U : avec A IN. L'image

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle I) Définition de la fonction exponentielle 1) Théorème 1: Il existe une unique fonction f dérivable sur R telle que : Pour tout nombre x, f (x) = f(x), et f(0) = 1 Cette fonction

Plus en détail

Limites et Continuité

Limites et Continuité Voisinages, Points adhèrents Limites Fonctions continues Les grands théorèmes sur les fonctions continues Département de Mathématiques, Faculté des Sciences de Fès. Octobre 2013 Voisinages, Points adhèrents

Plus en détail

Convergence des suites

Convergence des suites Convergence des suites Cours maths Terminale S Dans ce module consacré à l étude de la convergence d une suite, on commence par redéfinir rigoureusement la notion de limite finie d une suite. Ensuite,

Plus en détail

UFR Mathématiques Année CAPES. Suites numériques

UFR Mathématiques Année CAPES. Suites numériques Université de Rennes 1 Ronan Quarez UFR Mathématiques Année 2008-2009 CAPES 1 Critère de Cauchy 1.1 QCM Suites numériques a) Toute suite de Cauchy, d entiers relatifs, converge dans Z? b) Toute suite de

Plus en détail

Des démonstrations en analyse

Des démonstrations en analyse Préparation au CAPES (IUFM/ULP) Nicole Bopp Strasbourg, novembre 007 Des démonstrations en analyse 1. Caractérisations équivalentes du fait que R est complet L une des trois propriétés ci-dessous est admise

Plus en détail

Université Denis Diderot Paris 7 ( ) Devoir maison 2

Université Denis Diderot Paris 7 ( ) Devoir maison 2 Université Denis Diderot Paris 7 (03-04) Maths, Agro & Véto Devoir maison Exercice [Sujet Analyse 03] Soit la fonction d une variable réelle f définie sur D = [0,+ [ par f(x) = xe x +x. On appelle Cf la

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Analyse I : suites, limites et continuité

Analyse I : suites, limites et continuité Analyse I : suites, limites et continuité Maxime Legrand ENS - 7 décembre 2013 http ://matholympia.blogspot.fr/ 1 Petits rappels sur les quantificateurs Définition 1. On introduit (ou rappelle) les quantificateurs

Plus en détail

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire

Terminale S Problème de synthèse n 1 Fonctions irrationnelles - Fonction ln - Suites - Calcul d'aire Terminale S Problème de synthèse n f est la fonction définie sur par f() = orthonormal (O; i ; j )(unité graphique : 2 cm). A. Etude de la fonction f + - et C sa courbe représentative dans un repère ²

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES

EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES EABJM Bac Blanc Novembre 2009 MATHÉMATIQUES Terminales S - S2 N. Chiffot S. Coursaget J. Giovendo Durée : 4 heures. Nombre de pages : 7. L utilisation de la calculatrice est autorisée. Corrigé TS - TS2

Plus en détail

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : Soit ] [ la fonction définie par : Déterminer les

Plus en détail

Limites et continuité de fonctions

Limites et continuité de fonctions Chapitre 12 Limites et continuité de fonctions Mathématiques PTSI Lycée Déodat de Séverac Mathématiques PTSI (Lycée Déodat de Séverac) Limites et continuité de fonctions 1 / 53 Notations : On note, sauf

Plus en détail

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

Etude de fonction : notion de continuité

Etude de fonction : notion de continuité Etude de fonction : notion de continuité Leur faire lire des rappels sur les fonctions pour le jour en question. Toutes les fonction considérées dans ce chapitre sont définies sur ou une partie de et sont

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n

Correction du Contrôle commun de Mathématiques - Sujet A - TS. 2 1 n. n ) n Correction du Contrôle commun de Mathématiques - Sujet A - TS Exercice 5 points. n N, u n = n n( n + = n ) n( + = n ) n + n Or par somme, on a lim n = et lim + n =. Ainsi par quotient, lim u n = réponse

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

LEÇON N 17 : Équations du second degré à coefficients réels ou complexes.

LEÇON N 17 : Équations du second degré à coefficients réels ou complexes. LEÇON N 17 : Équations du second degré à coefficients réels ou complexes Pré-requis : Nombres complexes : définition et propriétés ; Notions d anneaux, de corps ; Théorème de Liouville) 171 Équations du

Plus en détail

Chapitre 8 : Fonctions continues

Chapitre 8 : Fonctions continues Ce document est mis à disposition selon les termes de la licence Creative Commons «Attribution - Partage dans les mêmes conditions 4.0 International». https://melusine.eu.org/syracuse/immae/ Chapitre 8

Plus en détail

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle

Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Chapitre 1 Suites numériques, Fonctions numériques de la variable réelle Notations. K désigne R ou C. S (K désigne l'ensemble des suites d'éléments de K et u, v des éléments de S (K. I, J désignent des

Plus en détail

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES

(Q) non vide et majorée, alors il existe dans R un plus petit majorant de A, appelé la borne CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES CHAPITRE 1 R, BORNE SUPÉRIEURE ET CONSÉQUENCES 1.1. Propriétés de R On suppose connus N = {0, 1, 2, 3,...}, l anneau des entiers Z = {..., 2, 1, 0, 1, 2,...} et le corps des rationnels Q = { a a, b Z,

Plus en détail

Exercices type bac sur les suites.

Exercices type bac sur les suites. Exercices type bac sur les suites Corrigés NB : On ne donne dans ce document que des indices, la preuve complète reste à faire Exercice D après sujet du baccalauréat Centres étrangers, juin 003 On définit,

Plus en détail

La fonction exponentielle

La fonction exponentielle 1 et définition La fonction exponentielle Il existe une unique fonction f dérivable sur R telle que :.................. Définition Cette fonction est appelée............................ On note : Ainsi

Plus en détail

1 Inégalité des accroissements nis. Chantal Menini 18 mai Résultat.

1 Inégalité des accroissements nis. Chantal Menini 18 mai Résultat. Inégalité des accroissements nis. Exemples d'applications à l'étude de suites et de fonctions. L'exposé pourra être illustré par un ou des exemples faisant appel à l'utilisation d'une calculatrice. Chantal

Plus en détail

Chapitre 4. Applications

Chapitre 4. Applications Chapitre 4 Applications 1. Définitions et exemples Définition 4.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

Continuité d une fonction, Théorème des valeurs intermédiaires

Continuité d une fonction, Théorème des valeurs intermédiaires Continuité d une fonction, Théorème des valeurs intermédiaires I) Notion de continuité 1) Définition On dit qu une fonction est continue sur un intervalle I lorsque le tracé de sa courbe représentative

Plus en détail

CAPES externe 2012 de Mathématiques Première composition : CORRIGÉ

CAPES externe 2012 de Mathématiques Première composition : CORRIGÉ ............................................................................................................. CAPES externe 202 de Mathématiques Première composition : CORRIGÉ Martial LENZEN webmaster@capes-de-maths.com..............................................................................................................

Plus en détail

APPLICATIONS DE LA DERIVATION

APPLICATIONS DE LA DERIVATION APPLICATIONS DE LA DERIVATION 1 I. Sens de variation d une fonction ; extréma : 1) Cas d une fonction constante : On a vu que si f est une fonction constante définie sur un intervalle I de IR alors f (x)

Plus en détail

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques

Suites. Chapitre 2. 1 Généralités sur les suites. Sommaire. 1.1 Définition d une suite. 1.2 Suites arithmétiques et suites géométriques Chapitre 2 Suites Sommaire 1 Généralités sur les suites....................................... 1.1 Définition d une suite...................................... 1.2 Suites arithmétiques et suites géométriques..........................

Plus en détail

MPSI 2 : DL 03. pour le 12 décembre 2003

MPSI 2 : DL 03. pour le 12 décembre 2003 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère

Plus en détail

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point

LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point LEÇON N 58 : Limite finie d une fonction à valeurs réelles en un point a de R. Opérations algébriques sur les ites. Continuité d une fonction en un point. Exemples. Pré-requis : Limites d une suite réelle

Plus en détail

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1 SUITES NUMÉRIQUES 1 Généralités 1.1 Définition Définition 1.1 On appelle suite réelle toute famille d éléments de R indexée sur N ou, de manière équivalente, toute application de N dans R. L ensemble des

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

Nouvelles fonctions de référence

Nouvelles fonctions de référence Nouvelles fonctions de référence I. Fonction valeur absolue Abs : x 1. Valeur absolue et distance Soit un axe (O ; ) et soient les points A et A d abscisses respectives 3 et 3 sur cet axe. Les distances

Plus en détail

RAISONNEMENT PAR RECURRENCE

RAISONNEMENT PAR RECURRENCE Exemple: RAISONNEMENT PAR RECURRENCE Montrons par récurrence que pour tout n N *, P (n) : i=n i = 1 + + 3 +...+ ( n -1) + n = n n1 n n1 Initialisation : pour n = 1 i =1 et = 111 =1 donc P(1) est vraie.

Plus en détail

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle

Chapitre 4. Fonction exponentielle. Objectifs du chapitre : item références auto évaluation. propriétés numériques de la fonction exponentielle Chapitre 4 Fonction exponentielle Objectifs du chapitre : item références auto évaluation propriétés numériques de la fonction exponentielle propriétés de la fonction exponentielle calculs de ites avec

Plus en détail

FONCTIONS POLYNOMES DU SECOND DEGRE

FONCTIONS POLYNOMES DU SECOND DEGRE FONCTIONS POLYNOMES DU SECOND DEGRE I- Comparaison de deux nombres réels Exemple On veut comparer les nombres a et a 2 pour a nombre réel positif on nul quelconque. Si a = 0, 5, alors a 2 = 0, 25 et on

Plus en détail

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse UNIVERSITÉ DE PARIS 8 Département de Mathématiques et Informatique Cours d analyse Pierre-Louis CAYREL inspiré par les documents de : Guy Laffaille, Christian Pauly et Arnaud Bodin Cours Intensif 009-010

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

Fonction d une variable réelle

Fonction d une variable réelle Fonction d une variable réelle 1 Fonction d une variable réelle : généralités Définitions Fonctions et opérations Fonctions et ordre Propriétés particulières Monotonie Limites Limites et opérations Limites

Plus en détail

Correction Devoir à la maison commun Saint-Charles La Cadenelle

Correction Devoir à la maison commun Saint-Charles La Cadenelle Correction Devoir à la maison commun Saint-Charles La Cadenelle Exercice On considère les matrices 0 5 0 0 5 0 0 0 0 0 0 4 ; 0 2 ; 0 2 0 ; 0 0 4 0 4 0 0 2 0 0 2 0 0 0 ) Soit la matrice 4 0 4 2 a) Prouver

Plus en détail

Suites. Une suite est une... suite de nombre. Définition 1. Une suite de nombres réels est une fonction a: N R

Suites. Une suite est une... suite de nombre. Définition 1. Une suite de nombres réels est une fonction a: N R Convergence Suites Une suite est une... suite de nombre. Définition. Une suite de nombres réels est une fonction a: N R {a n } n 0 a 0, a, a 2, a 3, Convergence d une suite Définition 2. La suite {a n

Plus en détail

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0

a) ln(x + 1) ln(2 x) = 0 b) ln(x + 1) ln(2 x) 0 c) ln x + ln(3x + 2) > 0 Savoir calculer avec des logarithmes Simplifier les expressions suivantes : Fonction logarithme : Exercices Corrigés en vidéo avec le cours sur jaicompris.com a) ln 6 ln 2 b) ln e 2 c) ln 1 e x d) e ln

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Parties majorées, minorées - borne supérieure, borne inférieure

Parties majorées, minorées - borne supérieure, borne inférieure Aix-Marseille Université 2012-2013 Analyse I PLANCHE 1 : LIMITES, CONTINUITÉ Parties majorées, minorées - borne supérieure, borne inférieure Exercice 1 Soit a, b R. Montrer les implications suivantes :

Plus en détail

LEÇON N 59 : 59.1 Limite à l infini Limite finie et infinie

LEÇON N 59 : 59.1 Limite à l infini Limite finie et infinie LEÇON N 59 : Limite à l infini d une fonction à valeurs réelles. Branches infinies de la courbe représentative d une fonction. Eemples. L eposé pourra être illustré par un ou des eemples faisant appel

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien I) La fonction logarithme népérien : Définition 1) Définition de la fonction logarithme népérien Soit a un nomre réel strictement positif. On appelle logarithme népérien de

Plus en détail

Chapitre 5. Applications

Chapitre 5. Applications Chapitre 5 Applications 1. Définitions et exemples Définition 5.1 Soient E et F deux ensembles. Une application f de E dans F est un procédé qui permet d associer à chaque élément x de E un unique élément

Plus en détail

Limite et continuité de fonctions réelles

Limite et continuité de fonctions réelles Limite et continuité de fonctions réelles Denis Vekemans Introduction : on désigne par "fonction réelle" tout fonction d une variable réelle à valeurs réelles. 1 Limite finie 1.1 Définitions 1.1.1 Définition

Plus en détail

Fonctions Numériques :

Fonctions Numériques : Fonctions Numériques : Limites et continuité. 1. Notion de limites Dénitions, opérations et Exemples. 2. Fonctions monotones. (a) Dénitions. (b) Limites des fonctions monotones. 3. Fonctions continues.

Plus en détail

Math 104 ANALYSE (première partie) Université Paris Sud Orsay

Math 104 ANALYSE (première partie) Université Paris Sud Orsay Math 104 ANALYSE (première partie) Université Paris Sud Orsay 2015 2016 Notes de cours de José Montesinos préparées à partir du précédent Polycopié de Math 104 de Thierry Ramond Table des matières 1 La

Plus en détail

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal

Cours de Terminale S / Fonctions : limites et continuité. E. Dostal Cours de Terminale S / Fonctions : ites et continuité E. Dostal Août 204 Table des matières 2 Fonctions : ites et continuité 2 2. Limites.............................................. 2 2.2 Théorèmes.............................................

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Limites et fonctions continues Vidéo partie. Notions de fonction Vidéo partie 2. Limites Vidéo partie 3. Continuité en un point Vidéo partie 4. Continuité sur un intervalle Vidéo partie 5. Fonctions monotones

Plus en détail

Exercices : Fonctions continues

Exercices : Fonctions continues Eercices : Fonctions continues Eercice 1 Sur quels ensembles les fonctions suivantes sont elles continues? sin() si 0 1) f : 2) f : E() 2 si = 0 3) f : sin(π)e() 4) f : sin() sin( 1 ) si 0 0 si = 0 Eercice

Plus en détail

LIMITES DE FONCTIONS

LIMITES DE FONCTIONS T ale S LIMITES DE FONCTIONS Analyse - Chapitre 6 Table des matières I Limite d une fonction à l infini 2 I Limite finie à l infini........................................ 2 I a..........................................

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

Les fonctions réciproques

Les fonctions réciproques DOCUMENT 28 Les fonctions réciproques 1. Introduction et définition Pour tout ensemble E, il existe une loi de composition naturelle sur l ensemble des applications de E dans E qui est la composition des

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

SUITES ET RÉCURRENCE

SUITES ET RÉCURRENCE SUITES ET RÉCURRENCE En première : une suite ( ) est une fonction particulière : son ensemble de définition est constitué d'entiers, on peut donc parler (contrairement aux fonctions en général) de l'image

Plus en détail

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel ISEL - Année Mathématiques Suites - Rappel Raisonnement par récurrence Soit une propriété P (n) dépendant d'un entier naturel n. Pour montrer que cette propriété est vraie à partie de l'entier n 0 :. on

Plus en détail

LEÇON N 52 : 52.1 Suites monotones

LEÇON N 52 : 52.1 Suites monotones LEÇON N 52 : Suites monotones, suites adjacentes. Approximation d un nombre réel, développement décimal. L exposé pourra être illustré par un ou des exemples faisant appel à l utilisation d une calculatrice.

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

Etude théorique d équation d ordre 2

Etude théorique d équation d ordre 2 [http://mp.cpgedupuydelome.fr] édité le 16 octobre 2015 Enoncés 1 Etude théorique d équation d ordre 2 Eercice 1 [ 01555 ] [Correction] Soit q : R R + une fonction continue non nulle. On se propose de

Plus en détail

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés

Suites. 1 Suite géométrique. Chapitre I. 1.1 Définition. 1.2 Propriétés Chapitre I Suites Exercices 8, 9, 0, 3, 4, 6, 3, 3, 34 page 34 pour revoir les notions de première sur les suites (récurrence, sens de variation...) Suite géométrique. Définition Définition Une suite u

Plus en détail

MT90/91-Fonctions d une variable réelle

MT90/91-Fonctions d une variable réelle MT90/91-Fonctions d une variable réelle Chapitre 4 : Limites et continuité Équipe de Mathématiques Appliquées UTC avril 2011 suivant Chapitre IV Limites et continuité IV.1 Limites..................................

Plus en détail