Estimation d un ratio

Dimension: px
Commencer à balayer dès la page:

Download "Estimation d un ratio"

Transcription

1 Chapitre 6 Etimation d un ratio Dan ce chapitre, nou étudion l etimation d un ratio qui et une fonction non linéaire de deux totaux L etimation ur un domaine qui et un exemple d application de l etimation d un ratio et détaillée 61 Etimation d un ratio 611 Introduction Exemple 1 Suppoon une population de ménage, y k le revenu du ménage k et z k le nombre de peronne compoant le ménage Le revenu moyen par tête dan cette population et : R = y k = t y t z z k R et ce qu on appelle un ratio, c et-à-dire le rapport de deux totaux ur une même population Exemple 2 La proportion d électeur qui, dan une élection préidentielle, choiient un candidat particulier et le rapport : ombre de votant qui choiient le candidat / ombre de uffrage exprimé Cette proportion doit être etimée comme un ratio car la taille de la population, c et-à-dire le nombre d électeur qui votent n et pa connue 612 Cadre général de l etimation d un ratio On dipoe d un plan de ondage de probabilité incluion, et l n échantillon et obtenu par ce plan et on oberve y k,z k,k On etime le ratio R par le quotient de etimateure H-T de totaux : ˆR = ˆt yπ (61) ˆt zπ C et un etimateur non linéaire et on ne peut donc pa calculer exactement on epérance mathématique ou en obtenon une expreion approchée par une technique claique en ondage : la linéariation Epérance mathématique et variance approchée de ˆR Appelon f la fonction de totaux qui donne le ratio : f(y, z) =y/z et écrivon le développement de Taylor à l ordre 1 de f et au voiinage de y 0 = t y et z 0 = t z On obtient : ˆR t y t z R t z (ˆt zπ t z )+ 1 t z (ˆt yπ t y ) 3

2 4 CHAPITRE 6 ESTIMATIO D RATIO ou ˆR R + 1 y k Rz k (62) t z Prenant l epérance mathématique deeux côtée (62), on obtient : E( ˆR) R L etimateur ˆR et an biai au premier ordre La variable ν k = 1 t z (y k Rz k ) (63) et appelée linéariée de R = t y /t z On voit ur (62) que la variance linéariée de ˆR, c et-à-dire la variance du côté droit de (62), n et autre que la variance de ν k, etimateur du total de la linéariée On peut donc appliquer le réultat obtenu pour l etimation d un total par le valeurilatée : ( ) var( ˆR) ν k var = π Δ kl ˇν k kˇν l où ˇν k = ν k / On ne connaît ni R ni t z, on le remplace donc par R et t z pour obtenir une etimation de variance : var( ˆR) = Δ kl ˇ νkˇ νl l où ν k =(y k Rz k )/ t z ote La linéariée et un outil claique pour approcher le variance etimateur complexe L ouvrage de Tillé contient un développement général ur cette notion Si on a utilié un plan de taille fixe on utiliera le expreione variance correpondante ou allon voir préciément la ituation pour un plan SI 613 Etimation d un ratio dan un plan SI Par un plan SI(,n) qui donne un échantillon an une population, on obtient y k,z k, k L etimateur du ratio et ˆR = t y t z = y z (64) On applique enuite le formule pécifique au plan SI pour l etimation de la variance du total ν k de la linéariée On obtient aini ( var( ˆR) 1 2 Sν, 2 = 1 ( 1 t 2 2 z Sy Rz, 2 (65) ( var( ˆR) 1 = 2 ˆν = 2 ( 1 t 2 z y ˆRz, var( ˆR) = 1 ( 1 z 2 y ˆRz, (66) avec ˆν = 1 n 1 ( ν k ν) 2 C et la formule (66) qu on utilie pour le calcul pratique Si nouétaillon Sy Rz, 2 nou obtenon : Sy Rz, 2 = 1 1 [(y k Rz k ) (y Rz)] 2 = y 2RS yz, + R 2 Sz 2 (67)

3 62 ESTIMATIO SR DOMAIE 5 où S yz, = 1 1 (y k y)(z k z) et la covariance entre y et z ur On a de même, en vue de calcul pratique : y ˆRz, = S2 y 2 RS yz, + R 2 z 62 Etimation ur un domaine L etimation ur un domaine et une quetion trè étendue L expoé qui uit n et qu un traitement trè élémentaire, mai qui montre une utiliation de l etimation d un ratio 621 Introduction On veut ouvent, à l occaion d un ondage, etimer le total d une variable d intérêt, non eulement ur la population ur laquelle le plan de ondage et défini mai aui ur une ou de ou-population de non prie en compte par le plan Dan le préent chapitre, la ou-population particulière à laquelle appartient chaque élément de l échantillon et contatée aprè ondage On appelle domaine et on note d, toute ou-population pour laquelle on veut une etimation éparée du total et de la moyenne et de intervallee confiance aocié Si la ou-population d intérêt repréente une fraction aez importante de, le technique ordinaire qu on va voir d abord, donnent de bon réultat Pour un petit domaine, c et-à-dire pour une ou-population qui ne repréente qu une petite fraction de, il e peut que l échantillon prélevé par un plan ur ne contienne que peu d élémentu domaine Le etimateur uuel riquent d avoir une forte erreur quadratique On met en œuvre de etimateur utiliant de l information auxiliaire ou n abordon pa cette quetion dan cette préentation purement introductive Exemplee domaine n domaine et ouvent une région géographique, ( Small area etimation déigne l enemble de technique pour de petitomaineéfini géographiquement) L unité et par exemple le ménage, le domaine un canton et on veut etimer le revenu moyen de ménage par canton n domaine peut être une marque commerciale de voiturean la population de voiture vendue une certaine année dan un pay On veut etimer de parte marché L information exhautive et connue avec retard ne étude par ondage peut fournir rapidement une information fiable Pour une région géographique donnée, un domaine peut être l enemble de habitant ayant eu une certaine maladie On et aui amené à faire de l etimation ur un domaine quand la bae de ondage, c et-à-dire l organiation de la population contient trictement la population d intérêt 622 Etimation ur un domaine - notion élémentaire On appelle domaine une ou-population d de taille d, d et le ondage porte ur On note, l le probabilité incluion, Δ kl le covariancee indicatrice incluion et l échantillon ur obtenu On oberve y k aini que l appartenance éventuelle au domaine, k oton = d, le ou-échantillon contaté appartenir à d La taille n d de et aléatoire On enviage l etimation du total t y,d d une variable d étude y ur d et de a moyenne : y d t y,d = d y k y d = t y, d d { 1 i k d Introduion z dk = 0 inon

4 6 CHAPITRE 6 ESTIMATIO D RATIO On peut maintenant écrire : t y,d = y kz dk, d = z dk L etimation du total ur d et aini ramenée à un problème ur la population ur laquelle on a un plan de ondage D autre part la moyenne ur d e note : y d = y kz dk, (68) elle apparaît comme un ratio On peut maintenant écrire le etimateur : z dk t y,d = y kz dk / = y k / (69) et comme d et ouvent inconnue, l écriture de d comme un total, permet de définir : d = z dk = 1 (610) Enfin on applique la technique d etimation d un ratio pour etimer la moyenne ur d 1 L etimateur de la moyenne retenu et le rapport de etimateure totaux de numérateur et dénominateur : ỹ d = y k z dk = z dk t y,d d (611) 2 La linéariée et : ν k = 1 d (y k z dk y d z dk ) La variance approchée de ỹ d et donc : var app (ỹ d )= 1 d 2 Δ kl Comme z dk =0i k/ d, ceci e réduit à var app (ỹ d )= 1 d 2 y k z dk y d z dk d Δ kl y k y d y l z dl y d z dl y l y d 3 Enfin la variance approchée et etimée par : var(ỹ d )= 1 2 d Δ kl l y k ỹ d y l ỹ d 623 Ca un plan SI et Si le plan et SI(,n) ur alor : d = n d n, ỹ d = t y,d = n n y k n d n = y d y k (612)

5 62 ESTIMATIO SR DOMAIE 7 Poon v k = z dk (y k y d ), on vérifie facilement que v k =0 ou etimon maintenant la variance de ỹ d à l aide de réultat (64)à(66) L etimation de la variance et : var(ỹ d )= 1 ( 1 z 2 d ( ) n 2 ( 1 Syz 2 d y d z d, = n d v et Finalement : (n 1) yz d y d z d, = v2 k = v 2 k + v 2 k ( n var(y d )= n d v 2 k =(n d 1) y, v 2 k =0 ) 2 ( 1 nd 1 n 1 S2 y, 1 f Sy, 2 n d d Remarque et complément 1 Dan l etimation ur un domaine, il ne faut pa oublier que le plan porte ur, une population qui contient trictement le domaine, d où la néceité d introduire la variable z d pour e ramener à 2 Obervon que t y,d et baé ur un échantillon de taille aléatoire : n d = card() d Donc, pratiquement, on n attachera pa la même confiance à une telle etimation elon qu elle et baée ur peu ou ur beaucoup d obervation On peut cependant calculer la taille moyenne du ouéchantillon : E(n d )= z dk = d On peut aini avoir, avant tirage de l échantillon, i le domaine era bien repréenté en moyenne On peut de même calculer la variance de la taille

Les sondes d oscilloscopes

Les sondes d oscilloscopes Le onde d ocillocope /6 I Decription Il exite troi grande catégorie de onde: - Le onde paive (, L, C, atténuatrice ou non, avec de rapport d atténuation de,, ou (Sonde X, X, X, X. - 2 Le onde active, qui

Plus en détail

Votre entreprise et le marketing

Votre entreprise et le marketing Votre entreprie et le marketing SÉRIE PARTENAIRES EN AFFAIRES Selon la taille de votre entreprie Par où commencer Guide par étape SÉRIE PARTENAIRES EN AFFAIRES Utilier le marketing pour augmenter vo profit

Plus en détail

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian

EPFL 2010. TP n 3 Essai oedomètrique. Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilias Nafaï Weil Florian 1 EPFL 2010 Moncef Radi Sehaqui Hamza - Nguyen Ha-Phong - Ilia Nafaï Weil Florian 11 Table de matière Ø Introduction 3 Ø Objectif 3 Ø Déroulement de l eai 4 Ø Exécution de deux palier de charge 6 Ø Calcul

Plus en détail

Modifié le 2 juillet 2015 GUIDE DES BOURSIERS DE L AIEA

Modifié le 2 juillet 2015 GUIDE DES BOURSIERS DE L AIEA Modifié le 2 juillet 2015 GUIDE DES BOURSIERS DE L AIEA Guide de bourier de l AIEA TABLE DES MATIERES I. INTRODUCTION... 2 II. PRÉPARATION POUR LE PROGRAMME DE BOURSE... 2 III. CONSIDÉRATIONS FINANCIÈRES...

Plus en détail

Le compte épargne temps

Le compte épargne temps 2010 N 10-06- 05 Mi à jour le 15 juin 2010 L e D o i e r d e l a D o c 1. Définition Sommaire 2. Modification iue du décret n 2010-531 3. Principe du compte épargne temp Bénéficiaire potentiel Alimentation

Plus en détail

Directive concernant l'utilisation de sedex

Directive concernant l'utilisation de sedex Département fédéral de l intérieur DFI Office fédéral de la tatitique OFS Diviion Regitre Office fédéral de la tatitique (OFS), fournieur de pretation de edex 21.05.2014 Directive concernant l'utiliation

Plus en détail

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ

RETIRER DE L ARGENT DE VOTRE SOCIÉTÉ LETTRE MENSUELLE DE CONSEILS DESTINÉS À MAXIMALISER LE FLUX DE REVENUS RETIRÉS DE VOTRE SOCIÉTÉ OPTIMALISATION DU MOIS Déterminer le taux du marché... Si votre ociété vou vere un intérêt, elle doit de

Plus en détail

Théorie des sondages : cours 5

Théorie des sondages : cours 5 Théorie des sondages : cours 5 Camelia Goga IMB, Université de Bourgogne e-mail : camelia.goga@u-bourgogne.fr Master Besançon-2010 Chapitre 5 : Techniques de redressement 1. poststratification 2. l estimateur

Plus en détail

ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIMULATIONS DE MONTE CARLO

ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIMULATIONS DE MONTE CARLO ÉVALUATION DE L INCERTITUDE EN UTILISANT LES SIULATIONS DE ONTE CARLO. Déenfant *, N. Ficher *, B. Blanquart **, N. Bédiat** *Laboratoire national de métroloie et d eai (LNE) ** Centre Technique de Indutrie

Plus en détail

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création

La lettre. La Gestion des filiales dans une PME : Bonnes Pratiques et Pièges à éviter. Implantations à l étranger : Alternatives à la création Doier : Getion d entreprie 42 La Getion de filiale dan une PME : Bonne Pratique et Piège à éviter Certaine PME ont tout d une grande. entreprie. A commencer par la néceité d avoir de filiale. Quel ont

Plus en détail

Description du fonctionnement de l échelle de valeurs

Description du fonctionnement de l échelle de valeurs Dription du fonctionneent de l helle de valeur L évaluation du veau de qualité de pretation du centre candidat fait appel à une helle de 4 valeur, ci pour le indicateur de chaque doaine du référentiel

Plus en détail

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you.

Voyez la réponse à cette question dans ce chapitre. www.lifeinsuranceinsights.com/life-insurance-2/what-will-your-hobby-cost-you. Erwan, d une mae de 65 kg, fait un aut de Bungee. Il tombe de 0 m avant que la corde du bungee commence à étirer. Quel era l étirement maximal de la corde i cette dernière agit comme un reort d une contante

Plus en détail

Analyse de l état des flux de trésorerie

Analyse de l état des flux de trésorerie École de Haute Étude Commerciale Analye de l état de flux de tréorerie Document pédagogique rédigé par Louie St-Cyr et David Pinonneault Copyright 1997. Réviion 2000. École de Haute Étude Commerciale (HEC),

Plus en détail

Béton armé et précontraint I VERIFICATIONS E.L.S. E.N.P.C. module B.A.E.P.1. Jean Marc JAEGER Setec TPI. ENPC Module BAEP1 Séance 3 1

Béton armé et précontraint I VERIFICATIONS E.L.S. E.N.P.C. module B.A.E.P.1. Jean Marc JAEGER Setec TPI. ENPC Module BAEP1 Séance 3 1 Béton armé et précontraint I VERIFICATIONS E.L.S. Jean Marc JAEGER Setec TPI E.N.P.C. module B.A.E.P.1 ENPC Module BAEP1 Séance 3 1 ENPC Module BAEP1 Séance 3 2 3. ETATS LIMITES DE SERVICE : Définition

Plus en détail

Progressons vers l internet de demain

Progressons vers l internet de demain Progreon ver l internet de demain COMPRENDRE LA NOTION DE DÉBIT La plupart de opérateur ADSL communiquent ur le débit de leur offre : "512 Kb/", "1 Méga", "2 Méga", "8 Méga". À quoi ce chiffre correpondent-il?

Plus en détail

Le paiement de votre parking maintenant par SMS

Le paiement de votre parking maintenant par SMS Flexibilité et expanion L expanion de zone de tationnement payant ou la modification de tarif ou de temp autorié peut e faire immédiatement. Le adree et le tarif en vigueur dan le nouvelle zone doivent

Plus en détail

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM

Cap Maths. Guide de l enseignant. Nouveaux programmes. cycle. Roland CHARNAY Professeur de mathématiques en IUFM Cap Math CP 2 cycle Guide de l eneignant Nouveaux programme SOUS LA DIRECTION DE Roland CHARNAY Profeeur de mathématique en IUFM Marie-Paule DUSSUC Profeeur de mathématique en IUFM Dany MADIER Profeeur

Plus en détail

Précipitation - Produit de solubilité

Précipitation - Produit de solubilité Précipitation Produit de olubilité A Introduction : Lor de l addition de certain ion ( O H, Cl,...) dan une olution contenant de cation métallique, nou contaton qu il apparaît une phae olide. L apparition

Plus en détail

UNE PREMIÈRE POUR ALTAPLAST

UNE PREMIÈRE POUR ALTAPLAST PLAST tand e d 100m ouvrir à déc 2 UNE PREMIÈRE POUR PLAST Pour a première participation à Verdun Expo, Altaplat voit grand : un tand de 100m2 où era expoé le avoir faire d un fabricant toujour à la pointe

Plus en détail

Travaux Pratiques d Electronique d Instrumentation I & II

Travaux Pratiques d Electronique d Instrumentation I & II TP1 : Caractériation de l ampliop réel (Chapitre I du cour d électronique d intrumentation) Le but de cette éance de TP et de d illutrer quelque caractéritique de l ampliop réel à traver l étude d un montage

Plus en détail

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION

TP6 : ALIMENTATION A DECOUPAGE : HACHEUR SERIE ET CONVERTISSEUR STATIQUE ABAISSEUR DE TENSION P6 : ALIMNAION A DCOUPAG : HACHUR SRI CONVRISSUR SAIQU ABAISSUR D NSION INRODUCION Le réeau alternatif indutriel fournit l énergie électrique principalement ou de tenion inuoïdale de fréquence et d amplitude

Plus en détail

AVIS DE LA COMMISSION. 30 juin 2004

AVIS DE LA COMMISSION. 30 juin 2004 COMMISSION DE LA TRANSPARENCE RÉPUBLIQUE FRANÇAISE AVIS DE LA COMMISSION 30 juin 2004 FUZEON 90 mg/ml, poudre et olvant pour olution injectable Boîte de 60 flacon de poudre pour olution injectable, 60

Plus en détail

Trouver des sources de capital

Trouver des sources de capital Trouver de ource de capital SÉRIE PARTENAIRES EN AFFAIRES Emprunt garanti et non garanti Vente de part de capital Programme gouvernementaux Source moin courante SÉRIE PARTENAIRES EN AFFAIRES Quelque principe

Plus en détail

T R E I L L I S D C F L EXZONE M C Guide de conception électrique SYSTÈMES D INSTALLATION

T R E I L L I S D C F L EXZONE M C Guide de conception électrique SYSTÈMES D INSTALLATION SYSTÈMES D INSTALLATION Enemble, no idée p r e n n e n t f o r m e MD T R E I L L I S D C F L EXZONE M C Guide de conception électrique Dein et détail du ytème électrique avec le partenaire compatible

Plus en détail

Caractérisation de l interface Si/SiO 2 par mesure C(V)

Caractérisation de l interface Si/SiO 2 par mesure C(V) TP aractériation de l interface Si/SiO par meure (V) aractériation de l interface Si/SiO par meure (V) Introduction p I Effet de champ à l interface Si/SiO p Fonctionnement d une capacité MOS p Principe

Plus en détail

ETAT D AVANCEMENT DE LA RECHERCHE. Mensualisation du kilométrage annuel avec KILOMENE

ETAT D AVANCEMENT DE LA RECHERCHE. Mensualisation du kilométrage annuel avec KILOMENE ETAT D AVANCEMENT DE LA RECHERCHE Menualiation du étrage annuel avec KILOMENE 98MT33 S. Laarre (INRETS-DERA, Arcueil) L. Jaeger (LOI, Colmar) P. A. Hoyau (INRETS-DERA, Arcueil) Synthèe de la recherche

Plus en détail

ÉTAT DES LIEUX STATISTIQUE EN AQUITAINE

ÉTAT DES LIEUX STATISTIQUE EN AQUITAINE CONTRIBUTION DU GROUPE «COOPÉRATIVES, MUTUELLES ET ASSOCIATIONS DE L ÉCONOMIE SOCIALE» Cette contribution à la note de conjoncture du CESER propoe dan une première partie une approche tatitique du ecteur

Plus en détail

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007

BAREME sur 40 points. Informatique - session 2 - Master de psychologie 2006/2007 BAREME ur 40 point Informatique - eion 2 - Mater de pychologie 2006/2007 Bae de donnée PRET de MATERIEL AUDIO VISUEL. Remarque : Le ujet comporte 7 page. Vérifier qu il et complet avant de commencer. Une

Plus en détail

Développement et élaboration d outils de vérification des modèles numériques en utilisant l imagerie satellitaire

Développement et élaboration d outils de vérification des modèles numériques en utilisant l imagerie satellitaire Rapport de tage Développement et élaboration d outil de vérification de modèle numérique en utiliant l imagerie atellitaire Siham SBII Direction de la météorologie Nationale Marocaine Mr. Joël STEIN METEO-France

Plus en détail

Optique. LEYBOLD Fiches d expériences de physique P5.6.2.1. 0706-Gan/Hag. Vitesse de la lumière Mesure avec des impulsions lumineuses courtes

Optique. LEYBOLD Fiches d expériences de physique P5.6.2.1. 0706-Gan/Hag. Vitesse de la lumière Mesure avec des impulsions lumineuses courtes Optique Vitee de la lumière Meure avec de impulion lumineue courte LEYBOLD Fiche d expérience de phyique Détermination de la vitee de la lumière dan l air à partir de la ditance parcourue et du temp de

Plus en détail

Courrier Fédéral @ @ N 320 EDITORIAL INDUSTRIE PLUS LOIN QUE NOS DROITS. PUBLICITE page 8. Adresse du site de la FTM-CGT. http://www.ftm-cgt.

Courrier Fédéral @ @ N 320 EDITORIAL INDUSTRIE PLUS LOIN QUE NOS DROITS. PUBLICITE page 8. Adresse du site de la FTM-CGT. http://www.ftm-cgt. Courrier Fédéral N 320 du 13.10.12 au 19.10.12 @ @ Adree du ite de la FTM-CGT http://www.ftm-cgt.fr Fédération de travailleur de la métallurgie CGT ISSN 0152-3082 EDITORIAL Aprè la journée de mobiliation

Plus en détail

La décision dans l incertain préférences, utilité et probabilités. Philippe Bernard

La décision dans l incertain préférences, utilité et probabilités. Philippe Bernard La déciion dan l incertain préférence, utilité et probabilité Philippe Bernard Table de matière 1 Le rique 1 2 L epérance morale 2 3 Préférence et utilité 10 3.1 L approche parétienne... 10 3.2 Loterie

Plus en détail

Il existe depuis longtemps dans nos sociétés une tendance à utiliser des sigles pour abréger des

Il existe depuis longtemps dans nos sociétés une tendance à utiliser des sigles pour abréger des ghhhf hhfhhj gbbj bghh hfhh bbb bbghhhf ;y dpi L'IDENTIFICATION DES SYMBOLES Chapitre 3 CHAPITRE 3 L IDENTIFICATION DES SYMBOLES Il exite depui longtemp dan no ociété une tendance à utilier de igle pour

Plus en détail

Produire moins, manger mieux!

Produire moins, manger mieux! Raak doier d Alimentation : o Produire moin, manger mieux! Nou voulon une alimentation de qualité. Combien de foi n entendon-nou pa cette revendication, et à jute titre. Mai i tout le monde et d accord

Plus en détail

Catalogue formations. Carsat Nord-Est. Département des Risques Professionnels

Catalogue formations. Carsat Nord-Est. Département des Risques Professionnels Catalogue formation 2014 Carat Nord-Et Département de Rique Profeionnel INTRODUCTION La mie en œuvre d une politique de anté au travail dan l entreprie pae par l acquiition de connaiance et de compétence

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Paramètres clés pour la conception d une machine pentaphasée à aimants à double polarité

Paramètres clés pour la conception d une machine pentaphasée à aimants à double polarité SYPOSIU DE GENIE ELECTRIQUE (SGE 4) : EF-EPF-GE 04, 8-0 JUILLET 04, ENS CACHAN, FRANCE Paramètre clé pour la conception d une machine pentaphaée à aimant à double polarité Huein ZAHR,, Franck SCUILLER,

Plus en détail

Dossier. Vtech, leader en France. Lexibook, leader en Europe

Dossier. Vtech, leader en France. Lexibook, leader en Europe Doier Par Yoan Langlai La tablette pour enf Si 6 million de tablette devraient e vendre cette année en France (préviion GfK), on etime à 1 million le nombre de vente de tablette pour enfant en 2013. Sur

Plus en détail

Commande d un système linéaire.

Commande d un système linéaire. PSI Brizeux Ch. E4: Commande d un ytème linéaire - Le ocillateur à boucle de réaction 43 CHAPITRE E4 Commande d un ytème linéaire. Le ocillateur à boucle de réaction On peut claer le ytème en deux catégorie

Plus en détail

Aider un proche dépendant

Aider un proche dépendant doier le d Ière Magazine n Nou eron tou un jour concerné Aider un proche dépendant Avec le vieilliement de la population, de plu en plu d Iéroi ont amené à econder au quotidien un proche dépendant. Une

Plus en détail

Introduction aux algorithmes de bandit

Introduction aux algorithmes de bandit Mater MVA: Apprentiage par renforcement Lecture: 3 Introduction aux algorithme de bandit Profeeur: Rémi Muno http://reearcher.lille.inria.fr/ muno/mater-mva/ Référence bibliographique: Peter Auer, Nicolo

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Conditions Générales de Vente. Clients professionels

Conditions Générales de Vente. Clients professionels Condition Vente Client profeionnel _dipoleelectroniqueprofeionnel PAGE 1/6 PREAMBULE Conformément a la loi en vigueur, le préente condition générale de la ociété DIPOLE, SARL au capital de 15.000, dont

Plus en détail

5½ À partir de 1475$ /MOIS

5½ À partir de 1475$ /MOIS 5½ 1475$ TYPE A : 1500 pi 2 TYPE B : 1250 pi 2 4½ 1350$ TYPE C : 1230 pi 2 4½ 1350$ TYPE D : 1200 pi 2 4½ 1350$ TYPE E : 1500 pi 2 5½ 1475$ 3½ 1100$ TYPE F : 800 pi 2 3½ 1100$ TYPE G : 850 pi 2 TYPE H

Plus en détail

Centrale d'alarme SI 80-3

Centrale d'alarme SI 80-3 Centrale d'alarme SI 80-3 Notice d'utiliation Siemen AG Siemen AG 01.011 1 Siemen AG 01.011 Caractéritique technique ou réerve de modification. Livraion ou réerve de diponibilité. Le donnée et la conception

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Les colos, bien plus que s! des Vacance

Les colos, bien plus que s! des Vacance , o l o c Le plu que bien cance! a V de 4 partir bonne raion de en Colo! L exigence du réeau De équipe formée et ayant le qualification néceaire (Bafa, Bafd, urveillant de baignade etc.) Un temp de préparation

Plus en détail

faites entrer la Fibre dans votre immeuble le guide du raccordement à la fibre

faites entrer la Fibre dans votre immeuble le guide du raccordement à la fibre faite entrer la Fibre dan votre immeuble le guide du raccordement à la fibre qu et-ce que la Fibre? La fibre optique et un fil de verre qui conduit la lumière. C et une technologie qui permet de tranmettre

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

ÉCONOMIE D ÉNERGIE & AMÉLIORATION DE VOTRE ÉCLAIRAGE

ÉCONOMIE D ÉNERGIE & AMÉLIORATION DE VOTRE ÉCLAIRAGE ÉNERGIE ÉCONOMIE D ÉNERGIE & AMÉLIORATION DE VOTRE ÉCLAIRAGE APPLICATIONS ÉCLAIRAGE - PUBLIC - SPORTIF - INTÉRIEUR GESTION DE L ÉCLAIRAGE Ditributeur de compoant électronique, électromécanique, paif, connectique,

Plus en détail

Découvrez la gamme complète des certificats de signatures électroniques ChamberSign

Découvrez la gamme complète des certificats de signatures électroniques ChamberSign Découvrez la gamme complète de certificat de électronique ChamberSign www.chamberign.fr ppel d'offre Marché ublic SYLaé Signature électronique Document dématérialié Epace Sécurié Certifié Contrôle de légalité

Plus en détail

Table des matières. Introduction. 1

Table des matières. Introduction. 1 Avant propo Le travail préenté dan ce mémoire a été réalié au ein du laboratoire d électromécanique de Compiègne (LEC) ou la direction de Monieur Jean Paul Vilain dan le cadre d une convention indutrielle

Plus en détail

Introduction à l étude des Corps Finis

Introduction à l étude des Corps Finis Introduction à l étude des Corps Finis Robert Rolland (Résumé) 1 Introduction La structure de corps fini intervient dans divers domaines des mathématiques, en particulier dans la théorie de Galois sur

Plus en détail

Méthodes de sondage Echantillonnage et Redressement

Méthodes de sondage Echantillonnage et Redressement Méthodes de sondage Echantillonnage et Redressement Guillaume Chauvet École Nationale de la Statistique et de l Analyse de l Information 27 avril 2015 Guillaume Chauvet (ENSAI) Echantillonnage 27 avril

Plus en détail

Guide de configuration d'une classe

Guide de configuration d'une classe Guide de configuration d'une clae Viion ME Guide de configuration d'une clae Contenu 1. Introduction...2 2. Ajouter de cour...4 3. Ajouter de reource à une leçon...5 4. Meilleure pratique...7 4.1. Organier

Plus en détail

Présentation de l Etude notariale Lasaygues & Associés 1. Nos domaines d'intervention 2. Genèse de notre Projet Notarial 6.

Présentation de l Etude notariale Lasaygues & Associés 1. Nos domaines d'intervention 2. Genèse de notre Projet Notarial 6. Préentation e l Etue notariale Laaygue & Aocié 1 No omaine 'intervention 2 Genèe e notre Projet Notarial 6 Vo Contact 7 Pour plu inormation veuillez contacter: Diier Laaygue / Hubert e Vaulgrenant 142

Plus en détail

Servir. territoires. la réussite des hommes et des CONSEIL - EXPERTISE COMPTABLE. dossier de presse

Servir. territoires. la réussite des hommes et des CONSEIL - EXPERTISE COMPTABLE. dossier de presse Servir la réuite de homme et de territoire doier de pree CONSEIL - EXPERTISE COMPTABLE o m m a i r e CERFRANCE, c et bien plu 3 que de la comptabilité, c et du coneil Une conviction : même le petite entreprie

Plus en détail

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications

Université Paris-Dauphine DUMI2E 1ère année, 2009-2010. Applications Université Paris-Dauphine DUMI2E 1ère année, 2009-2010 Applications 1 Introduction Une fonction f (plus précisément, une fonction réelle d une variable réelle) est une règle qui associe à tout réel x au

Plus en détail

Base : une axiomatique

Base : une axiomatique Autour des groupes de réflexions Master 2 Mathématiques fondamentales Cours : Michel Broué Université Paris VII Denis Diderot TD : Vincent Beck Année 2005 2006 Base : une axiomatique a) D après (i), on

Plus en détail

ANS R+T SALON LEADER MONDIAL DES FERMETURES, PORTES/PORTAILS ET DE LA PROTECTION SOLAIRE

ANS R+T SALON LEADER MONDIAL DES FERMETURES, PORTES/PORTAILS ET DE LA PROTECTION SOLAIRE ANS R+T SALON LEADER MONDIAL DES FERMETURES, PORTES/PORTAILS ET DE LA PROTECTION SOLAIRE «Comme d habitude le alon R+T était pour nou un alon réui où il va de oi de participer.» Jürgen Eckhardt, directeur

Plus en détail

ANNALES DE MATHEMATIQUES

ANNALES DE MATHEMATIQUES ANNALES DE MATHEMATIQUES TERMINALE S LYCEE LOUIS ARMAND Année scolaire 1999/2000 Annales du baccalauréat S 2000 2 Lycée Louis Armand Annales du baccalauréat S 2000 TABLE DES MATIÈRES Table des matières

Plus en détail

PRÉSENTATION DU RÉSEAU INFORMATIQUE

PRÉSENTATION DU RÉSEAU INFORMATIQUE PRÉSENTATION DU RÉSEAU INFORMATIQUE 2.1 Apect phyique Le CHU de Beançon regroupe d une part l établiement Jean MINJOZ, monobloc de 13 étage aocié au Pôle Coeur Poumon, contruction adjacente ur 5 niveaux,

Plus en détail

À lire dans ce numéro :

À lire dans ce numéro : N 4 Tranport et déplacement en Martinique Agence D Urbanime et d Aménagement de Martinique À lire dan ce numéro : ur la doctrine p7-48 ur le réaliation et le projet p49-88 Autre regard : Expérience extrarégionale,

Plus en détail

Changement de fréquence, effet Doppler

Changement de fréquence, effet Doppler N 804 BULLETIN DE L'UNION DES PHYSICIENS 869 Changement de fréquence, effet Doppler par Yve BAIMA, André JORANDON, Sylvie MORLEN et Marc VINCENT Lycée La Martinière Monplaiir - 69372 Lyon Cedex 08 RÉSUMÉ

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Unité 3. trente-deux. A Pourquoi la classe de Victor a-t-elle organisé un vide-grenier?

Unité 3. trente-deux. A Pourquoi la classe de Victor a-t-elle organisé un vide-grenier? Unité Je li le dialogue. Le journalite : Bonjour, je ui un journalite. Tu peux répondre à l interview que je fai la radio locale et le journal de la ville? Victor : Bien ûr, monieur. Le journalite : vec

Plus en détail

Lycée Cassini BTS CGO 2014-2015. Test de début d année

Lycée Cassini BTS CGO 2014-2015. Test de début d année Lycée assini BTS GO 4-5 Exercice Test de début d année Pour chaque question, plusieurs réponses sont proposées. Déterminer celles qui sont correctes. On a mesuré, en continu pendant quatre heures, la concentration

Plus en détail

1 Fonctions de plusieurs variables

1 Fonctions de plusieurs variables Université de Paris X Nanterre U.F.R. Segmi Année 006-007 Licence Economie-Gestion première année Cours de Mathématiques II. Chapitre 1 Fonctions de plusieurs variables Ce chapitre est conscré aux fonctions

Plus en détail

unenfant Avoir en préservant ses droits

unenfant Avoir en préservant ses droits Avoir unenfant en préervant e droit Guide adreant aux travailleue et travailleur du ecteur public du réeau de la anté et de ervice ociaux Le comité de condition féminine de la La mie à jour de ce guide

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 2 4 6 7 23 24 26 28

Plus en détail

Probabilités sur un univers fini

Probabilités sur un univers fini [http://mp.cpgedupuydelome.fr] édité le 7 août 204 Enoncés Probabilités sur un univers fini Evènements et langage ensembliste A quelle condition sur (a, b, c, d) ]0, [ 4 existe-t-il une probabilité P sur

Plus en détail

Ressources documentaires Directrice : Catherine Méric Documentalistes : Pascale Guellier, Chantal Brige-Ukpong

Ressources documentaires Directrice : Catherine Méric Documentalistes : Pascale Guellier, Chantal Brige-Ukpong Sommaire INFOS NATIONALES ET REGIONALES ORIENTATION METIERS FORMATIONS PARENTS GUIDES ETUDIER EN EUROPE ETABLISSEMENTS LYCEENS SALONS ETUDIANTS ETUDES ET HANDICAP ADRESSES COLLEGIENS EQUIPES EDUCATIVES

Plus en détail

info-réseau Un projet partagé Chaque situation locale est particulière, mais toutes répondent à un même projet, Sommaire Éditorial

info-réseau Un projet partagé Chaque situation locale est particulière, mais toutes répondent à un même projet, Sommaire Éditorial info-réeau Journal d information du Comité National de Liaion de Régie de Quartier 62 N juillet 2014 Un projet partagé Sommaire 2-3 En direct de Régie À Libourne (33) et à Saint-Pierre-d Albigny (73) Portrait

Plus en détail

Comptes-titres et PEA FINAVEO. & a s s o c i é s

Comptes-titres et PEA FINAVEO. & a s s o c i é s Compte-titre et PEA FINAVEO & a o c i é LE RÔLE DES INTERVENANTS Met à votre dipoition la viualiation de vo compte Votre coneiller indépendant Vou accompagne dan vo invetiement Client FINAVEO & Aocié

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 2 4 6 7 23 24 26 28

Plus en détail

Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles

Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles CEA-N-1195 Note CEA-N-1195 Centre d'etudes Nucléaires de Fontenay-aux-Roses Direction des Piles Atomiques Département des Etudes de Piles Service d'etudes de Protections de Piles PROPAGATION DES NEUTRONS

Plus en détail

Gestion des services IT Foundation basée sur la norme ISO/CIE 20000

Gestion des services IT Foundation basée sur la norme ISO/CIE 20000 Guide de Préparation Getion de ervice IT Foundation baée ur la norme ISO/CIE 20000 Édition Novembre 2013 Copyright 2013 EXIN All right reerved. No part of thi publication may be publihed, reproduced, copied

Plus en détail

CHAPITRE 2 : TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE

CHAPITRE 2 : TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE CHAPITRE 2 : TRANSPORT SOLIDE EN HYDRAULIQUE FLUVIALE 2.1 - HYDRAULIQUE FLUVIALE ET HYDRAULIQUE TORRENTIELLE... 55 2.2 - EXPÉRIENCE POUR ILLUSTRER CHARRIAGE ET SUSPENSION... 57 2.3 - CHARRIAGE ET SUSPENSION

Plus en détail

Projet. Courbe de Taux. Daniel HERLEMONT 1

Projet. Courbe de Taux. Daniel HERLEMONT 1 Projet Courbe de Taux Daniel HERLEMONT Objectif Développer une bibliothèque en langage C de fonction relative à la "Courbe de Taux" Valeur Actuelle, Taux de Rendement Interne, Duration, Convexité, Recontitution

Plus en détail

LE LIVRET DE L AIDANT

LE LIVRET DE L AIDANT LE LIVRET DE L AIDANT Vou accompagnez un parent âgé à domicile Ce livret et fait pour vou! Information, coneil, adree utile pour vou aider et vou accompagner au quotidien www.orpea.com www.afer.ao.fr www.afer.ao.fr

Plus en détail

H a l. l e s. L e. 5des. n t. C a LES HALLES DE MARCHÉ AU CŒUR DES 5 CANTONS ANGLET BILTOKI.FR

H a l. l e s. L e. 5des. n t. C a LES HALLES DE MARCHÉ AU CŒUR DES 5 CANTONS ANGLET BILTOKI.FR L e 5 H a l 5de l e n C a n t o LES HALLES DE MARCHÉ AU CŒUR DES 5 CANTONS ANGLET BILTOKI.FR Introduction La philoophie Localiation Le 5 Canton Le marché Plan de Mae Vue perpective Schéma juridique et

Plus en détail

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité 1 2 4 6 Mon Univerité Numérique 7 Rue de Fac Droit de uager et identité numérique Gloaire Webographie 23 24 26 28 Édito

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de

CHAPITRE 1. Suites arithmetiques et géometriques. Rappel 1. On appelle suite réelle une application de HAPITRE 1 Suites arithmetiques et géometriques Rappel 1 On appelle suite réelle une application de dans, soit est-à-dire pour une valeur de la variable appartenant à la suite prend la valeur, ie : On notera

Plus en détail

CH.3 PROBLÈME DE FLOTS

CH.3 PROBLÈME DE FLOTS H.3 PROLÈME E FLOTS 3.1 Le réeaux de ranpor 3.2 Le flo maximum e la coupe minimum 3.3 L'algorihme de Ford e Fulkeron 3. Quelque applicaion Opi-comb ch 3 1 3.1 Le réeaux de ranpor Réeau de ranpor : graphe

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

Chapitre 3 RÉGRESSION ET CORRÉLATION

Chapitre 3 RÉGRESSION ET CORRÉLATION Statistique appliquée à la gestion et au marketing http://foucart.thierry.free.fr/statpc Chapitre 3 RÉGRESSION ET CORRÉLATION La corrélation est une notion couramment utilisée dans toutes les applications

Plus en détail

Série 2 Premiers programmes

Série 2 Premiers programmes Licence pro. GTSBD 2013-2014 Structures de données, langage Python Série 2 Premiers programmes Programmes avec des affectations, des lectures et des écritures Exo 2.1 Le problème de la machine qui rend

Plus en détail

Parcours Hydrologie-Hydrogéologie. Apport des méthodes d infiltrométrie à la compréhension de l hydrodynamique de la zone non-saturée des sols.

Parcours Hydrologie-Hydrogéologie. Apport des méthodes d infiltrométrie à la compréhension de l hydrodynamique de la zone non-saturée des sols. Univerité Pierre et Marie Curie, École de Mine de Pari & École Nationale du Génie Rural de Eaux et de Forêt Mater Science de l Univer, Environnement, Ecologie Parcour Hydrologie-Hydrogéologie Apport de

Plus en détail

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n

x et y sont proportionnels si, et seulement si, les poins de coordonnées (x ; y) sont alignés avec l origine du repère. y 4 n CHAPITRE 11 PROPORTIONNALITE I. GENERALITES A. NOTION DE GRANDEURS PROPORTIONNELLES Deux grandeurs x et y sont proportionnelles si, lorsque l une varie, l autre varie dans les mêmes proportions : si x

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail

LES MÉTROPOLES MONDIALES, DES LIEUX DE COMMANDEMENT

LES MÉTROPOLES MONDIALES, DES LIEUX DE COMMANDEMENT 8 Introduction LES MÉTROPOLES MONDIALES, DES LIEUX DE COMMANDEMENT 8 Le Palai de Wetminter (Royaume-Uni) Une part importante de homme, de production et de échange e trouve dan un nombre limité de grande

Plus en détail

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité 1 2 4 6 Mon Univerité Numérique 7 Rue de Fac Droit de uager et identité numérique Gloaire Webographie 23 24 26 28 Édito

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 2 4 6 7 23 24 26 28

Plus en détail

UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL. Ce mémoire intitulé:

UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL. Ce mémoire intitulé: UNIVERSITÉ DE MONTRÉAL ÉCOLE POLYTECHNIQUE DE MONTRÉAL Ce mémoire intitulé: CONTRÔLE D ADMISSION AVEC MESURES POUR UNE MEILLEURE GESTION DES RESSOURCES DANS LES RÉSEAUX DE TROISIÈME GÉNÉRATION préenté

Plus en détail

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Somm@ire. Mon Université Numérique. Édito L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité 1 2 4 6 Mon Univerité Numérique 7 Rue de Fac Droit de uager et identité numérique Gloaire Webographie 23 24 26 28 Édito

Plus en détail

ASSURANCE AUTO. conditions générales

ASSURANCE AUTO. conditions générales ASSURANCE AUTO condition générale VOTRE CONTRAT Le contrat d'aurance auto ditribué par idmacif.fr et auré par Macifilia, SA au capital de 8 840 000, entreprie régie par le code de aurance - RCS Niort n

Plus en détail

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer

Exercices - Fonctions de plusieurs variables : corrigé. Pour commencer Pour commencer Exercice 1 - Ensembles de définition - Première année - 1. Le logarithme est défini si x + y > 0. On trouve donc le demi-plan supérieur délimité par la droite d équation x + y = 0.. 1 xy

Plus en détail

Nantes 2012 une AG anniversaire

Nantes 2012 une AG anniversaire La lettre N 15 Nov. 2012 - Mai 2013 Un CLUB pour e faciliter la GESTION L e Club de utilia - teur d Arc-en-Self, créé en 1993, et une aociation loi de 1901, indépendante de la ociété Alie, et qui raemble

Plus en détail

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité

Édito. Somm@ire. Mon Université Numérique. Édito. L Université Numérique Paris Île-de-France Les formations UNPIdF Mobilité Somm@ire Édito Édito L Univerité Numérique Pari Île-de-France Le formation UNPIdF Mobilité Mon Univerité Numérique Rue de Fac Droit de uager et identité numérique Gloaire Webographie 1 2 4 6 7 23 24 26

Plus en détail