SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION

Dimension: px
Commencer à balayer dès la page:

Download "SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION"

Transcription

1 SÉRIES STATISTIQUES A UNE VARIABLE PARAMÈTRES DE POSITION ET DE DISPERSION Eemple Le responsable d une maison de retraite a réalisé une enquête concernant les résidents de son établissement : - L activité préférée parmi celle proposées les après midi - L âge des résidents - La fréquentation à ces activités au cours d une semaine Les résultats de cette enquête sont présentés dans les tableau suivants : Type d activité Travau manuels 16 Loto 8 Wii 40 Jeu de cartes 1 Âge [75 ; 85[ 4 [85 ; 90[ 30 [90 ; 95[ 4 [95 ; 105[ 18 Fréquentation au activités Séries statistiques à une variable : Paramètres de position et de dispersion 1

2 Activité n 1 : Le mode Le mode d'une série statistique est la valeur du caractère correspondant au plus grand effectif. Dans le cas où les valeurs du caractère sont regroupées en classes, on parle de classe modale. si les observations sont regroupées en classes de même amplitude, la classe modale est la classe correspondant au plus grand effectif. si les classes n'ont pas la même amplitude, la classe modale correspond à l'effectif le plus élevé par classe d'amplitude unitaire. - Dans l eemple sur le type d activité choisi par les résidents, le mode est : - Dans l eemple sur l âge des résidents, la classe modale est : - Dans l eemple sur la fréquentation au activités, le mode est : Activité n : La médiane La médiane est un paramètre de position. La médiane d'une série statistique est la valeur du caractère telle qu'il y est dans cette série autant de valeurs plus grandes que de valeurs plus petites. Caractère quantitatif discret : o Lorsque le nombre de valeurs est impair, la médiane est la valeur du caractère correspondant au rang n+1 (n étant le nombre de valeurs). o Lorsque le nombre de valeurs est pair, la médiane peut-être toute valeur du caractère compris entre la valeur de rang n et n + 1 (n étant le nombre de valeurs). Caractère quantitatif continu (valeurs du caractère regroupées en classe): Recherche graphique de la médiane : en traçant les polygones des effectifs cumulés croissants et décroissants, on obtient un point d'intersection dont l'abscisse est la médiane. L'ordonnée de ce point correspond à la moitié de l'effectif total. Le tracé d'une seule courbe peut donc suffire. De la même façon, il est possible de déterminer graphiquement la médiane à l aide des polygones des fréquences cumulées croissantes et(ou) décroissantes. Séries statistiques à une variable : Paramètres de position et de dispersion

3 - Dans l eemple sur la fréquentation au activités : 1 ;1 ;1 ; ;1 ; ; ; ; ;3 ;3 ; ;3 ;4 ;4 ; ;4 ;5 ;5 ; ;5 ;6 ;6 ; ;6 n 1 n 6 n 7 n 4 n 5 n 48 n 49 n 78 n 79 n 90 n 91 n 96 Le nombre de valeurs étant impair (96), la médiane peut être toute valeur comprise entre la valeur de rang 48 et la valeur de rang 49. Par habitude, on prendra la valeur moyenne, la médiane est donc - Dans l eemple sur l âge des résidents Effectifs Coordonnées du point M du polygone dont l ordonnée est 96 = 48 : M( ; 48) La médiane de cette série statistique est donc Somme ( ) Séries statistiques à une variable : Paramètres de position et de dispersion 3

4 Activité n 3 : La moyenne La moyenne est un paramètre de position. La moyenne d'une série de valeurs est le rapport de la somme de ces valeurs sur le nombre de valeurs. On la note. n n... n 1 1 p p N 1 ; ; sont les valeurs du caractère si le caractère est quantitatif discret et les centres des classes si le caractère est quantitatif continu. n 1 ; n ; les effectifs correspondants Remarque : calcul du centre d une classe classe [a ; b [ centre de classe : a + b - Dans l eemple sur la fréquentation au activités : Fréquentation au activités i i La moyenne en jours de la fréquentation au activité est : - Dans l eemple sur l âge des résidents : Âge [75 ; 85[ 4 [85 ; 90[ 30 [90 ; 95[ 4 [95 ; 105[ 18 Centres des classes i i L âge moyen des résidents est : Séries statistiques à une variable : Paramètres de position et de dispersion 4

5 Activité n 3 : La variance et l écart-type L écart-type est un paramètre de dispersion. Il caractérise l étalement des valeurs du caractère autour de la moyenne. Pour calculer l écart-type, on calcule d abord la variance V n ( - ) n ( - )... n ( - ) 1 1 p p V N puis l écart-type : V Plus l écart-type est élevé, plus les valeurs sont dispersées autour de la moyenne. Plus l écart-type est petit, plus les valeurs sont regroupées autour de la moyenne. - Dans l eemple sur la fréquentation au activités : = Fréquentation au activités i ( i - )² La variance est : L écart-type est : - Dans l eemple sur l âge des résidents : = Âge [75 ; 85[ 4 [85 ; 90[ 30 [90 ; 95[ 4 [95 ; 105[ 18 Centres des classes i ( i - )² La variance est : L écart-type est : Séries statistiques à une variable : Paramètres de position et de dispersion 5

6 Loi normale : Une série statistique suit une loi normale lorsque : 68% de la population est dans l intervalle [ - ; + ] 95% de la population est dans l intervalle [ - ; + ] 99,7% de la population est dans l intervalle [ - ; + ] Déterminons si cette série statistique concernant l âge des résidents suit une loi normale. Effectifs Somme ( ) Séries statistiques à une variable : Paramètres de position et de dispersion 6

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE

STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE Chapitre 4bis STATISTIQUES 2 : MOYENNE, MEDIANE, ECART-TYPE BAC PRO 3 Objectifs (à la fin du chapitre, je dois être capable de ) : - Calculer une moyenne - Calculer une médiane (caractère discret) - Tracer

Plus en détail

Représentation d une distribution

Représentation d une distribution 5 Représentation d une distribution VARIABLE DISCRÈTE : FRÉQUENCES RELATIVES DES CLASSES Si dans un graphique représentant une distribution, on place en ordonnées le rapport des effectifs n i de chaque

Plus en détail

Statistiques Descriptives à une dimension

Statistiques Descriptives à une dimension I. Introduction et Définitions 1. Introduction La statistique est une science qui a pour objectif de recueillir et de traiter les informations, souvent en très grand nombre. Elle regroupe l ensemble des

Plus en détail

STATISTIQUES I) UN PEU DE VOCABULAIRE

STATISTIQUES I) UN PEU DE VOCABULAIRE STATISTIQUES I) UN PEU DE VOCABULAIRE Toute étude statistique s'appuie sur des données. Dans le cas ou ces données sont numériques (99% des cas), on distingue les données discrètes (qui prennent un nombre

Plus en détail

Statistique : Résumé de cours et méthodes

Statistique : Résumé de cours et méthodes Statistique : Résumé de cours et méthodes 1 Vocabulaire : Population : c est l ensemble étudié. Individu : c est un élément de la population. Effectif total : c est le nombre total d individus. Caractère

Plus en détail

Statistiques 0,14 0,11

Statistiques 0,14 0,11 Statistiques Rappels de vocabulaire : "Je suis pêcheur et je désire avoir des informations sur la taille des truites d'une rivière. Je décide de mesurer les truites obtenues au cours des trois dernières

Plus en détail

Chapitre 2 Les graphiques

Chapitre 2 Les graphiques Chapitre Les graphiques. Généralités C est la partie des statistiques la moins souvent oubliée dans l enseignement secondaire car elle mobilise la notion de proportionnalité sous ses différentes formes.

Plus en détail

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3].

1S DS 4 Durée :?mn. 2. La courbe ci-dessous est la représentation graphique de la fonction g, définie sur I = [ 1; 3]. 1S DS 4 Durée :?mn Exercice 1 ( 5 points ) Les trois questions sont indépendantes. 1. Soit f la fonction définie par f(x) = 3 x. a) Donner son ensemble de définition. Il faut 3 x 0 3 x donc D f =] ; 3]

Plus en détail

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1

Université Jinan Faculté de Gestion Tripoli - Liban. Statistiques. Examen Préparatoire. Version 1 Université Jinan Faculté de Gestion Tripoli - Liban Statistiques Examen Préparatoire Version 1 2011-2010 Statistiques Université de Jinan Faculté de Gestion Table des matières 1 Analyse statistique d'une

Plus en détail

Examen d accès - 1 Octobre 2009

Examen d accès - 1 Octobre 2009 Examen d accès - 1 Octobre 2009 Aucun document autorisé - Calculatrice fournie par le centre d examen Ce examen est un questionnaire à choix multiples constitué de 50 questions. Plusieurs réponses sont

Plus en détail

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES

Module 2 29 Décembre 2009 Intervenant: Dhuin STATISTIQUES STATISTIQUES I. Séries statistiques simples... 1 A. Définitions... 1 1. Population... 1 2. Caractère statistique... 1 B. Séries classées / représentations graphiques.... 2 1. Séries classées... 2 2. Représentations

Plus en détail

Séries Statistiques Simples

Séries Statistiques Simples 1. Collecte et Représentation de l Information 1.1 Définitions 1.2 Tableaux statistiques 1.3 Graphiques 2. Séries statistiques simples 2.1 Moyenne arithmétique 2.2 Mode & Classe modale 2.3 Effectifs &

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Les statistiques descriptives et les intervalles de confiance

Les statistiques descriptives et les intervalles de confiance Les statistiques et les intervalles de Yohann.Foucher@univ-nantes.fr Equipe d Accueil 4275 "Biostatistique, recherche clinique et mesures subjectives en santé", Université de Nantes Master 2 - Cours #2

Plus en détail

CH1 : Langages de la continuité Limites

CH1 : Langages de la continuité Limites CH : Langages de la continuité Limites I. Continuité- Théorème des valeurs intermédiaires. Définition : Soit f une fonction définie sur un intervalle I de R. Lorsque la courbe représentative de f ne présente

Plus en détail

1. Vocabulaire : Introduction au tableau élémentaire

1. Vocabulaire : Introduction au tableau élémentaire L1-S1 Lire et caractériser l'information géographique - Le traitement statistique univarié Statistique : le terme statistique désigne à la fois : 1) l'ensemble des données numériques concernant une catégorie

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

STATISTIQUES À UNE VARIABLE

STATISTIQUES À UNE VARIABLE STATISTIQUES À UNE VARIABLE Table des matières I Méthodes de représentation 2 I.1 Vocabulaire.............................................. 2 I.2 Tableaux...............................................

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre :

t 100. = 8 ; le pourcentage de réduction est : 8 % 1 t Le pourcentage d'évolution (appelé aussi taux d'évolution) est le nombre : Terminale STSS 2 012 2 013 Pourcentages Synthèse 1) Définition : Calculer t % d'un nombre, c'est multiplier ce nombre par t 100. 2) Exemples de calcul : a) Calcul d un pourcentage : Un article coûtant

Plus en détail

Module. Recueil et Traitement Statistique des Données: Introduction Générale à la Statistique

Module. Recueil et Traitement Statistique des Données: Introduction Générale à la Statistique Centre de Recherche sur l'information Scientifique et Technique Post graduation spécialisée en ligne Option Information Scientifique et Technique Module Recueil et Traitement Statistique des Données: Introduction

Plus en détail

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances

Utiliser les propriétés Savoir réduire un radical savoir +,-,x,: Utiliser les propriétés des puissances Calculer avec des puissances ARITHMETIQUE 1 C B A Numération Ecrire en lettres et en chiffres Poser des questions fermées autour d un document simple (message, consigne, planning ) Connaître le système décimal Déterminer la position

Plus en détail

Statistique descriptive. Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne. Notes de cours

Statistique descriptive. Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne. Notes de cours Statistique descriptive Fabrice MAZEROLLE Professeur de sciences économiques Université Paul Cézanne Notes de cours Dernière mise à jour le mercredi 25 février 2009 1 ère année de Licence Aix & Marseille

Plus en détail

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques

1 e S - programme 2011 mathématiques ch.4 cahier élève Page 1 sur 14 Ch.4 : Statistiques 1 e S - programme 2011 mathématiques ch4 cahier élève Page 1 sur 14 Ch4 : Statistiques Exercice n A page 286 : Calculer une médiane et une moyenne Déterminer la médiane et la moyenne de chacune des deux

Plus en détail

Séquence 6. Fonctions dérivées. Sommaire

Séquence 6. Fonctions dérivées. Sommaire Séquence 6 Fonctions dérivées Sommaire Pré-requis Définition Dérivées des fonctions usuelles Dérivation et opérations algébriques Applications de la dérivation Synthèse de la séquence Eercices d approfondissement

Plus en détail

Support du cours de Probabilités IUT d Orléans, Département d informatique

Support du cours de Probabilités IUT d Orléans, Département d informatique Support du cours de Probabilités IUT d Orléans, Département d informatique Pierre Andreoletti IUT d Orléans Laboratoire MAPMO (Bât. de Mathématiques UFR Sciences) - Bureau 126 email: pierre.andreoletti@univ-orleans.fr

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

SERIE 1 Statistique descriptive - Graphiques

SERIE 1 Statistique descriptive - Graphiques Exercices de math ECG J.P. 2 ème A & B SERIE Statistique descriptive - Graphiques Collecte de l'information, dépouillement de l'information et vocabulaire La collecte de l information peut être : directe:

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

1 élève. 0 8 12 16 20 Note

1 élève. 0 8 12 16 20 Note L'histogramme est utilisé dans le cas d'une série regroupée en classe. Pour construire un histogramme, on porte les classes en abscisse et sur chacune d'elles pris comme base, on construit un rectangle

Plus en détail

Probabilités Loi exponentielle Exercices corrigés

Probabilités Loi exponentielle Exercices corrigés Probabilités Loi exponentielle Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : densité de probabilité Exercice 2 : loi exponentielle de paramètre

Plus en détail

Statistiques à une variable

Statistiques à une variable Statistiques à une variable Objectif : connaissances des termes et formules statistiques Acquis : Programme de seconde professionnelle. 1/ Généralités : Exploitation d une base de données. Vie économique

Plus en détail

T. D. n o 3 Analyse de données quantitatives avec le logiciel R

T. D. n o 3 Analyse de données quantitatives avec le logiciel R T. D. n o 3 Analyse de données quantitatives avec le logiciel R 1 Rappel de quelques fonctions statistiques sous R Fonction summary() cumsum() sum() mean() max() min() range() median() var() sd() Description

Plus en détail

Cours de mathématiques Seconde

Cours de mathématiques Seconde Cours de mathématiques Seconde Chapitre Vecteurs et translations...4 I Définitions et premières propriétés...4 a) Rappels sur le parallélogramme...4 b) Translation...4 c) Vecteur...5 d) Vecteurs égaux...5

Plus en détail

Cours de statistique descriptive. 1. Analyse univariée. Université Charles-de-Gaulle Lille 3

Cours de statistique descriptive. 1. Analyse univariée. Université Charles-de-Gaulle Lille 3 Cours de statistique descriptive 1. Analyse univariée Support de cours destiné aux étudiants de la licence MOMR : Université Charles-de-Gaulle Lille 3 UFR MSES O. Torrès Année universitaire 007-8 Version

Plus en détail

LES FONCTIONS : GENERALITES ET VARIATIONS

LES FONCTIONS : GENERALITES ET VARIATIONS 1 sur 10 LES FONCTIONS : GENERALITES ET VARIATIONS Activité conseillée p42 n 1 : Évolution du climat Activité conseillée p22 n 1 : Évolution du climat p61 n 5 p74 n 82 p61 n 7 p43 n 19 p44 n 20 p44 n 21

Plus en détail

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé

Baccalauréat ES Centres étrangers 12 juin 2014 - Corrigé Baccalauréat ES Centres étrangers 1 juin 14 - Corrigé A. P. M. E. P. Exercice 1 5 points Commun à tous les candidats 1. On prend un candidat au hasard et on note : l évènement «le candidat a un dossier

Plus en détail

Nombre dérivé et tangente

Nombre dérivé et tangente Nombre dérivé et tangente I) Interprétation graphique 1) Taux de variation d une fonction en un point. Soit une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative

Plus en détail

Espérance, variance, quantiles

Espérance, variance, quantiles Espérance, variance, quantiles Mathématiques Générales B Université de Genève Sylvain Sardy 22 mai 2008 0. Motivation Mesures de centralité (ex. espérance) et de dispersion (ex. variance) 1 f(x) 0.0 0.1

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Paramètres de position

Paramètres de position Paramètres de position 1 On va parler ici des statistiques quantitatives. On veut les résumer par des nombres. On a deux types de nombres Les paramètre de position : ce sont ceux qui définissent une notion

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013

STATISTIQUES ET PROBABILITÉS. Université du Littoral - Côte d Opale Laurent SMOCH. Janvier 2013 ISCID-CO - PRÉPA 1ère année STATISTIQUES ET PROBABILITÉS Université du Littoral - Côte d Opale Laurent SMOCH Janvier 2013 Laboratoire de Mathématiques Pures et Appliquées Joseph Liouville Université du

Plus en détail

Validation probabiliste d un Système de Prévision d Ensemble

Validation probabiliste d un Système de Prévision d Ensemble Validation probabiliste d un Système de Prévision d Ensemble Guillem Candille, janvier 2006 Système de Prévision d Ensemble (EPS) (ECMWF Newsletter 90, 2001) Plan 1 Critères de validation probabiliste

Plus en détail

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4

I Exercices I-1 1... I-1 2... I-1 3... I-2 4... I-2 5... I-2 6... I-2 7... I-3 8... I-3 9... I-4 Chapitre Convexité TABLE DES MATIÈRES page -1 Chapitre Convexité Table des matières I Exercices I-1 1................................................ I-1................................................

Plus en détail

5. Étude de fonctions

5. Étude de fonctions ÉTUDE DE FONCTIONS 33 5. Étude de fonctions 5.1. Asymptotes Asymptote verticale La droite = a est dite asymptote verticale (A. V.) de la fonction f si l'une au moins des conditions suivantes est vérifiée

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Commun à tous les candidats

Commun à tous les candidats EXERCICE 3 (9 points ) Commun à tous les candidats On s intéresse à des courbes servant de modèle à la distribution de la masse salariale d une entreprise. Les fonctions f associées définies sur l intervalle

Plus en détail

Candidat A B C D Nombre de voix obtenues. A partir de ce tableau on a l effectif total : 51 210 + 43 821 + 23 212 + 8 597 = 126 840

Candidat A B C D Nombre de voix obtenues. A partir de ce tableau on a l effectif total : 51 210 + 43 821 + 23 212 + 8 597 = 126 840 Première L Statistiques Cours 1. Définitions 1 2. Données Gaussiennes 5 3. Médiane et quartiles 6 4. Diagramme en boîte 9 5. Exercices corrigés 12 1. Définitions Une série statistique est la donnée d objets

Plus en détail

EXERCICE 4 (7 points ) (Commun à tous les candidats)

EXERCICE 4 (7 points ) (Commun à tous les candidats) EXERCICE 4 (7 points ) (Commun à tous les candidats) On cherche à modéliser de deux façons différentes l évolution du nombre, exprimé en millions, de foyers français possédant un téléviseur à écran plat

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé

Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé Baccalauréat ES Polynésie (spécialité) 10 septembre 2014 Corrigé A. P. M. E. P. Exercice 1 5 points 1. Réponse d. : 1 e Le coefficient directeur de la tangente est négatif et n est manifestement pas 2e

Plus en détail

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves.

SECONDE DST CORRECTION. Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves. SECONDE DST CORRECTION Exercice 1 Voici le diagramme en bâtons des moyennes du second trimestre d'une classe de seconde comportant 34 élèves 6 2e trimestre 5 4 3 2 1 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Plus en détail

BEP Secteur 7 Outremer juin 2009

BEP Secteur 7 Outremer juin 2009 BEP Secteur 7 Outremer juin 2009 EXERCICE 1 4 points Le tableau ci-dessous indique l évolution sur une période de 5 ans, du prix (en dollars U.S.) du baril de pétrole brut à New York. Pour la première

Plus en détail

FONCTION EXPONENTIELLE ( ) 2 = 0.

FONCTION EXPONENTIELLE ( ) 2 = 0. FONCTION EXPONENTIELLE I. Définition Théorème : Il eiste une unique fonction f dérivable sur R telle que f ' = f et f (0) =. Démonstration de l'unicité (eigible BAC) : L'eistence est admise - Démontrons

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Lois de probabilité à densité Loi normale

Lois de probabilité à densité Loi normale DERNIÈRE IMPRESSIN LE 31 mars 2015 à 14:11 Lois de probabilité à densité Loi normale Table des matières 1 Lois à densité 2 1.1 Introduction................................ 2 1.2 Densité de probabilité

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle Une fonction est dite exponentielle s il y a la présence d un facteur multiplicatif dans l expression. Ex.: 4x5x5x5x5x5x5x5 : le facteur multiplicatif est 5 La fonction de base d

Plus en détail

Algorithmique au lycée

Algorithmique au lycée Stage PAF christian.brucker@ac-strasbourg.fr jean-paul.quelen@ac-strasbourg.fr 13 mars 2015 Lycée Jean Monnet STRASBOURG Sommaire du stage Les programmes Sommaire du stage Les programmes Sommaire du stage

Plus en détail

Cours 9 Une variable numérique : distribution et répartition

Cours 9 Une variable numérique : distribution et répartition Cours 9 Une variable numérique : distribution et répartition Lorsqu'une variable est qualitative et l'autre numérique, il est courant que la première identie des sous-populations (sexe, catégories socio-économiques,

Plus en détail

7.4 Écarts de rémunération autorisés

7.4 Écarts de rémunération autorisés la rémunération flexible lorsqu'elle n'est pas également accessible aux catégories d'emplois comparées, notamment la rémunération liée aux compétences, au rendement ou à la performance de l'entreprise

Plus en détail

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015

Baccalauréat ES Nouvelle-Calédonie 2 mars 2015 Baccalauréat ES Nouvelle-Calédonie mars 015 A. P. M. E. P. EXERCICE 1 Commun à tous les candidats Soit f la fonction définie sur l intervalle [1,5 ; 6] par : f (x)=(5x )e x On note C la courbe représentative

Plus en détail

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx

ECRICOME 2004. Voie Eco. 1 1 + x. f (x) dx n N, u n = 1. 0 xn f (x) dx ECRICOME 2004 Voie Eco 1 EXERCICE 1 EXERCICE Soient f la fonction numérique de la variable réelle définie par : x R, f (x = 1 2 et (u n la suite de nombres réels déterminée par : { u 0 = 1 f (x dx 0 n

Plus en détail

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé

Baccalauréat ES/L Métropole La Réunion 13 septembre 2013 Corrigé Baccalauréat S/L Métropole La Réunion 13 septembre 2013 Corrigé A. P. M.. P. XRCIC 1 Commun à tous les candidats Partie A 1. L arbre de probabilité correspondant aux données du problème est : 0,3 0,6 H

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES)

ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES) ENONCE : La formule de Black et Scholes sur les marchés financiers (Niveau terminale S ou ES) Depuis sa publication en 1973, la formule de Black et Scholes s est imposée comme la référence pour la valorisation

Plus en détail

FORMULAIRE DE DÉCLARATION

FORMULAIRE DE DÉCLARATION - 1-1. DÉNOMINATION SOCIALE DE LA SOCIETE : 5. DATE DE L OPÉRATION : 12/03/2013 7. PRIX UNITAIRE : 11,74 8. MONTANT DE L OPÉRATION : 3.298,94 actions ordinaires 1. DÉNOMINATION SOCIALE DE LA SOCIETE :

Plus en détail

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale :

Le regroupement de valeurs continues, ARRONDIR... Notion de discrétisation : groupes ou intervalles de valeurs. Exemple : Glycémie normale : Variables : samedi 14 novembre 2009 12:54 1. Quelques Exemples : C'est une caractéristique ou un facteur susceptible de prendre des valeurs différentes selon les individus. Exemples : o Couleur des cheveux

Plus en détail

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex

U. E. R SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG. Bâtiment 200-91405 ORSAY Cedex 1 T P-i. oc i LAIVUTS 1 J-13 October SYSTEME DE TESTS AUTOMATIQUES AVEC UN OSCILLOSCOPE NUMERIQUE + PC M. AGERON, A. HRISOHO, C. NGUYEN, K. TRUONG U. E. R de l'université Paris-Sud Institut National de

Plus en détail

Aire sous une courbe et calcul de primitives

Aire sous une courbe et calcul de primitives Aire sous une courbe et calcul de primitives Le calcul de primitives d une fonction et celui de l aire de la surface bordée par le graphique de cette fonction sont intimement liés. Les exemples qui suivent

Plus en détail

Loi binomiale Lois normales

Loi binomiale Lois normales Loi binomiale Lois normales Christophe ROSSIGNOL Année scolaire 204/205 Table des matières Rappels sur la loi binomiale 2. Loi de Bernoulli............................................ 2.2 Schéma de Bernoulli

Plus en détail

2. Les exponentielles

2. Les exponentielles - 1 - Les eponentielles. Les eponentielles.1 Introduction et définitions Eemple 1 : On veut faire un élevage de souris. Pour cela on achète 1 souris grises, souris blanches et 1 souris brunes. Les souris

Plus en détail

Fluctuation d une fréquence selon les échantillons - Probabilités

Fluctuation d une fréquence selon les échantillons - Probabilités Fluctuation d une fréquence selon les échantillons - Probabilités C H A P I T R E 3 JE DOIS SAVOIR Calculer une fréquence JE VAIS ÊTRE C APABLE DE Expérimenter la prise d échantillons aléatoires de taille

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE

MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE MÉTHODES ET STATISTIQUES POUR LIRE UN ARTICLE Forum HH 05.02.2013 Ghislaine Gagnon Unité HPCI Qualitatif ou quantitatif? Les 2 méthodes peuvent être utilisées séparément ou en conjonction - le qualitatif

Plus en détail

Analyse de données et méthodes numériques

Analyse de données et méthodes numériques Analyse de données et méthodes numériques Analyse de données: Que faire avec un résultat? Comment le décrire? Comment l analyser? Quels sont les «modèles» mathématiques associés? Analyse de données et

Plus en détail

Révision de statistiques

Révision de statistiques IUP SID M1 UPS TOULOUSE Maîtrise statistique des procédés 2005/2006 Révision de statistiques Exercice 1 Révisions sur la lecture de tables. 1. Soit U une v.a. normale centrée réduite. Calculer P(U < 2),

Plus en détail

FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1

FPSTAT 2 í La dçecision statistique. 1. Introduction ça l'infçerence. 1 INTRODUCTION ça L'INFçERENCE STATISTIQUE 1. Introduction 2. Notion de variable alçeatoire íprçesentation ívariables alçeatoires discrçetes ívariables alçeatoires continues 3. Reprçesentations d'une distribution

Plus en détail

Traitement des données avec Microsoft EXCEL 2010

Traitement des données avec Microsoft EXCEL 2010 Traitement des données avec Microsoft EXCEL 2010 Vincent Jalby Septembre 2012 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation

Plus en détail

INFIRMIER(E) GRADUE(E) SPECIALISE(E) EN SANTE COMMUNAUTAIRE HAUTE ECOLE DE LA PROVINCE DE LIEGE PROFESSEUR : RENARD X.

INFIRMIER(E) GRADUE(E) SPECIALISE(E) EN SANTE COMMUNAUTAIRE HAUTE ECOLE DE LA PROVINCE DE LIEGE PROFESSEUR : RENARD X. INFIRMIER(E) GRADUE(E) SPECIALISE(E) EN SANTE COMMUNAUTAIRE HAUTE ECOLE DE LA PROVINCE DE LIEGE PROFESSEUR : RENARD X. Année scolaire 009-010 TABLE DES MATIERES CHAPITRE 1: Eléments de statistiques descriptives...

Plus en détail

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010

Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 Baccalauréat Mathématiques informatique corrigé Polynésie 10 juin 2010 EXERCICE 1 11 points Un institut de recherche désire relever des informations sur l état de l enneigement dans un massif montagneux.

Plus en détail

Seconde Généralités sur les fonctions Exercices. Notion de fonction.

Seconde Généralités sur les fonctions Exercices. Notion de fonction. Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et

Plus en détail

- Ressources pour les classes

- Ressources pour les classes Mathématiques Collège - Ressources pour les classes de 6 e, 5 e, 4 e, et 3 e du collège - - Organisation et gestion de données au collège - Ce document peut être utilisé librement dans le cadre des enseignements

Plus en détail

1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon :

1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon : Jeanniard Sébastien Lemaître Guillaume TP n 1 : Théorème de Shannon Modulation de fréquence 1 Acquisition d un signal avec l oscilloscope numérique LeCroy 9310 : Théorème de Shannon : 1.3 Etude de la fréquence

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Statistiques - Cours. 1. Gén éralités. 2. Statistique descriptive univari ée. 3. Statistique descriptive bivariée. 4. Régression orthogonale dans R².

Statistiques - Cours. 1. Gén éralités. 2. Statistique descriptive univari ée. 3. Statistique descriptive bivariée. 4. Régression orthogonale dans R². Statistiques - Cours Page 1 L I C E N C E S c i e n t i f i q u e Cours Henri IMMEDIATO S t a t i s t i q u e s 1 Gén éralités Statistique descriptive univari ée 1 Repr é s e n t a t i o n g r a p h i

Plus en détail

Traitement des données avec EXCEL 2007

Traitement des données avec EXCEL 2007 Traitement des données avec EXCEL 2007 Vincent Jalby Octobre 2010 1 Saisie des données Les données collectées sont saisies dans une feuille Excel. Chaque ligne correspond à une observation (questionnaire),

Plus en détail

Filtre ADSL Travaux dirigés

Filtre ADSL Travaux dirigés Filtre ADSL Travaux dirigés Préambule Le terme ADSL signifie Asymmetric Digital Subscriber Line (dans les pays francophones ce terme est parfois remplacé par LNPA qui signifie Ligne Numérique à Paire Asymétrique).

Plus en détail

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2

Exercice 3 (5 points) A(x) = 1-e -0039' -0 156e- 0,039x A '() -'-,..--,-,--,------:-- X = (l_e-0,039x)2 Les parties A et B sont indépendantes. Partie A Exercice 3 (5 points) Commun à tous les candidats On considère la fonction A définie sur l'intervalle [1 ; + 00 [ par A(x) = 1-e -0039' ' x 1. Calculer la

Plus en détail

Statistique Descriptive Élémentaire

Statistique Descriptive Élémentaire Publications de l Institut de Mathématiques de Toulouse Statistique Descriptive Élémentaire (version de mai 2010) Alain Baccini Institut de Mathématiques de Toulouse UMR CNRS 5219 Université Paul Sabatier

Plus en détail

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE

TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE TD1 PROPAGATION DANS UN MILIEU PRESENTANT UN GRADIENT D'INDICE Exercice en classe EXERCICE 1 : La fibre à gradient d indice On considère la propagation d une onde électromagnétique dans un milieu diélectrique

Plus en détail

UN OUTIL POUR ILLUSTRER LE COURS D'ANALYSE : GEOPLAN

UN OUTIL POUR ILLUSTRER LE COURS D'ANALYSE : GEOPLAN 8 UN OUTIL POUR ILLUSTRER LE COURS D'ANALYSE : GEOPLAN Fin 9, la Direction des Lycées et Collèges adressait à tous les lycées d'enseignement général et technique des imagiciels pour les classes de premières

Plus en détail