Principe d une démonstration par récurrence. Principe d une démonstration par récurrence

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Principe d une démonstration par récurrence. Principe d une démonstration par récurrence"

Transcription

1

2 Principe Une démonstration par récurrence permet, dans certains cas, de démontrer qu une propriété dépendant d un entier naturel est vraie pour toutes les valeurs de cet entier naturel. Comme on ne peut pas démontrer la propriété pour chaque valeur de n (car on aurait une infinité de démonstrations à effectuer), il faut trouver une autre méthode, qui ressemble à la chute de dominos en cascade.

3 Description de l ensemble des entiers naturels Ce principe est basé sur la description de l ensemble N des entiers naturels {0 ; 1 ; 2 ; 3 ; }

4 Description de l ensemble des entiers naturels Ce principe est basé sur la description de l ensemble N des entiers naturels {0 ; 1 ; 2 ; 3 ; } Il existe un plus petit entier, 0.

5 Description de l ensemble des entiers naturels Ce principe est basé sur la description de l ensemble N des entiers naturels {0 ; 1 ; 2 ; 3 ; } Il existe un plus petit entier, 0. Chaque entier autre que 0 s obtient en ajoutant 1 à son prédécesseur.

6 Axiome de récurrence Si une propriété est vraie pour l entier naturel n 0 (initialisation) et s il est prouvé que, lorsqu elle est vraie pour un entier p quelconque supérieur ou égal à n 0, alors elle est vraie pour p+1 (hérédité), alors elle est vraie pour tout entier n n 0.

7 Exemple rédigé de la démonstration d une propriété Soit H n une proposition qui dépend d un entier n naturel. On veut montrer que cette proposition H n est vraie pour tout n n 0.

8 Exemple rédigé de la démonstration d une propriété Soit H n une proposition qui dépend d un entier n naturel. On veut montrer que cette proposition H n est vraie pour tout n n 0. On suit la méthode suivante :

9 Exemple rédigé de la démonstration d une propriété Soit H n une proposition qui dépend d un entier n naturel. On veut montrer que cette proposition H n est vraie pour tout n n 0. On suit la méthode suivante : On vérifie que H n0 est vraie. (amorçage de la récurrence ou initialisation).

10 Exemple rédigé de la démonstration d une propriété Soit H n une proposition qui dépend d un entier n naturel. On veut montrer que cette proposition H n est vraie pour tout n n 0. On suit la méthode suivante : On vérifie que H n0 est vraie. (amorçage de la récurrence ou initialisation). On démontre que la propriété est héréditaire, c est-à-dire que si H n est vraie à un rang n n 0 (hypothèse de récurrence), alors H n+1 est vraie.

11 Alors, d après l axiome de récurrence, on en déduit que H n est vraie pour tout n n 0.

12 Exemple concret

13 Exemple concret Soit la suite (u n ) définie par : u 0 = 3 et u n+1 = 5u n 4 pour tout n N. Démontrer que, pour tout n N, u n = 2 5 n +1.

14 Exemple concret Soit la suite (u n ) définie par : u 0 = 3 et u n+1 = 5u n 4 pour tout n N. Démontrer que, pour tout n N, u n = 2 5 n +1. Rédaction

15 Exemple concret Soit la suite (u n ) définie par : u 0 = 3 et u n+1 = 5u n 4 pour tout n N. Démontrer que, pour tout n N, u n = 2 5 n +1. Rédaction Notons H n l affirmation : u n = 2 5 n +1.

16 Exemple concret Soit la suite (u n ) définie par : u 0 = 3 et u n+1 = 5u n 4 pour tout n N. Démontrer que, pour tout n N, u n = 2 5 n +1. Rédaction Notons H n l affirmation : u n = 2 5 n +1. Effectuons une démonstration par récurrence :

17 Exemple concret Soit la suite (u n ) définie par : u 0 = 3 et u n+1 = 5u n 4 pour tout n N. Démontrer que, pour tout n N, u n = 2 5 n +1. Rédaction Notons H n l affirmation : u n = 2 5 n +1. Effectuons une démonstration par récurrence : Initialisation : n= 0 : =2 1+1=3=u 0 : H (0) est vraie.

18 Hérédité : On suppose que H (n) est vraie pour un entier n quelconque, donc que u n = 2 5 n +1. (hypothèse de récurrence).

19 Hérédité : On suppose que H (n) est vraie pour un entier n quelconque, donc que u n = 2 5 n +1. (hypothèse de récurrence). Il faut alors montrer que H n+1 est vraie.

20 Hérédité : On suppose que H (n) est vraie pour un entier n quelconque, donc que u n = 2 5 n +1. (hypothèse de récurrence). Il faut alors montrer que H n+1 est vraie. u n+1 = 5u n 4 (définition de la suite) = 5 (2 (5 n +1) 4 (d après l hypothèse de récurrence) = 10 5 n +5 1=10 5 n +1=2 5 5 n +1=2 5 n+1 +1 (c.q.f.d) Conclusion D après l axiome de récurrence, la propriété H n est vraie pour tout n N.

Principe d une démonstration par récurrence :

Principe d une démonstration par récurrence : Chapitre Suites 1 Démonstration par récurrence Exemples introductif : Imaginons que des ouvriers construisant un immeuble aient toutes les instructions nécessaires pour construire un étage d immeuble sur

Plus en détail

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux

POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux POLY-PREPAS ANNEE 2009/2010 Centre de Préparation aux Concours Paramédicaux - Section : i-prépa Audioprothésiste (annuel) - MATHEMATIQUES 10 : SUITES : - DEMONSTRATION PAR RECURRENCE - - COURS + ENONCE

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence Paul DUPRAT Lycée du golfe de Saint Tropez Année 2014/2015 Terminle S ( Lycée du golfe de Saint Tropez) Le raisonnement par récurrence Année 2014/2015 1 / 1 Terminle S (

Plus en détail

Suites Raisonnement par récurrence Exercices corrigés

Suites Raisonnement par récurrence Exercices corrigés Suites Raisonnement par récurrence Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : expression du terme général d une suite Exercice 2 : majoration

Plus en détail

Chapitre 1 Le principe du raisonnement par récurrence

Chapitre 1 Le principe du raisonnement par récurrence Chapitre 1 : Principe du raisonnement par récurrence Chapitre 1 Le principe du raisonnement par récurrence 1 I Exemple introductif On considère les suites de terme général : n (n + 1) u n = 0 + 1 + + (n

Plus en détail

Suites numériques (1 re partie)

Suites numériques (1 re partie) Chapitre 1 Suites numériques (1 re partie) I Prérequis I.1 Définition d une suite Définition. Une suite numérique est une liste de nombres réels «numérotés» par les nombres entiers naturels. N R On peut

Plus en détail

Suites numériques Raisonnement par récurrence

Suites numériques Raisonnement par récurrence Chapitre Suites numériques Raisonnement par récurrence I. Suites numériques : rappels et coméments 1. Modes de génération d une suite Soit n 0 un entier naturel. Une suite numérique u une fonction qui

Plus en détail

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites

Lycée la Folie Saint James. Fiche de cours : Généralités sur les suites Lycée la Folie Saint James T ale S Fiche de cours : Généralités sur les suites Notion de suite. Définitions Une suite numérique réelle est une fonction u définie sur l ensemble N ou sur une partie de N

Plus en détail

Récurrences et sommes. () Récurrences et sommes 1 / 23

Récurrences et sommes. () Récurrences et sommes 1 / 23 Récurrences et sommes () Récurrences et sommes 1 / 23 1 Le raisonnement par récurrence 2 Sommes et produits 3 La formule du binôme de Newton Dans ce très court chapitre, on introduit deux outils : un outils

Plus en détail

Corrigé, démonstration par récurrence et problème ouvert type bac

Corrigé, démonstration par récurrence et problème ouvert type bac Corrigé, démonstration par récurrence et problème ouvert type bac Démonstration par récurrence, généralité sur les suites, problème ouvert type bac PLUSDEBONNESNOTES.COM 19 septembre 2017 Créé par : plusdebonnesnotes

Plus en détail

Mathématique en Terminale S Le raisonnement par récurrence

Mathématique en Terminale S Le raisonnement par récurrence Mathématique en Le raisonnement par récurrence Le raisonnement par récurrence est un raisonnement mathématique qui permet de démontrer qu une propriété dépendant d un entier n, est vrai quelque soit l

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

Chapitre 2. Langage et raisonnement en mathématiques. 2.1 Les règles du jeux

Chapitre 2. Langage et raisonnement en mathématiques. 2.1 Les règles du jeux Chapitre 2 Langage et raisonnement en mathématiques 2.1 Les règles du jeux En mathématique, il y a deux processus fondamentaux : 1. construire des objets mathématiques (nombres, fonctions, figures géométriques,...)

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

Suites : récurrence, limites

Suites : récurrence, limites TS : Suites : récurrence, ites page 1 Suites : récurrence, ites I. Rappels sur les suites (A) Mode de génération d une suite Définition 1 Une suite numérique u ou ( ) n N est une fonction définie sur N

Plus en détail

Raisonnement par récurrence Cours maths Terminale S

Raisonnement par récurrence Cours maths Terminale S Raisonnement par récurrence Cours maths Terminale S Dans ce module est introduit un des grands principes de raisonnement en mathématiques : le principe de raisonnement par récurrence. Ce grand principe

Plus en détail

Le raisonnement par récurrence

Le raisonnement par récurrence Le raisonnement par récurrence UN EXEMPLE! 1) On pose u n = 2n 1 pour tout n 1 : que représente cette suite? 2) On pose alors S n = k=n u n. k=0 1) Calculez S 1, S 2, S 3, S 4. 2) Conjecturez quelque chose...

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Dossier n 12 : Exemples d approche et d applications du raisonnement par récurrence dans des domaines variés.

Dossier n 12 : Exemples d approche et d applications du raisonnement par récurrence dans des domaines variés. Dossier n 12 : Exemples d approche et d applications du raisonnement par récurrence dans des domaines variés. Rédigé par Cécile COURTOIS, le 29 août 2003 cecile-courtois@wanadoo.fr I Situation par rapport

Plus en détail

Suites 4 : Raisonnement par récurrence

Suites 4 : Raisonnement par récurrence Suites 4 : Raisonnement par récurrence C' est au mathématicien italien Giuseppe Peano (1858 ; 193) que l'on attribue le principe du raisonnement par récurrence. Par contre, le nom de récurrence a vraisemblablement

Plus en détail

Chapitre 1. Arithmétique

Chapitre 1. Arithmétique Chapitre 1. Arithmétique 1. Raisonnement par récurrence 1.1 Principe Il s agit d un raisonnement inductif, c est-à-dire un raisonnement visant à produire des connaissances par des conclusions plus générales

Plus en détail

Chapitre 2 - Suites et récurrence

Chapitre 2 - Suites et récurrence Lycée Jaufré RUDEL - BLAYE 14 septembre 016 Les suites, c'est quoi déjà? Suites arithmétiques Suites géométriques Suites arithmétiques Dénition Terme général Somme de N termes consécutifs Sommes Suite

Plus en détail

Stratégies de base. DOMAINE : Combinatoire. NIVEAU : Débutants STAGE : Grésillon 2011 CONTENU : Cours et exercices. - Principe des tiroirs-

Stratégies de base. DOMAINE : Combinatoire. NIVEAU : Débutants STAGE : Grésillon 2011 CONTENU : Cours et exercices. - Principe des tiroirs- DOMAINE : Combinatoire AUTEUR : François LO JACOMO NIVEAU : Débutants STAGE : Grésillon 0 CONTENU : Cours et exercices Stratégies de base - Principe des tiroirs- Si l on range au moins n + objets dans

Plus en détail

Suites et récurrence

Suites et récurrence Suites et récurrence 1 Suites arithmétiques et géométriques 1.1 Définitions * On dit que la suite (u n ) est arithmétique s il existe un réel r appelé raison tel que, pour tout n dans N, on ait : u n+1

Plus en détail

Les suites numériques

Les suites numériques Chapitre 1 Les suites numériques Les suites numériques apparaissent dès que l homme a eu recours à des méthodes itératives de calcul. On en retrouve dès l Antiquité dans les travaux d Archimède pour des

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

exercices types sur limite de suites

exercices types sur limite de suites exercices types sur ite de suites 1. Utiliser la définition de la ite finie d une suite : a. Démonter que la suite définie par a pour ite 0. On doit démontrer que tout intervalle ouvert contenant 0 contient

Plus en détail

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt :

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt : Terminale SSI 1 Chapitre 3 : Suites numériques 1 1 Introduction 1.1 s On rappelle que IN est On appelle suite numérique une fonction définie sur L image d un entier naturel n par une suite u n est en général

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] On définit une suite (u n ) par : u 0 = 1, u 1 = cos θ, et pour n 2 : u n = 2u 1 u n 1 u n 2. Calculer u n, pour tout entier n. Exercice

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

I. Divisibilité dans Z

I. Divisibilité dans Z 1 I. Divisibilité dans Z Définition : Soit a et b deux entiers relatifs. a divise b s'il existe un entier relatif k tel que b = ka. On dit également : - a est un diviseur de b, - b est divisible par a,

Plus en détail

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2

logique I démonstration et théorie axiomatique 2 1 généralités 2 2 proposition, prédicat simple 2 logique Table des matières I démonstration et théorie axiomatique 1 généralités proposition, prédicat simple 3 prédicats composés 3 3.1 prédicat de négation....................................... 3 3.

Plus en détail

Exercices d entrainement pour le chapitre 02 (récurrence et suites)

Exercices d entrainement pour le chapitre 02 (récurrence et suites) Exercices d entrainement pour le chapitre 0 récurrence et suites 0. Énoncés Exercice. Démontrer l inégalité n > n pour tout entier naturel n. Exercice. On définit, pour tout entier n, le n ième nombre

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ).

9 6 - x. On définit la suite (u n ) par u 0 = -3 et pour tout entier naturel n, u n+1 = f(u n ). Exercice 75 p 55 exercices sur les suites Symbole Belin 0 On s intéresse aux suites définies sur V et vérifiant la relation de récurrence u n+ = + u n². Une telle suite sera déterminée par son premier

Plus en détail

Suites numériques Limites et raisonnement par récurrence

Suites numériques Limites et raisonnement par récurrence Suites numériques Limites et raisonnement par récurrence 1] Limite d une suite a) Limite infinie Définition : Dire qu une suite a pour limite quand tend vers signifie que tout intervalle de la forme avec,

Plus en détail

SUITES - RECURRENCE - SOMMES

SUITES - RECURRENCE - SOMMES SUITES - RECURRENCE - SOMMES Chapitre 1 I Généralités sur les suites Définition I.1 Une suite réelle est une fonction d une partie A de N dans R. u : A R n u(n) := u n l intervalle de définition peut donc

Plus en détail

SUITES ET RÉCURRENCE

SUITES ET RÉCURRENCE SUITES ET RÉCURRENCE En première : une suite ( ) est une fonction particulière : son ensemble de définition est constitué d'entiers, on peut donc parler (contrairement aux fonctions en général) de l'image

Plus en détail

Démontrer par récurrence que pour tout entier naturel n, le nombre est un multiple de 22.

Démontrer par récurrence que pour tout entier naturel n, le nombre est un multiple de 22. Exercice n 1 Montrer que, pour tout entier naturel n, le nombre est un multiple de 3. Exercice n 2 Démontrer par récurrence que pour tout entier naturel n, le nombre est un multiple de 22. Exercice n 3

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

Correction des exercices du TD1

Correction des exercices du TD1 Correction des exercices du TD1 Rappel : des aides vous sont fournies sur le site «www4.utc.fr /~mt21/» à la fin des fichiers consacrés aux chapitre de cours. N hésitez pas à les consulter pour refaire

Plus en détail

Leçon 69 : Les différents types de raisonnement en mathématiques

Leçon 69 : Les différents types de raisonnement en mathématiques Leçon 69 : Les différents types de raisonnement en mathématiques 1 er avril 01 En mathématiques, pour démontrer divers propriétés ou théorèmes, nous avons besoin d appliquer rigoureusement un raisonnement

Plus en détail

Définition Soient a et b deux entiers non tous nuls. Le plus grand diviseur commun à a et b est le PGCD de a et b. On le note PGCD (a ; b) ou a b.

Définition Soient a et b deux entiers non tous nuls. Le plus grand diviseur commun à a et b est le PGCD de a et b. On le note PGCD (a ; b) ou a b. PGCD de deux entiers naturels Diviseurs communs à deux entiers naturels Soient a et b deux entiers naturels non tous les deux nuls. L ensemble des diviseurs communs à a et b est une partie de Z non vide

Plus en détail

Chapitre 5. Fonction logarithme népérien. Objectifs du chapitre : item références auto évaluation. réciproque de la fonction exponentielle

Chapitre 5. Fonction logarithme népérien. Objectifs du chapitre : item références auto évaluation. réciproque de la fonction exponentielle Chapitre 5 Fonction logarithme népérien Objectifs du chapitre : item références auto évaluation fonction logarithme népérien comme fonction réciproque de la fonction eponentielle propriétés numériques

Plus en détail

f ( x) sin(3 x) Une Annexe pour l' Exercice 1 est à rendre avec la copie. points Exercice N 1 : sur 9

f ( x) sin(3 x) Une Annexe pour l' Exercice 1 est à rendre avec la copie. points Exercice N 1 : sur 9 T S Devoir Commun N 5 Lundi 9 Janvier 205 (Durée 2 h- Calculatrice autorisée) La présentation et la rigueur des résultats entreront pour une part non négligeable dans l évaluation de la copie. Une Annee

Plus en détail

Construction des entiers naturels

Construction des entiers naturels Construction des entiers naturels Tout ce qui suit est une définition et l étude des propriétés élémentaires de l ensemble des entiers naturels, définis dans le cadre axiomatique de la théorie des ensembles.

Plus en détail

Correction des exercices du TD1

Correction des exercices du TD1 Correction des exercices du TD1 Rappel : des aides vous sont fournies sur le site «www4.utc.fr /~mt21/» à la fin des fichiers consacrés aux chapitre de cours. N hésitez pas à les consulter pour refaire

Plus en détail

Logique, vocabulaire ensembliste et raisonnement

Logique, vocabulaire ensembliste et raisonnement Chapitre 2 Logique, vocabulaire ensembliste et raisonnement Sommaire 2.1 Quelques bases de vocabulaire et de logique.............. 34 2.1.1 Quantificateurs................................ 34 2.1.2 Différents

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel ISEL - Année Mathématiques Suites - Rappel Raisonnement par récurrence Soit une propriété P (n) dépendant d'un entier naturel n. Pour montrer que cette propriété est vraie à partie de l'entier n 0 :. on

Plus en détail

DIVISIBILITÉ ET CONGRUENCES

DIVISIBILITÉ ET CONGRUENCES 1 DIVISIBILITÉ ET CONGRUENCES I. Divisibilité dans! Définition : Soit a et b deux entiers relatifs. a divise b s'il existe un entier relatif k tel que b = ka. On dit également : - a est un diviseur de

Plus en détail

Énoncés des exercices

Énoncés des exercices Énoncés Énoncés des exercices Exercice 1 [ Indication ] [ Correction ] Combien y-a-t-il de surjections de E vers F si card(e) = n + 1 et card(f ) = n? Même question avec card(e) = n + et avec card(e) =

Plus en détail

VIII. Ensembles de nombres

VIII. Ensembles de nombres 1 Ensemble N des nombres entiers naturels Axiome 1. toute partie non vide de N admet un plus petit élément. toute partie non vide majorée de N admet un plus grand élément. Exercice 1. { Montrer que l ensemble

Plus en détail

Correction du Baccalauréat S Centres étrangers 10 juin 2015

Correction du Baccalauréat S Centres étrangers 10 juin 2015 urée : 4 heures Correction du Baccalauréat S Centres étrangers 10 juin 015 A. P. M. E. P. Exercice 1 4 points Commun à tous les candidats Tous les résultats demandés dans cet exercice seront arrondis au

Plus en détail

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut:

Suites - Récurrence 10X. 2 quiselit:sommedes 2 pouriallantde1à10vaut: Suites - Récurrence 1. Définitions - Rappels 1.1.Modes de définition d une suite La suite 0 =0 1 = =4 3 =6 peut être définiededeuxmanières: Définition explicite : ½ = Définition récurrente : 0 =0 +1 =

Plus en détail

TS spé maths. TS spé maths. Correction Devoir Surveillé 3. Maths. Maths. Exercice 1. (2,5 points) x x (4 ) 0 (9 ) 1

TS spé maths. TS spé maths. Correction Devoir Surveillé 3. Maths. Maths. Exercice 1. (2,5 points) x x (4 ) 0 (9 ) 1 Correction Devoir Surveillé 3 TS spé maths Maths Maths TS spé maths Exercice 1. (2,5 points) 1. Compléter sur le présent sujet cette table des restes dans la congruence modulo 4. x 0 1 2 3 x 2 0 1 (4 )

Plus en détail

Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES

Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES Algèbre - chap 1 1/8 Algèbre 1 RAISONNEMENT ELEMENTS DE LA THEORIE DES ENSEMBLES 1. ELEMENTS DE LOGIQUE 1.1 Propositions Règles logiques Définition 1 : On appelle propriété ou assertion une affirmation

Plus en détail

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY

LFA / Terminale S SPÉCIALITÉ MATHS Mme MAINGUY L arithmétique L arithmétique est l étude des nombres entiers. Dans cette partie vous allez vous former à des raisonnements fins et ambitieux. Vous développerez votre esprit d analyse, votre capacité à

Plus en détail

Les suites - Partie II : Les limites

Les suites - Partie II : Les limites Terminale S Les suites - Partie II : Les limites 1.0 OLIVIER LECLUSE Juillet 2013 Table des matières 3 Limites et comparaison I - Limites et comparaison 5 A. Théorème d'encadrement dit "des gendarmes"...5

Plus en détail

Logique 2 : la déduction

Logique 2 : la déduction Logique 2 : la déduction La mathématique est la science de la déduction. Ce qui signifie qu un mathématicien prend des informations de départ et cherche tout ce qu on peut en déduire. La question de savoir

Plus en détail

Corrigé du bac S Antilles-Guyane juin 2014

Corrigé du bac S Antilles-Guyane juin 2014 orrigé du bac S Antilles-Guyane juin 204 EXERIE ommun à tous les candidats Partie A 5 points. a. L arbre pondéré est le suivant : 0,80 0,85 J 0,20 0,5 J 0,0 b. D après l arbre : 0,90 ( ) p J = 0,5 0,0=0,05.

Plus en détail

Cours d arithmétique. Khaoula Ben Abdeljelil

Cours d arithmétique. Khaoula Ben Abdeljelil Cours d arithmétique Khaoula Ben Abdeljelil 2 Table des matières Table des matières............................... i 1 LES ENTIERS NATURELS 1 1.1 Les opérations élémentaires sur N.................... 1

Plus en détail

LES FONDEMENTS : LA LOGIQUE ET LES ENSEMBLES

LES FONDEMENTS : LA LOGIQUE ET LES ENSEMBLES LES FONDEMENTS : LA LOGIQUE ET LES ENSEMBLES 1. LES PROPOSITIONS MATHÉMATIQUES Faire des mathématiques, c est faire avant tout des raisonnements, c est à dire partir d une ou plusieurs hypothèses et par

Plus en détail

Chapitre 1 : Les suites

Chapitre 1 : Les suites Chapitre : Les suites I. Exercices supplémentaires Partie A : Récurrence Exercice La suite est définie par et +2+ pour tout entier naturel. Démontrer par récurrence que pour tout. La suite est définie

Plus en détail

On appelera énoncé élementaire toute phrase fabriquée a l aide des symboles précédents, ayant un sens.

On appelera énoncé élementaire toute phrase fabriquée a l aide des symboles précédents, ayant un sens. Chapitre 1 Éléments de logique Dans cette première partie du cours, on introduit trés rapidement quelques outils permettant de formaliser les idées mathématiques et d obtenir des moyens systématiques de

Plus en détail

Chapitre 3 : Exemples de raisonnement par récurrence

Chapitre 3 : Exemples de raisonnement par récurrence Chapitre 3 : Exemples de raisonnement par récurrence Plan de ce chapitre 1 Rappel 11 Mise en place et exemple 1 Mise en garde Exercices 1 comparaison entre n n et n! Démonstration de l inégalité de Bernoulli

Plus en détail

Le calcul propositionnel

Le calcul propositionnel MTA - ch2 Page 1/8 Éléments de logique - Raisonnements I Le calcul propositionnel Dénition 1 Une assertion est un énoncé dont on peut dire sans ambiguïté s'il est Vrai ou Faux. Cette convention permet

Plus en détail

FONCTIONS COMPOSEES EXERCICES CORRIGES

FONCTIONS COMPOSEES EXERCICES CORRIGES Cours et eercices de mathématiques M CUAZ, http://mathscyrfreefr FONCTIONS COMPOSEES EXERCICES CORRIGES Eercice n On considère les fonctions suivantes : f :, f : et : 4 g Donner l ensemble de définition

Plus en détail

Spécialité Terminale S IE2 congruences S

Spécialité Terminale S IE2 congruences S a) Quels sont les restes possibles de la division euclidienne d un carré par 8. b) Montrer que tout entier de la forme 8k + 7 (avec k entier) n est pas la somme des carrés de trois entiers. a) Montrer

Plus en détail

Différents types de raisonnement en mathématiques

Différents types de raisonnement en mathématiques Différents types de raisonnement en mathématiques I) Symboles logiques 1) Les quantificateurs Les quantificateurs permettent de connaitre le domaine de validité d une propriété. a) Pour une propriété universelle

Plus en détail

Raisonnement par récurrence

Raisonnement par récurrence Chapitre 1 Raisonnement par récurrence 1.1 Cours en bref Le raisonnement par récurrence est une méthode de résolution. Elle permet de démontrer une propriété pour tout ou presque tout entier naturel. La

Plus en détail

Raisonnement par récurrence 2

Raisonnement par récurrence 2 1 sur 9 25/10/2015 09:38 Raisonnement par récurrence 2 DATE DE CRÉATION DE L'ARTICLE :16 NOVEMBRE 2010 DATE DE RÉDACTION ANTÉRIEURE : N.C. LANGUE DE L'ARTICLE (français) Cet article est une traduction

Plus en détail

SUITES DE MATRICES ET MARCHES ALEATOIRES

SUITES DE MATRICES ET MARCHES ALEATOIRES SUITES DE MATRICES ET MARCHES ALEATOIRES I Suites de matrices colonnes ) Exemples : a) La suite ( U n ) définie pour tout entier naturel n par U n n n + est une suite de matrices colonnes dont les coefficients

Plus en détail

Arithmétique Chapitre 1 Ce que tout le monde utilise

Arithmétique Chapitre 1 Ce que tout le monde utilise 1 Arithmétique Chapitre 1 Ce que tout le monde utilise Axiomes de PEANO (mathématicien italien 1838-1932) 2 Utilisation de l axiome de récurrence 3 Le suivant d un entier naturel 4 Le précédent d un entier

Plus en détail

Multiples et diviseurs

Multiples et diviseurs TS spé Multiples et diviseurs I. Divisibilité 1 ) Définition Plan du chapitre : I. Divisibilité II. Ensemble des diviseurs d un entier III. Exercices d application de la définition IV. Parité d un entier

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Chapitre 2 - Les matrices carrées

Chapitre 2 - Les matrices carrées Chapitre - Les matrices carrées I) Produit et puissance des matrices carrées ) Propriétés Nous avons défini le produit de deux matrices dans le chapitre précédent Dans ce paragraphe nous allons nous intéresser

Plus en détail

Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire :

Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire : 61 Proposition : Tout sev F est stable par combinaison linéaire, c est-à-dire : n, ( x 1,..., x n ) F n, (λ 1,..., λ n ) n, n λ i x i F i=1 Par récurrence sur le nombre de termes dans la combinaison linéaire.

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

étude de fonctions suites

étude de fonctions suites Corrigé DS Terminale S étude de fonctions suites Exercice Une image numérique en noir et blanc est composée de petits carrés appelés pixels donc la couleur va du blanc au noir en passant par toutes les

Plus en détail

Les nombres de Harshad

Les nombres de Harshad Cet article est rédigé par des élèves. Il peut comporter des oublis et imperfections, autant que possible signalés par nos relecteurs dans les notes d'édition. Atelier MATh.en.JEANS Faites de la science

Plus en détail

Logique et théorie des ensembles.

Logique et théorie des ensembles. Logique et théorie des ensembles. Paul Rozière Paris 7 M63010 28 novembre 2011 On écrit parfois A, B C pour (A et B) C. Le signe «d» signifie «équivaut par définition à». 1 Axiomatisation de l arithmétique

Plus en détail

Cours de mathématiques (Terminale S)

Cours de mathématiques (Terminale S) Terminale Scientifique (S) : Cours de mathématiques (Terminale S) I. Chapitre 01 : Les suites 1. Etude globale d une suite A. Les suites majorées, minorées, bornées La suite ( ) est majorée si et seulement

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

Olympiades Françaises de Mathématiques Envoi Numéro 3 Corrigé

Olympiades Françaises de Mathématiques Envoi Numéro 3 Corrigé Olympiades Françaises de Mathématiques 2012-2013 Envoi Numéro 3 Corrigé 1 Exercices Juniors Exercice 1. On appelle diviseur propre d un entier n un diviseur positif de n qui est différent de 1 et de n.

Plus en détail

SUITES NUMERIQUES. Suites numériques. Chapitre 1

SUITES NUMERIQUES. Suites numériques. Chapitre 1 SUITES NUMERIQUES Chapitre 1 Suites numériques Ce cours contient à la fois tous les rappels de première et TOUT ce qu il y a à savoir en terminale sur les suites. I. DEFINITION 1. Définition d une suite

Plus en détail

CHAPITRE 6 SUITES NUMÉRIQUES

CHAPITRE 6 SUITES NUMÉRIQUES CHAPITRE 6 SUITES NUMÉRIQUES I Généralités sur les suites 1) d'une suite numérique Une suite u associe à tout entier naturel n un nombre réel noté u n. Les nombres réels u n sont les termes de la suite.

Plus en détail

Logique et Raisonnement

Logique et Raisonnement INSA Toulouse Cycle Préparatoire IFCI Module Outils Mathématiques Regroupement n 1 Logique et Raisonnement Introduction En mathématiques, on travaille avec des objets abstraits (nombres, ensembles, applications,

Plus en détail

Intégration Encadrement d intégrale Exercices corrigés

Intégration Encadrement d intégrale Exercices corrigés Intégration Encadrement d intégrale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : encadrer une intégrale Exercice 2 : donner un encadrement

Plus en détail

Objectifs du chapitre

Objectifs du chapitre 4 Congruence A dans Objectifs du chapitre Nous allons étudier la notion de congruence dans Z qui sera utilisée dans des problèmes de codage. B Pour débuter Activité 3 Le er janvier 202 était un dimanche.

Plus en détail

Partitions d un ensemble fini, surjections, involutions

Partitions d un ensemble fini, surjections, involutions Énoncé Soit E un ensemble fini non vide. Pour tout entier k, on dit que {A 1,..., A k } est une partition de E en k classes si : k A i = E; i, A i ; i, j (avec i j), A i A j = i=1 Partie I Dans cette partie,

Plus en détail

Des outils pour les suites

Des outils pour les suites Des outils pour les suites Suites arithmético-géométriques Définition : ppelle suite arithmético-géométrique toute suite récurrente de la forme : où a et b sont des nombres réels. Quelques cas particuliers

Plus en détail

RUDIMENTS DE LOGIQUE - RAISONNEMENTS

RUDIMENTS DE LOGIQUE - RAISONNEMENTS RUDIMENTS DE LOGIQUE - RAISONNEMENTS Introduction La théorie Mathématique est basée : sur des propositions initiales posées a priori comme vraies (axiomes, postulats). sur des règles permettant de déduire

Plus en détail

Compléments sur les suites

Compléments sur les suites Compléments sur les suites Christophe ROSSIGNOL Année scolaire 215/216 Table des matières 1 Limites par comparaison 2 1.1 Théorèmes de comparaison....................................... 2 1.2 Application

Plus en détail

RAISONNEMENTS. 1 Propositions logiques. 1.1 Définition et négation. 1.2 Conjonction et disjonction. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

RAISONNEMENTS. 1 Propositions logiques. 1.1 Définition et négation. 1.2 Conjonction et disjonction. Laurent Garcin MPSI Lycée Jean-Baptiste Corot RAISONNEMENTS 1 Propositions logiques 1.1 Définition et négation Définition 1.1 Proposition On appelle proposition un énoncé mathématique qui peut être vrai ou faux. Exemple 1.1 Deux propositions simples.

Plus en détail

Type bac janvier Corrigé

Type bac janvier Corrigé Exercice (Métropole 24) Commun à tous les élèves Type bac janvier 27 - Corrigé Partie A ) L image de par la fonction f est : f () +e. Le point d abscisse sur la courbe C, représentative de la fonction

Plus en détail

Suite récurrente définie par une fonction

Suite récurrente définie par une fonction Suite récurrente définie par une fonction Rédigé par un enseignant et un élève de l Ecole Polytechnique (Vincent Langlet). Niveau : Approfondir la Terminale S ou Première Année post bac Difficulté : Exercice

Plus en détail