MPSI 2 : DL 03. pour le 12 décembre 2003

Dimension: px
Commencer à balayer dès la page:

Download "MPSI 2 : DL 03. pour le 12 décembre 2003"

Transcription

1 MPSI : DL 03 pour le décembre 003 Problème L objet du problème est de calculer eplicitement la limite de la suite des moyennes arithmétiques-géométriques pour certaines valeurs initiales. On considère dans cet eercice un réel ]0, π [. Q On définit la suite (u n par : { u0 = cos( ( n N, u n+ = u n cos n+ a. Montrer que la suite de terme général v n = u n sin ( est géométrique. n b. En déduire pour tout entier n, l epression de u n en fonction de et de n. c. Montrer que la suite (u n est convergente et donner sa limite. On considère désormais les deu suites (a n et (b n définies par : a 0 = n N, a n+ = a b 0 = n + b n et cos n N, b n+ = a n+ b n Q a. Donner l epression de b comme quotient de deu cosinus. b. Montrer que n N, a n > 0 et b n > 0. Q 3 a. Établir que n N, b n+ a n+ = an+ ( b n + a n+ ( b n a n b. Montrer que n N, a n < b n. c. En déduire les variations des suites (a n et (b n. d. Montrer que n N, 0 < b n a n ( n cos( e. Montrer que les suites (a n et (b n sont convergentes et ont même limite, notée L. ( ( Q 4 a. Vérifier que pour tout entier n N, on a : b. En déduire la valeur de L. a n = u n cos ( n cos ( et b n = u n cos ( (3

2 Q 5 Dans cette question, on considère le cas particulier = π 4. a. Calculer la valeur de L. b. En déduire un encadrement de π en utilisant a n et b n. c. Montrer que pour tout entier n N, 0 < b n+ a n+ 4 (b n a n (4 d. Combien suffit-il de calculer de termes des suites (a n et (b n pour obtenir un encadrement de π à 0 8 près? (On ne demande pas de calculer les valeurs de a n et b n correspondantes. Problème On considère une suite (u n de réels non nuls et on lui associe la suite (p n définie par n, p n = On dit que le produit (p n converge si et seulement si la suite (p n admet une limite finie non nulle. Sinon, on dira que le produit (p n diverge.. Quelques eemples n u Q 6 Montrez si le produit (p n converge, alors la suite (u n est convergente et précisez sa limite. Q 7 On suppose dans cette question uniquement que n N, u n = ( + n. Calculer p n pour n et en déduire la nature du produit (p n. Q 8 On considère un réel a R tel que Z, a π. On considère dans cette question uniquement la suite de terme général u n = cos ( a. Pour un entier n, calculez le réel n pn sin ( a. Montrez ensuite que le produit n (p n converge et précisez la limite de la suite (p n.. Une caractérisation de la convergence d un produit On considère dans cette partie une suite (u n qui converge vers. Q 9 Montrez qu il eiste un entier n 0 tel que n n 0, u n > 0. On définit alors la suite (S n à partir du rang n 0 par S n = ln(u =n 0 Q 0 Montrez que la suite (S n converge si et seulement si le produit (p n converge. Q On considère dans cette question uniquement, la suite (u n de terme général u n = n n et le produit (p n associé. a Montrez que p 3, p+ ln ln p p d p. b En déduire la nature du produit (p n.

3 .3 Un autre critère de convergence d un produit On considère maintenant une suite (ν n telle que n, ν n > 0 et le produit n p n = ( + ν On définit la suite (T n de terme général T n = ν Q Montrez que > 0, ln( +. Q 3 Montrez que si la suite (T n converge, alors le produit (p n converge également. Q 4 Montrer la réciproque : si le produit (p n converge, alors la suite (T n converge également. Q 5 On considère dans cette question la suite (T n de terme général T n = a En utilisant la question 7, que peut-on dire de la limite de la suite (T n? b En encadrant pour, l intégrale + d, trouvez un équivalent de la suite (T n..4 Étude d un produit On considère dans cette partie un réel a > 0 et le produit n ( p n = + a Q 6 Si a, que peut-on dire du produit (p n? On suppose désormais que a ]0,[. Q 7 Montrez que le produit (p n converge. Q 8 Soit un entier n. Calculez ( a p n et en déduire la limite de la suite (p n.

4 Q a. Soit n N. Calculons Corrigé. ( ( ( v n+ = u n+ sin n+ = u n cos n+ sin n+ Mais puisque α R, sin α cos α = sin(α, il vient que v n+ = ( u n sin n = v n Par conséquent, la suite (v n est géométrique de raison / et donc v n = v 0 sin cos = n n = sin( n+. b. Soit n N, v n sin( u n = ( = ( sin n n+ sin n (Remarquons que puisque 0 < < π/, tous les sinus et cosinus considérés sont non nuls c. Utilisons l équivalent usuel du sinus. Comme ( n 0, sin n ( 0. Par produit- n quotient d équivalents, on trouve alors que u n u n sin(. Par conséquent, sin( Q a. On calcule a = + cos puis cos + b = cos Mais puisque cos = cos (/, il vient que cos + = cos (/ et puisque les cosinus sont strictement positifs (0 < < π/, on trouve finalement b = cos (/ cos = cos(/ cos Q 3 b. Par récurrence : P(n : a n > 0 et b n > 0 P(0 est vrai puisque a 0 = > 0 et b 0 = / cos( > 0 (0 < < π/. P(n P(n + : D après P(n, a n > 0 et b n > 0. Alors a n+ = a n + b n > 0 et b n+ est bien défini avec b n+ > 0. a. Soit n N. D après les relations de récurrence et en utilisant les quantités conjuguées (les termes sont > 0 : b n+ a n+ = a n+ b n a n+ = a n+ ( b n a n+ = b n a n+ a n+ bn + a n+ = an+ bn + a n+ ( bn a n b. Par récurrence en utilisant a.

5 c. Soit n N. Calculons en utilisant b, En utilisant les quantités conjuguées, a n+ a n = b n a n > 0 b n+ b n = b n(a n+ b n b n (a n b n = an+ b n + b n ( a n+ b n + b n < 0 Donc (a n et (b n. d. On a déjà montré que n N, b n a n > 0 à la question 3b. Montrons l autre inégalité par récurrence : P(0 : b 0 a 0 = cos = ( 0 cos. P(n P(n + : En utilisant la formule (, b n+ a n+ = P(n : b n a n ( n cos( an+ ( b n + a n+ (b n a n b n a n P(n n+ ( cos Q 4 (On a utilisé la majoration a n+ b n + a n+. e. Notons (d n = (b n a n. La suite géométrique (/ n converge vers 0. D après la question 3d et le théorème des gendarmes, la suite (d n converge vers 0. Comme la suite (a n est croissante et la suite (b n décroissante, les deu suites (a n et (b n sont adjacentes. On sait alors qu elles convergent vers la même limite. a. Par récurrence : P(0 : Calculons P(na n = u n cos(/ n cos et b n = u 0 cos(/ 0 = u 0 cos = = a 0 u 0 cos = cos = b 0 u n cos P(n P(n + Calculons, en utilisant la formule + cos α = cos (α/ : a n+ = a n + b n b n+ = a n+ b n = b. Nous avons vu à la question c, que u n = u n [ cos(/ n cos + ] = u n+ cos cos(/n+ un+ cos(/ n+ u n u n+ cos 4 = cos 4 = u n+ cos b n = sin cos. Par conséquent, u n cos tan et par unicité de la limite, on trouve que L = tan. Q 5 a. Ici, L = 4 π. b. Puisque n N, a n L b n, il vient que n N, 4 b n π 4 a n.

6 c. On a déjà vu que n N, 0 < b n a n. Montrons l autre inégalité en utilisant la formule (. Soit n N. Puisque a n a n+ b n b n+, il vient que an+ ( b n + a n+ an+ ( a n+ + a n+ = 4 et donc 0 < b n+ a n+ b n a n. Par récurrence, on montre alors que n N, 4 (b n a n b 0 a 0 4 n = 4 n d. L encadrement de π précédent sera à la précision ε lorsque 4 4 ε, c est à dire 4(b n a n ε. Mais a n b n a n b n puisque a 0 a n b n, il vient que a n b n a et donc d après Q5c, (b n a n b 0 a 0 a n b n 4 n = 4 n Pour avoir un encadrement à 0 8 près, il suffit que 4 n 0 8, et donc il suffit que 4 n 0 8 (, c est à dire (n log(4 8 + log(. Avec la calculatrice, on touve qu il suffit de prendre n = 4. Q 6 On suppose que la suite (p n converge vers une limite non-nulle l. Soit n. On écrit pour n, u n = p n p n Donc la suite (u n converge vers l/l = d après les théorèmes générau. (Attention, la suite (p n n est pas etraite de (p n, mais converge vers l comme on le voit immédiatement à partir de la définition de la limite. Q 7 Soit n. On calcule en réduisant au même dénominateur p n = 3... n + = n + n Par conséquent, la suite (p n diverge vers + et le produit (p n diverge. Q 8 Soit n. En notant v n = p n sin ( a n, on calcule : v n = cos ( a ( a ( a ( a... cos cos sin n n n En utilisant la formule sin(α = sin(α cos(α avec α = a n, on trouve que v n = v n La suite (v n est donc une suite géométrique de raison (/ et donc v n = v n. Mais puisque v = cos(a/ sin(a/ = sin(a/, on en tire que v n = sin(a, et donc que n p n = sin(a n sin ( a n (car a/ n est différent de π par hypothèse. En utilisant l équivalent classique du sinus, puisque a/ n 0, u n sin(a n a = sin(a a n Donc la suite (p n converge vers sin(a 0 et le produit (p n converge vers cette limite non nulle. a Q 9 Il suffit de poser = / <, et d utiliser un théorème du cours.

7 Q 0 Soit n n 0. En utilisant la propriété fonctionnelle du logarithme, on peut écrire S n = ln ( u n0... u n (5 Q (i (ii : on suppose que la suite (S n converge vers une limite finie l R. En prenant l eponentielle de la relation 5, on trouve que ep(s n = p n p n0 et donc que p n = p n0 ep(s n. La suite (S n converge donc vers p n0 ep(l car la fonction ep est continue au point l. Comme on a supposé que dans tout le problème, n N, u n 0, p n0 0 et donc comme cette limite est non nulle, le produit (p n converge. (ii (i : supposons que la suite (p n converge vers une limite non-nulle l R. Alors la suite de terme général α n = u n0... u n = p n converge vers l l =. Mais puisque p n0 > 0 et l > 0, l 0. p n0 p n0 Comme p n0 0, il vient que l > 0. Donc la suite ( ep(s n converge vers l > 0 et donc la suite (S n converge vers ln(l (car la fonction ln est continue au point l. a Considérons la fonction définie sur ]0, + [ par f( = ln. Elle est dérivable sur ]0, + [ et > 0, f ( = ln (dresser le tableau de variations!. Lorsque e, f ( 0 et donc la fonction f est décroissante sur [3, + [. Soit alors un entier 3. En majorant l intégrale (faire un dessin!, on obtient : + ln d + ln = ln b Soit n. Écrivons u n = e n ln n Comme ln n = o(n, il vient que ln n n On peut donc appliquer le résultat de la question 0 avec n 0 =. Soit n, S n = ln u = = n ln + ln ln + n =3 + =3 ln ln d = n+ ln + ln 3 d = [ (ln ] n+ ln + 3 = ( (ln 3 ln(n + ln + 0 et donc que u n. Nous avons utilisé la minoration de a. Comme la suite ( (ln(n + / diverge vers +, on en déduit par le théorème des gendarmes que la suite (S n diverge vers + et donc que le produit (p n diverge. Q Considérons la fonction g : { ]0, + [ R ln( + Elle est dérivable sur ]0, + [ et > 0, g ( = < 0. Par conséquent, la fonction g est décroissante sur + ]0, + [ (dresser le tableau de variations! et donc si > 0, g( g(0 = 0 ce qui montre l inégalité demandée. Q 3 Remarquons que la suite (p n est croissante : soit n, p n+ = + ν n+. p n Comme la suite (T n converge, elle est bornée. Donc il eiste M > 0 tel que n, T n M. Soit alors n. Majorons p n : ln(p n = ln( + ν ν M Par conséquent, p n e M. La suite (p n étant croissante et majorée, elle converge vers une limite finie l R. Or p, donc par passage à la limite dans les inégalités, puisque n, p n p, on obtient que l. Cette limite étant non nulle, on en déduit que le produit (p n converge.

8 Q 4 En développant pour n, p n = ( + ν... ( + ν n = + ν + + ν n + ν ν + + ν n ν n + + ν... ν n ν + + ν n on en déduit que n, T n p n. Par conséquent, si (p n converge, la suite (T n est majorée. Comme elle est croissante, elle converge également. Q 5 a Montrons par l absurde que la suite (T n est divergente. Si elle convergeait, d après la question 3, le produit p n = n ( + / convergerait aussi, ce qui est fau d après la question 7. Comme d autre part la suite (Tn est croissante et diverge, d après le théorème de la limite monotone, elle diverge vers +. b Soit. Comme la fonction / est décroissante sur ], + [, on encadre (faire un dessin! ce qui donne l encadrement suivant : + d + + On en déduit l encadrement suivant de T n pour n : d n+ + d n+ p= n p ln(n + T n T n + n + ln(n + T n ln(n + T n ln(n + + n + En divisant ces inégalités par ln(n +, on trouve l encadrement suivant de T n : T n Par le théorème des gendarmes, ln(n + ln n. et donc finalement, T n ln n. T n ln(n + + ln(n + et donc T n ln(n+. Mais ln(n+ = ln n+ln(+/n Q 6 Lorsque a >, la suite (u n associée au produit vérifie n, u n = + a n et donc u n +. Comme la suite (u n ne converge pas vers, d après la question 6, le produit (p n diverge. Lorsque a =, la suite (u n converge vers, et là aussi, le produit (p n diverge. (On aurait pu également minorer simplement p n par n. Q 7 Considérons la suite (T n de la question 3 définie ici par n, T n = Il est clair que cette suite (T n est croissante. Comme l intervalle d entiers [, n ] contient tous les entiers pour [,n] et que tous les réels a sont positifs, on majore facilement la suite (T n par une série géométrique : T n = a n p= a a p = an + a a Par conséquent, la suite (T n est croissante et majorée, et d après le théorème de la limite monotone, elle converge. D après la question 3, le produit (p n converge.

9 Q 8 Soit n. Calculons ( a p n = ( a ( + a ( + a... ( + a n = ( a ( + a... ( + a n =... = ( a n ( + a n = a n+ On démontre par récurrence que n, ( a p n = a n+ Il vient alors que n, et comme a n+ 0, p n a. p n = an + a

Bibliothèque d exercices L1 Feuille n 10. Suites

Bibliothèque d exercices L1 Feuille n 10. Suites Bibliothèque d exercices Énoncés L Feuille n 0 Suites Convergence Exercice Soit (u n ) n N une suite de R. Que pensez-vous des propositions suivantes : Si (u n ) n converge vers un réel l alors (u n )

Plus en détail

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions

CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions CHAPITRE 1 : Raisonnement par récurrence, suites et fonctions 1 Les suites numériques (rappel de première)... 4 1.1 Généralités... 4 1.2 Plusieurs méthodes pour générer une suite... 4 2 Exemples d algorithmes

Plus en détail

Limites, continuité et dérivabilité

Limites, continuité et dérivabilité Correction de la Feuille de TD - Analyse 8 9 Limites, continuité et dérivabilité Eercice. Montrer que a = et ( ) =.. Démontrer maintenant ces résultats en utilisant la définition (avec le ε) de la ite.

Plus en détail

Convergence de suites. Suites récurrentes

Convergence de suites. Suites récurrentes Convergence de suites Les suites dont on donne ci-dessous le terme général sont-elles convergentes? cos n + 3n a) ln n + 2n g) sin n n b) 4n 2 + 5n + 6 2n c) en n h) 2 n ( 1) n n 2 d) sin n e n e) n 1

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Exercices : Fonctions continues

Exercices : Fonctions continues Eercices : Fonctions continues Eercice 1 Sur quels ensembles les fonctions suivantes sont elles continues? sin() si 0 1) f : 2) f : E() 2 si = 0 3) f : sin(π)e() 4) f : sin() sin( 1 ) si 0 0 si = 0 Eercice

Plus en détail

Calcul intégral et suite numérique Intégration Exercices corrigés

Calcul intégral et suite numérique Intégration Exercices corrigés Calcul intégral et suite numérique Intégration Exercices corrigés Objectifs abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : étudier le sens de variation d une suite

Plus en détail

Chapitre I : LES SUITES

Chapitre I : LES SUITES Chapitre I : LES SUITES I- Généralités sur les suites 1) Définition et notations Définition 1 : 1) Définir une suite par une formule explicite, c est donner une relation entre le terme et l entier, pour

Plus en détail

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR.

Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. I Notion de suite réelle ) Définition : Soit I une partie non vide de IN. On appelle suite réelle définie sur I, toute application U de I dans IR. Le réel U(n) est noté U n il est appelé terme général

Plus en détail

(exercice : calculer u 2 puis u 5 )

(exercice : calculer u 2 puis u 5 ) Suites Prérequis : Division euclidienne Soient a et b deux entiers avec b 0. Il existe un unique couple (q, r) Z N tel que a = q b + r et 0 r < b. q s appelle le quotient de la division enclidienne de

Plus en détail

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6.

Exercice 5 Démontrer que pour tout entier naturel n, le nombre 3n² + 3n + 6 est un multiple de 6. Exercice 1 : Dire en justifiant si les suites (u n ) définies ci-dessous sont arithmétiques, géométriques ou ni l'un ni l'autre. Dans le cas où elles sont arithmétiques ou géométriques, préciser le premier

Plus en détail

Limites de suites. Révisions

Limites de suites. Révisions Limites de suites Révisions Soit ( ) une suite définie pour tout n N par = n 2 + n Exprimer en fonction de n : a b + c + 2 La suite ( ) est-elle arithmétique? 3 Quel est le sens de variation de ( )? 2

Plus en détail

Exercices du chapitre 3 avec corrigé succinct

Exercices du chapitre 3 avec corrigé succinct Exercices du chapitre 3 avec corrigé succinct Exercice III.1 Ch3-Exercice1 Soient α et u 0 deux réels donnés. Soit alors (u n ) une suite géométrique définie par u n = αu n 1. Donner le terme général de

Plus en détail

CHAPITRE 2 SUITES NUMÉRIQUES

CHAPITRE 2 SUITES NUMÉRIQUES CHAPITRE 2 SUITES NUMÉRIQUES Définition 2.0. Une suite réelle est une application u : N R qui à tout n de N associe un élément u n de R, appelé terme général de la suite. On notera donc la suite (u n ),

Plus en détail

LES SUITES RÉELLES. = L > Montrer que, si L > 1, alors lim u n = +. , ln(n), n. n!nn n) 2 n.

LES SUITES RÉELLES. = L > Montrer que, si L > 1, alors lim u n = +. , ln(n), n. n!nn n) 2 n. LES SUITES RÉELLES Exercice Soit (u n ) et (v n ), deux suites convergeant respectivement vers α et β. On pose : pour tout n N, m n = min(u n, v n ) et M n = max(u n, v n ) : ces deux suites convergent-elles

Plus en détail

Chapitre 2 : Suites numériques

Chapitre 2 : Suites numériques Universités Paris 6 et Paris 7 M1 MEEF Analyse (UE 3) 013-014 Chapitre : Suites numériques Dans tout ce qui suit on considère des suites (u n ) n N à valeurs réelles, c est à dire des applications de N

Plus en détail

Les fonctions logarithmes

Les fonctions logarithmes DOCUMENT 34 Les fonctions logarithmes. Eistence des fonctions logarithmes.. L aspect algébrique. L idée de transformer les produits de nombres réels en sommes, afin de simplifier les calculs numériques,

Plus en détail

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme :

Chapitre I : Raisonnement par récurrence et comportement des suites. Extrait du programme : Chapitre I : Raisonnement par récurrence et comportement des suites Extrait du programme : 1 I Rappels sur les suites Il existe deux façons de définir une suite : 1 Formule explicite Il existe une fonction

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

Exercices : Suites réelles

Exercices : Suites réelles Exercices : Suites réelles Exercice : Démontrer par récurrence les résultats suivants : n+. n N, k k = n n+ + n. n N, (k +) = n. Soit a R + fixé, n N, (+a) n +na 4. n, n! n Analyse : Chapitre Exercices

Plus en détail

Cours d analyse - Résumé sur les suites 2015/2016

Cours d analyse - Résumé sur les suites 2015/2016 Cours d analyse - Résumé sur les suites 2015/2016 CPUS I. Les suites numériques I.1. Premières définitions. Définition. Une suite réelle est une fonction dont l ensemble de départ est une partie de N du

Plus en détail

Exercices corrigés Théorème de Rolle, accroissements finis

Exercices corrigés Théorème de Rolle, accroissements finis Eercices corrigés Théorème de Rolle, accroissements finis Enoncés Eercice Démonstration du théorème des accroissements finis Soit f : [a, b] R, continue sur [a, b], dérivable sur ]a, b[ En appliquant le

Plus en détail

Résumé du cours sur les suites.

Résumé du cours sur les suites. Résumé du cours sur les suites. 1 Suites numériques réelles et principe de récurrence 1.1 Les deux façons de définir une suite numérique réelle Définition. On note n 0 un entier naturel (en général n 0

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques 0 - - de terminale S Suites s LPO de Chirongui 20 mai 2016 1 - Introduction- Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel

Plus en détail

Math I Analyse Feuille 4 : Fonctions, fonctions continues

Math I Analyse Feuille 4 : Fonctions, fonctions continues Math I Analyse Feuille 4 : Fonctions, fonctions continues 1 Quelques calculs élémentaires 11 Limites On rappelle les limites suivantes : lim ep = + et lim ep = 0 lim ln = + et lim ln = 0 Eercice 1 Soit

Plus en détail

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment

1. Soit l un nombre réel. On dit que f tend vers l en + si f est aussi proche que l on veut de l dès que x est suffisamment Limites s Soit f une fonction définie sur un intervalle I et 0 un point de I ou une etrémité de I.. Limite réelle en un point Soit l un nombre réel. On dit que f admet l pour limite en 0 si f() est aussi

Plus en détail

lim n + Kholle B2 Programme 1 25 septembre 2012 Sujet 1

lim n + Kholle B2 Programme 1 25 septembre 2012 Sujet 1 Kholle B Programme 5 septembre 0 Sujet Exercice de cours : Montrer que si (u n ) et (v n ) sont deux suites réelles à termes strictement positifs, équivalentes et ayant une ite différente de, alors ln(u

Plus en détail

Convergence des suites monotones

Convergence des suites monotones Convergence des suites monotones Suites majorée, minorée, bornée Définition Une suite (u # ) est majorée par un nombre réel M si pour tout n N, u # M Une suite (u # ) est minorée par un nombre réel m si

Plus en détail

Convergence des suites monotones et applications.

Convergence des suites monotones et applications. Université Paris Est Marne-la-Vallée L Sciences Physiques 20-202 Compléments en Analyse Convergence des suites monotones et applications.. Quelques définitions Ce chapitre est consacré à la convergence

Plus en détail

Suites de nombres réels

Suites de nombres réels Suites de nombres réels I Généralités 1.1 propriété vraie à partir d un certain rang Définition 1.1 On dit qu une propriété P (n) est vraie à partir d un certain rang N N si et seulement s il existe un

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 2016-2017 Analyse I PLANCHE 3 : DÉRIVATION - DÉVELOPPEMENTS LIMITÉS Dérivabilité, dérivée, Eercice 1 [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de

Plus en détail

1 Introduction sur les suites numériques

1 Introduction sur les suites numériques ISEL - Année Mathématiques SUITES NUMERIQUES Introduction sur les suites numériques. Dénition Dénition On appelle suite réelle toute application U d'une partie A de IN dans IR. A IR U : avec A IN. L'image

Plus en détail

MT90/91-Fonctions d une variable réelle

MT90/91-Fonctions d une variable réelle MT90/91-Fonctions d une variable réelle Chapitre 3 : Suites numériques Équipe de Mathématiques Appliquées UTC Juillet 2014 suivant Chapitre 3 Suites numériques 3.1 Définition, convergence, propriétés......................

Plus en détail

N K, n 0 < n 1 < n 2 <

N K, n 0 < n 1 < n 2 < Chapitre 1 Suites réelles et complexes Dans ce chapitre, K désigne le corps R des nombres réels, ou le corps C des nombres complexes. Pour x K, nous noterons x le module de x (égal à la valeur absolue

Plus en détail

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1

(croissances comparées) x + x 1 x x 1. 1 x 1 x 1 x = 2 = 1 Eercice.. 2. 3. e 2 ln = e 2 ( 2 ) /2 } ln {{ / } (ln ) 3 2 2 = (ln ) 3 / 2 / /(2) 2 }{{} sin 0 car sin est bornée et 0. 0 4. e (aucune difficulté!) 5. Il faut distinguer 0 et 0. 6. (croissances comparées)

Plus en détail

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A.

1 q. = 1 q n. (un + v n ) (l + l ) = (un l) + (v n l ) n n 0, u n + v n A. 16 Proposition : La somme des n premiers termes d une suite géométrique de raison q 1 est : n 1 u 0 q k 1 q n = u 0 1 q k=0 Il suffit de calculer (1 q) n 1 k=0 qk = n 1 k=0 qk n 1 k=0 qk+1 = n 1 k=0 qk

Plus en détail

valeurs dans un espace normé de dimension finie

valeurs dans un espace normé de dimension finie Séries numériques, ou séries à valeurs dans un espace normé de dimension finie Définitions. Dans ce chapitre K représente indifférement le corps des réels R, ou le corps des complexes C. Le symbole E représente

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Chapitre 3. Suites récurrentes

Chapitre 3. Suites récurrentes Chapitre 3 Suites récurrentes 3.1 Suites numériques Définition 3.1 On appelle suite de terme général u n et on note (u n ) n 0 ou plus simplement u la liste ordonnée des nombres u 0, u 1, u 2, u 3,....

Plus en détail

(ln x) 3 + x. x+ 1 x. xe 1 x

(ln x) 3 + x. x+ 1 x. xe 1 x Calculs et entraînement. Eercice 1. [limites ] Calculer les limites suivantes : 1. lim + e + ln. lim + (ln ) 3 + sin 3. lim + 1 + + 4. lim + e 1 sin + cos 7. lim + + 1 1 10. lim + 1 13. lim 5. lim e 1

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse

UNIVERSITÉ DE PARIS 8. Département de Mathématiques et Informatique. Cours d analyse UNIVERSITÉ DE PARIS 8 Département de Mathématiques et Informatique Cours d analyse Pierre-Louis CAYREL inspiré par les documents de : Guy Laffaille, Christian Pauly et Arnaud Bodin Cours Intensif 009-010

Plus en détail

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5

Suites réelles. I Rappels de vocabulaire. II Suites remarquables. Définition 5 I Rappels de vocabulaire Suites réelles Définition 1 Une suite réelle u est une application de I R où I est une partie de N. Au lieu de noter u(n), pour les suites on note u n l image de n par l application

Plus en détail

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10

variations de f y 5 f(x + 1) 5 f(x + 1) 3 = y 5 y 3 5 4y + 10 CPI - ANALYSE CORRECTION Eercices Chapitre 3 - Limites et fonctions continues Eercice 3 Correction : { Soit E 3 + 75 }, R et + 36 3 On a + 36 3 9 3 On pose f 3 + 75 Comme f est impaire, il suffit de l

Plus en détail

Représenter graphiquement (sur un même schéma) ces trois ensembles.

Représenter graphiquement (sur un même schéma) ces trois ensembles. PCSI DEVOIR SURVEILLÉ de MATHÉMATIQUES n 4 07/1/001 Durée : 4 heures EXERCICE 1 : Calculatrices interdites Dans le plan complee rapporté au repère orthonormal (O; e 1, e, on définit une transformation

Plus en détail

Exercices type bac sur les suites.

Exercices type bac sur les suites. Exercices type bac sur les suites Corrigés NB : On ne donne dans ce document que des indices, la preuve complète reste à faire Exercice D après sujet du baccalauréat Centres étrangers, juin 003 On définit,

Plus en détail

Limites et fonctions continues

Limites et fonctions continues Limites et fonctions continues Vidéo partie. Notions de fonction Vidéo partie 2. Limites Vidéo partie 3. Continuité en un point Vidéo partie 4. Continuité sur un intervalle Vidéo partie 5. Fonctions monotones

Plus en détail

Etude de limites de suites monotones

Etude de limites de suites monotones Etude de ites de suites monotones I) Définition On dit que la suite ( ) est majorée lorsqu il existe un nombre réel M tel que, pour tout entier naturel n, M. On dit que M est un majorant de la suite (

Plus en détail

Exercice n 114 page 128

Exercice n 114 page 128 Jeudi 28 Février 2013 DM de Maths Exercice n 114 page 128 1) a) Voir papier millimétré 1) b) D après la représentation graphique des premiers termes de la suite (u n ), on peut conjecturer qu elle est

Plus en détail

Continuité, dérivabilité des fonctions d une variable réelle

Continuité, dérivabilité des fonctions d une variable réelle 7 Continuité, dérivabilité des fonctions d une variable réelle Pour ce chapitre I désigne un intervalle réel et f une fonction définie sur I et à valeurs réelles ou complees. 7. Continuité en un point,

Plus en détail

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon.

SUITES RÉELLES CHAPITRE 3. 1 Compléments sur les réels. 1.1 Rappels. Définition 3.1. Soient x et y deux réels. On note. x si x 0. x sinon. CHAPITRE 3 SUITES RÉELLES 1 Compléments sur les réels 1.1 Rappels 1.1.a Définition 3.1 Valeur absolue Soient x et y deux réels. On note x max(x, y) = y si x y sinon x et min(x, y) = y si x y sinon On étend

Plus en détail

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt :

Terminale SSI 1 Chapitre 3 : Suites numériques 1. L image d un entier naturel n par une suite u n est en général pas noté «u(n)» mais plutôt : Terminale SSI 1 Chapitre 3 : Suites numériques 1 1 Introduction 1.1 s On rappelle que IN est On appelle suite numérique une fonction définie sur L image d un entier naturel n par une suite u n est en général

Plus en détail

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques

Département de mathématiques et informatique L1S1, module A ou B Maths. Chapitre 3. Suites numériques Département de mathématiques et informatique L1S1, module A ou B Maths Chapitre 3 Suites numériques p. 2 Remarque importante. Ce cours n est pas indépendant du cours de Mathématiques pour tous. Ce document

Plus en détail

Suites réelles et complexes. () Suites 1 / 36

Suites réelles et complexes. () Suites 1 / 36 Suites réelles et complexes () Suites 1 / 36 1 Limites et relation d ordre 2 Comparaison des suites 3 Suites de nombres complexes () Suites 2 / 36 Plan 1 Limites et relation d ordre 2 Comparaison des suites

Plus en détail

Limites à l infini d une fonction

Limites à l infini d une fonction 9 Limites à l infini d une fonction On garde les notations du chapitre précédent en supposant ici que a = ou a = + est adhérent à l ensemble I, ce qui signifie que : ou : m R, ], m[ I M R, ]M, + [ I ce

Plus en détail

2(xex ) = 2 0 = 0 ( croissances comparées ) x x lim. f 3

2(xex ) = 2 0 = 0 ( croissances comparées ) x x lim. f 3 Corrigé - Baccalauréat blanc TS - 03 EX : (4poi nt s Commun à tous les candidats ( 6 points Partie A - Étude d une fonction. On considère la fonction f définie sur R par f (x = (x + e x.. Déterminer la

Plus en détail

Corrigé du bac S blanc Lycée Français de Valence 4 avril 2013

Corrigé du bac S blanc Lycée Français de Valence 4 avril 2013 Corrigé du bac S blanc Lycée Français de Valence avril EXERCICE 5 points VRAI ou FAUX? Pour chacun des énoncés suivants, indiquer si la proposition correspondante est vraie ou fausse et proposer une justification

Plus en détail

TERMINALE S Chapitre 1 : Les suites

TERMINALE S Chapitre 1 : Les suites Généralités 1. Mode de génération ( ) ( ) La La ( ) définie par ( ) définie par 2. Monotonie REMARQUE5 Si une suite ( ) est définie de maniére explicite telle que ( ) suivent celles de f =f(n) pour tout

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme.

Une condition nécessaire de convergence Considérons une série de terme général. Supposons cette série convergente. Soit sa somme. Séries numériques I) Définitions - Notions essentielles.) Séries numériques Définition Soit une suite numérique. On appelle série de terme général la suite dont les termes successifs sont : ₀ ₀ ₁ ₀ ₁ ₂

Plus en détail

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim

Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompris.com. v n. lim. lim Limite d une suite - Terminale S Exercices corrigés en vidéo avec le cours sur jaicompriscom Reconnaitre les formes indéterminées Dans chaque cas, on donne la ite de u n et v n Déterminer si possible,

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Limites et continuité

Limites et continuité Chapitre 5 Limites et continuité Les buts de ce chapitre sont : connaître les définitions des ites et de la continuité d une fonction en un point, savoir démontrer qu une fonction admet une ite comme on

Plus en détail

Intégration Encadrement d intégrale Exercices corrigés

Intégration Encadrement d intégrale Exercices corrigés Intégration Encadrement d intégrale Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : encadrer une intégrale Exercice 2 : donner un encadrement

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N,

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1. Exercice 5 [ ] [correction] Soient u 0 ]0, 1[ et pour tout n N, [http://mp.cpgedupuydelome.fr] édité le 0 juillet 04 Enoncés Suites récurrentes Exercice [ 0038 ] [correction] Etudier la suite définie par u 0 > 0 et pour tout n N, Exercice [ 00330 ] [correction] Soient

Plus en détail

LES SUITES. 1 Dénitions générales

LES SUITES. 1 Dénitions générales LES SUITES Objectifs Connaître les dénitions générales. Savoir calculer une limite. Connaître les théorèmes généraux de convergence. Connaître les notions de suites négligeables et de suites équivalentes.

Plus en détail

Etude de limites de suites définies par

Etude de limites de suites définies par Etude de limites de suites définies par récurrence u n+1 = f(u n ) I) Généralités 1) Définition Une suite définie par récurrence est une suite définie par son premier terme et par une relation de récurrence,

Plus en détail

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel

1 Raisonnement par récurrence. 2 Suites arithmétiques, géométriques. ISEL - Année 1. Mathématiques. Suites - Rappel ISEL - Année Mathématiques Suites - Rappel Raisonnement par récurrence Soit une propriété P (n) dépendant d'un entier naturel n. Pour montrer que cette propriété est vraie à partie de l'entier n 0 :. on

Plus en détail

Terminale S Suites numériques

Terminale S Suites numériques Terminale S Suites numériques Raisonnement par récurrence. Introduction En Mathématiques, un certain nombre de propriétés dépendent d un entier naturel n. Par exemple, la n(n + ) somme des entiers naturels

Plus en détail

Suites récurrentes et méthode de Newton approche progressive

Suites récurrentes et méthode de Newton approche progressive Suites récurrentes et méthode de Newton approche progressive Ce document vient en complément du chapitre 6 du livre Informatique, programmation et calcul scientifique en Python et Scilab, publié chez ellipses.

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 20 juin 2016

Corrigé du baccalauréat S Métropole La Réunion 20 juin 2016 Corrigé du baccalauréat S Métropole La Réunion juin 6 A. P. M. E. P. EXERCICE Commun à tous les candidats 6 POINTS Partie A. Utilisons un arbre pondéré :.8 S : A S Les hypothèses s écrivent : ( ) P(A)=,4

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 20 juin 2016

Corrigé du baccalauréat S Métropole La Réunion 20 juin 2016 Corrigé du baccalauréat S Métropole La Réunion juin 6 A. P. M. E. P. EXERCICE Commun à tous les candidats 6 POINTS Partie A. Utilisons un arbre pondéré :.8 S : A S Les hypothèses s écrivent : ( ) P(A)=,4

Plus en détail

T. D. n o 3 Suites numériques. Limite d une suite numérique.

T. D. n o 3 Suites numériques. Limite d une suite numérique. T. D. n o 3 Suites numériques. Limite d une suite numérique. Exercice : D après le concours d inspecteur du trésor, épreuve 2, 2004.. Étudier la fonction de la variable réelle x définie par : f(x) = ln

Plus en détail

Fonction exponentielle

Fonction exponentielle Fonction exponentielle 1 Fonction exponentielle Définition et variation Théorème Définition Il existe une unique fonction définie et dérivable sur telle que et Cette fonction est appelée fonction exponentielle

Plus en détail

Chapitre 1 : Correction des Travaux dirigés

Chapitre 1 : Correction des Travaux dirigés U.P.S. I.U.T. A, Département d Informatique Année 009-00 Chapitre : Correction des Travaux dirigés. Soit v n n i0 qi la somme des n premiers termes d une suite géométrique de raison q, et de premier terme.

Plus en détail

Limite d une fonction en un point de R. Fonctions continues.

Limite d une fonction en un point de R. Fonctions continues. DOCUMENT 23 Limite d une fonction en un point de R. Fonctions continues. 1. Introduction et notations Considérons la fonction f : x sin x définie sur R. La valeur 0 n appartient pas à x l ensemble de définition

Plus en détail

4.6 Application de la dérivée à l étude des fonctions

4.6 Application de la dérivée à l étude des fonctions 54 4.15. Théorème Règle de l Hôpital. f() Soit f et g deu fonctions telle que la limite lim est une forme indéterminée ( 0 0 ou f () 0 g() ). Alors si lim 0 g eiste (soit un nombre réel, soit + soit ()

Plus en détail

Limites de fonctions

Limites de fonctions Bibliothèque d eercices Énoncés L Feuille n Limites de fonctions Théorie Eercice Démontrer que 0 Soient m, n des entiers positifs + Étudier 0 3 Démontrer que 0 ( + + ) = Eercice = + m m n Montrer que toute

Plus en détail

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives

Limites : Exercices. Amerinsa - Ecole d été. Exercice 1 : Notions intuitives Amerinsa - Ecole d été Limites : Eercices Eercice : Notions intuitives Dans la figure ci-contre, vers quoi tend f() lorsque tend vers : a) - b) + c) 0 d) -4 e) 4 Eercice : Notions intuitives Vers quelle

Plus en détail

Les suites. Introduction. 1. Définitions Définition d une suite

Les suites. Introduction. 1. Définitions Définition d une suite Les suites Vidéo partie Premières définitions Vidéo partie Limite Vidéo partie 3 Exemples remarquables Vidéo partie 4 Théorèmes de convergence Vidéo partie 5 Suites récurrentes Fiche d'exercices Suites

Plus en détail

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis

Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis Limite, continuité, théorème des valeurs intermédiaires, dérivabilité, théorèmes de Rolle et des accroissements finis I Limites Continuités Exercice 1 : Soit ] [ la fonction définie par : Déterminer les

Plus en détail

Exercices 6. Suites numériques. Étude théorique et pratique des suites à valeurs dans R ou C.

Exercices 6. Suites numériques. Étude théorique et pratique des suites à valeurs dans R ou C. Exercices 6 Suites numériques Étude théorique et pratique des suites à valeurs dans R ou C. 6 Suites numériques...................................................................... 1 1 Aspects théoriques.................................................................

Plus en détail

UFR Mathématiques Année CAPES. Suites numériques

UFR Mathématiques Année CAPES. Suites numériques Université de Rennes 1 Ronan Quarez UFR Mathématiques Année 2008-2009 CAPES 1 Critère de Cauchy 1.1 QCM Suites numériques a) Toute suite de Cauchy, d entiers relatifs, converge dans Z? b) Toute suite de

Plus en détail

Devoir maison sur les suites - Exemples d application

Devoir maison sur les suites - Exemples d application 9- HKBL suites récurrentes u n+ = f(u n ) / 9 Devoir maison sur les suites - Eemples d application Voici la liste des eercices corrigés : Eercice : (niveau ) Étudier la suite (u n ) définie par u R et

Plus en détail

1 Notions de logique mathématique.

1 Notions de logique mathématique. Université de Provence 2012 2013 Introduction à l Analyse Chapitre 3 - Logique et Suites. 1 Notions de logique mathématique. 1.1 Assertions, propositions logiques, tables de vérité. On rappelle la notion

Plus en détail

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre.

LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. LEÇON N 53 : Suites convergentes. Opérations algébriques, composition par une application continue. Limites et relation d ordre. Pré-requis : Corps R construit : opérations, ordre total, axiome de la borne

Plus en détail

Raisonnement par récurrence. Limite d une suite

Raisonnement par récurrence. Limite d une suite Exercices 2 octobre 2014 Raisonnement par récurrence. Limite d une suite Raisonnement par récurrence Exercice 1 Prouver que pour tout entier n, 4 n + 5 est un multiple de 3. Exercice 2 Prouver que pour

Plus en détail

Suites numériques. Exemples élémentaires de suites

Suites numériques. Exemples élémentaires de suites MTA - ch5 Page 1/12 Suites numériques Notion de suite : Une suite numérique est une application de N (ou parfois de N ) à valeurs dans R ou dans C. La suite u : N C est notée de plusieurs façons : n u(n)

Plus en détail

Les suites - Partie II : Les limites

Les suites - Partie II : Les limites Terminale S Les suites - Partie II : Les limites 1.0 OLIVIER LECLUSE Juillet 2013 Table des matières 3 Limites et comparaison I - Limites et comparaison 5 A. Théorème d'encadrement dit "des gendarmes"...5

Plus en détail

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1

SUITES NUMÉRIQUES. 1 Généralités. 1.1 Définition. Laurent Garcin MPSI Lycée Jean-Baptiste Corot. Définition 1.1 SUITES NUMÉRIQUES 1 Généralités 1.1 Définition Définition 1.1 On appelle suite réelle toute famille d éléments de R indexée sur N ou, de manière équivalente, toute application de N dans R. L ensemble des

Plus en détail

I. Les fonctions de référence

I. Les fonctions de référence I. Les fonctions de référence. Fonctions affines, affines par morceau Une fonction affine est croissante lorsque., décroissante lorsque... Sa représentation graphique est la droite d équation y = a b,

Plus en détail

SUITES DE NOMBRE REELS

SUITES DE NOMBRE REELS SUITES DE NOMBRE REELS Version 1 Dr Euloge KOUAME UVCI 2017 Aout 2017 Table des matières Objectifs 5 I - I. Généralités 7 A. I-1. Définition d'une suite...7 B. II-2. Suite majorée, minorée, bornée...7

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2

). 1. Montrer que pour tout n 1 on a u n > Démontrer que pour tout n 1 on a u n+1 2 = 1 (u n 2) 2 TS Suites récurrentes Exercices Exercice. Soit u la suite définie par u 0 = 3 et pour tout entier n, + = 4un +.. Démontrer que pour tout entier n, >.. On définit la suite v pour n N par v n = un. Montrer

Plus en détail

Continuité d une fonction

Continuité d une fonction Continuité d une fonction Sur un intervalle Pour démontrer qu une fonction est continue sur un intervalle, il suffit de dire qu elle est composée de fonctions continues sur cet intervalle. Les fonctions

Plus en détail

Fiche de cours 2 - Suites de réels.

Fiche de cours 2 - Suites de réels. Licence de Sciences et Technologies EM1 - Analyse Fiche de cours - Suites de réels. Généralités sur les suites. Définition : Une suite est une fonction u : N R, définie à partir dun certain rang au moins.

Plus en détail

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie Corrigés des eercices de trigonométrie I. Résoudre algébriquement des équations, des inéquations Pour les eercices suivants, on utilisera le cercle trigonométrique Eercice 1 Résoudre dans l intervalle

Plus en détail

Suites Réelles. Aptitudes à développer :

Suites Réelles. Aptitudes à développer : Suites Réelles Aptitudes à développer : Suites * Reconnaître qu un réel est un majorant ou un minorant d une suite du programme. * Etudier les variations d une suite du programme. * Représenter graphiquement

Plus en détail

Fonctions usuelles Limites

Fonctions usuelles Limites Fonctions usuelles Limites I) Généralités Dans tout ce cours, I désignera un intervalle de Y (intervalle ouvert, fermé, semi-ouvert ). Si I = [a, b], on appellera I un segment de Y. On considère la fonction

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail