A. Popier (Le Mans) EDP, solutions classiques. 1 / 52

Dimension: px
Commencer à balayer dès la page:

Download "A. Popier (Le Mans) EDP, solutions classiques. 1 / 52"

Transcription

1 ÉQUATIONS AUX DÉRIVÉES PARTIELLES, SOLUTIONS CLASSIQUES. DIFFÉRENCES FINIES. Alexandre Popier Université du Maine, Le Mans A. Popier (Le Mans) EDP, solutions classiques. 1 / 52

2 PLAN DU COURS 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 2 / 52

3 PETIT LEXIQUE. DÉFINITION Une équation aux dérivées partielles (EDP en abrégé) est une équation faisant intervenir une fonction inconnue de plusieurs variables ainsi que certaines de ses dérivées partielles. On appelle ordre d une EDP l ordre de la plus grande dérivée présente dans l équation. Une EDP est linéaire si l équation est linéaire par rapport aux dérivées partielles de la fonction inconnue. EXEMPLE L équation de Black-Scholes v(t, x) t est une EDP linéaire d ordre σ2 x 2 2 v(t, x) v(t, x) x 2 + rx rv(t, x) = 0, x A. Popier (Le Mans) EDP, solutions classiques. 3 / 52

4 CLASSIFICATION SOMMAIRE. EDP d ordre 2, linéaire, à deux variables : DÉFINITION a 2 u x 2 + b 2 u x y + c 2 u y 2 + d u x + e u + fu = g. y L équation est elliptique si b 2 4ac < 0, parabolique si b 2 4ac = 0 et hyperbolique si b 2 4ac > 0. EXEMPLE L EDP de Black-Scholes ou l équation de la chaleur sont paraboliques. L équation de Laplace u = d i=1 2 u x 2 i = 0 sur un ouvert Ω R d, est elliptique. A. Popier (Le Mans) EDP, solutions classiques. 4 / 52

5 CONDITIONS AUX LIMITES. DÉFINITION On appelle problème aux limites une équation aux dérivées partielles munie de conditions aux limites sur la totalité de la frontière du domaine sur lequel elle est posée. DÉFINITION Le problème est bien posé si pour toute donnée (second membre, domaine, données au bord, etc.), il admet une solution unique et si cette solution dépend continuement de la donnée. A. Popier (Le Mans) EDP, solutions classiques. 5 / 52

6 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 6 / 52

7 NORMALE À UN OUVERT. Soit Ω ouvert de R n de classe C k, avec ρ C k (R d ), Ω = {x R n, ρ(x) < 0}, Ω = {x R n, ρ(x) = 0}, grad ρ(x) = ρ(x) 0 pour x Ω. DÉFINITION 1 La fonction ν : x Ω grad ρ(x) est appelée normale grad ρ(x) unitaire orientée vers l extérieur de Ω. DÉFINITION Si u C 1 ( Ω), on note u ν de Ω. = ν.grad u la dérivée normale de u le long A. Popier (Le Mans) EDP, solutions classiques. 7 / 52

8 THÉORÈME DE GAUSS-GREEN. DONNÉES : Ω ouvert de R d de classe (au moins) C 1 ; ν = (ν 1,..., ν d ) : normale extérieure à Ω ; dσ : mesure superficielle du bord Ω. THÉORÈME DE GAUSS-GREEN Si f C 1 (Ω), alors FORMULE DE STOKES d divu(x)dx = Ω Ω i=1 Ω f (x)dx = (f ν i )(σ)dσ. x i Ω U i (x)dx = (U.ν)(σ)dσ. x i Ω A. Popier (Le Mans) EDP, solutions classiques. 8 / 52

9 FORMULES DE GREEN. INTÉGRATION PAR PARTIES Si f et g sont dans C 1 (Ω), pour tout i {1,..., d} : f (x)g(x)dx = f (x) g (x)dx + f (σ)g(σ)ν i (σ)dσ. x i x i Ω Ω Ω A. Popier (Le Mans) EDP, solutions classiques. 9 / 52

10 FORMULES DE GREEN. FORMULES DE GREEN 1 Si f C 2 (Ω) et g C 1 (Ω), on a : f f (x)g(x)dx = f (x). g(x)dx + Ω Ω Ω ν (σ)g(σ)dσ. 2 Si f et g sont dans C 2 (Ω), alors : f (x)g(x)dx = f (x) g(x)dx Ω Ω [ ] f g + (σ)g(σ) (σ)f (σ) dσ. ν ν Ω A. Popier (Le Mans) EDP, solutions classiques. 9 / 52

11 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 10 / 52

12 DÉFINITIONS. ÉQUATION DE LAPLACE : u(x) = 0 pour tout x Ω R d. ÉQUATION DE POISSON : u(x) = f (x) pour tout x Ω. DÉFINITION Une fonction u de classe C 2 sur Ω satisfaisant l équation de Laplace est dite harmonique. A. Popier (Le Mans) EDP, solutions classiques. 11 / 52

13 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 12 / 52

14 SOLUTION INVARIANTE PAR ROTATION. DOMAINE : Ω = R d invariance par rotation, d où u(x) = v(r) avec r = x. LEMME u x i = v (r) x i r, 2 u x 2 i ( = v (r) x i 2 r 2 + v 1 (r) r x i 2 r 3 u = 0 v + d 1 v = 0. r { α ln(r) + β, d = 2; v(r) = α r d 2 + β, d 3; (α, β) R 2. ). A. Popier (Le Mans) EDP, solutions classiques. 13 / 52

15 SOLUTION FONDAMENTALE. DÉFINITION La fonction Φ(x) = 1 ln( x ), d = 2; 2π 1 1, d 3; d(d 2)κ(d) x d 2 pour x R d, x 0, est la solution fondamentale de l équation de Laplace. NOTATION κ(d) = πd/2 Γ( d 2 + 1) est le volume de la boule unité de Rd. A. Popier (Le Mans) EDP, solutions classiques. 14 / 52

16 ÉQUATION DE POISSON SUR R d. THÉORÈME Soit f Cc 2 (R d ). Alors u = Φ f : 1 ln( x y )f (y)dy, d = 2; 2π R 2 u(x) = 1 f (y) dy, d 3; d(d 2)κ(d) x y d 2 est correctement définie et vérifie : 1 u C 2 (R d ), 2 u = f sur R d. R 3 A. Popier (Le Mans) EDP, solutions classiques. 15 / 52

17 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 16 / 52

18 PRINCIPE DU MAXIMUM, UNICITÉ. THÉORÈME Soit u C 2 (Ω) C(Ω) harmonique sur Ω ouvert borné. 1 Alors max u = max u. Ω Ω 2 De plus si Ω est connexe et s il existe x 0 Ω t.q. u(x 0 ) = max u, alors u est constante sur Ω. REMARQUE Avec u à la place de u, on a les mêmes assertions pour le min. Ω COROLLAIRE Si u C 2 (Ω) C(Ω) est harmonique sur Ω et vérifie u = g sur Ω avec g 0, u est strictement positive partout sur Ω pourvu que g soit strictement positive en au moins un point du bord. A. Popier (Le Mans) EDP, solutions classiques. 17 / 52

19 PRINCIPE DU MAXIMUM, UNICITÉ. THÉORÈME (UNICITÉ) Soit g C( Ω), f C(Ω). Alors il existe au plus une solution u C 2 (Ω) C(Ω) au problème suivant : u = f sur Ω, u = g sur Ω. A. Popier (Le Mans) EDP, solutions classiques. 17 / 52

20 RÉGULARISATION ET REPRÉSENTATION. THÉORÈME Si u C(Ω) est harmonique, alors u C (Ω). REMARQUE Attention : u n est pas nécessairement régulière, ni même continue sur le bord Ω. THÉORÈME Soit f Cc 2 (R d ) avec d 3. Toute solution bornée de u = f sur R d est de la forme u(x) = Φ(x y)f (y)dy + C, avec C constante. R d A. Popier (Le Mans) EDP, solutions classiques. 18 / 52

21 FONCTION DE GREEN. HYPOTHÈSE : Ω est un ouvert borné de classe C 1. DÉFINITION Pour tout x Ω, Fonction correctrice : φ x solution de Φ x = 0 sur Ω, Fonction de Green de Ω : φ x = Φ(y x) sur Ω. G(x, y) = Φ(y x) φ x (y), (x, y) Ω 2, x y. PROPOSITION Pour tout (x, y) Ω 2, x y, G(x, y) = G(y, x). A. Popier (Le Mans) EDP, solutions classiques. 19 / 52

22 FONCTION DE GREEN. HYPOTHÈSE : Ω est un ouvert borné de classe C 1. THÉORÈME Si u C 2 (Ω) est solution de u = f sur Ω, alors pour tout x Ω : u(x) = Ω u = g sur Ω, g(σ) G (x, σ)dσ + f (y)g(x, y)dy. ν Ω A. Popier (Le Mans) EDP, solutions classiques. 19 / 52

23 FONCTION DE GREEN POUR LE DEMI-ESPACE. DOMAINE : Ω = R d + = {x = (x 1,..., x d ) R d x d > 0}. NOYAU DE POISSON POUR R d + : K (x, y) = 2x d 1 dκ(d) x y d, x Rd +, y R d +. THÉORÈME Soit g C(R d 1 ) L (R d 1 ) et u définie par x R d +, u(x) = g(y)k (x, y)dy. Alors u C (R d +) L (R d +) et 1 u = 0 sur R d +, R d + 2 lim u(x) = g(x 0 ) pour tout x 0 R d +. x x 0,x R d + A. Popier (Le Mans) EDP, solutions classiques. 20 / 52

24 FONCTION DE GREEN POUR UNE BOULE. DOMAINE : Ω = B(0, r) avec r > 0. NOYAU DE POISSON POUR B(0, r) : K (x, y) = r 2 x 2 dκ(d)r 1 x y d, x B(0, r), y B(0, r). THÉORÈME Soit g C( B(0, r)) et u définie par x B(0, r), u(x) = Alors u C (B(0, r)) et 1 u = 0 sur B(0, r), B(0,r) g(y)k (x, y)dy. 2 lim x x 0,x B(0,r) u(x) = g(x 0) pour tout x 0 B(0, r). A. Popier (Le Mans) EDP, solutions classiques. 21 / 52

25 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 22 / 52

26 DÉFINITION. ÉQUATION HOMOGÈNE : u t u = 0. ÉQUATION INHOMOGÈNE : u t u = f. DONNÉES initiales et de bord à préciser! f : R + Ω R, Ω R d ouvert. INCONNUE : u : R + Ω R. A. Popier (Le Mans) EDP, solutions classiques. 23 / 52

27 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 24 / 52

28 SOLUTION FONDAMENTALE. DÉFINITION La fonction Φ(t, x) = 1 exp (4πt) d/2 ) ( x 2 4t t > 0, x R d, 0 t < 0, x R d est appelée solution fondamentale de l équation de la chaleur (homogène). LEMME Pour tout t > 0, Φ(t, x)dx = 1. R d A. Popier (Le Mans) EDP, solutions classiques. 25 / 52

29 PROBLÈME DE CAUCHY. À RÉSOUDRE : u t u = 0, t > 0, x Rd, et u(0,.) = g. THÉORÈME Soit g C(R d ) L (R d ). Soit u(t, x) = Φ(t,.) g = Φ(t, x y)g(y)dy, t > 0, x R d. R d Alors u C (R + R d ) et 1 u t (t, x) u(t, x) = 0 pour (t, x) ]0, + [ R d, 2 lim (t,x) (0,x 0 ),t>0 u(t, x) = g(x 0) pour x 0 R d. 3 Si g 0, avec g 0, alors pour tout t > 0 et tout x R d, u(t, x) > 0. A. Popier (Le Mans) EDP, solutions classiques. 26 / 52

30 PROBLÈME NON HOMOGÈNE. À RÉSOUDRE : u t u = f, t > 0, x Rd, u = 0 t = 0, x R d. THÉORÈME Soit f C 1,2 0 (R + R d ). Soit u(t, x) = t Alors u C 1,2 (R + R d ) et 0 R d Φ(t s, x y)f (s, y)dsdy, t > 0, x R d. 1 u t (t, x) u(t, x) = f (t, x) pour (t, x) ]0, + [ R d, 2 lim (t,x) (0,x 0 ),t>0 u(t, x) = 0 pour tout x 0 R d. A. Popier (Le Mans) EDP, solutions classiques. 27 / 52

31 PROBLÈME NON HOMOGÈNE. PROPOSITION EN COMBINANT LES DEUX THÉORÈMES : t u(t, x) = est solution de R d Φ(t, x y)g(y)dy + u t u = f, t > 0, x Rd, u = g t = 0, x R d. 0 R d Φ(t s, x y)f (s, y)dsdy A. Popier (Le Mans) EDP, solutions classiques. 27 / 52

32 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 28 / 52

33 PRINCIPE DU MAXIMUM, UNICITÉ. DÉFINITION Soit Ω ouvert borné de R d et T > 0. Cylindre parabolique : Ω T =]0, T ] Ω. Bord parabolique de Ω T : Γ T = Ω T \ Ω T = {0} Ω [0, T ] Ω. THÉORÈME Soit u C 1,2 (Ω T ) C(Ω T ) solution de l équation de la chaleur sur Ω T. 1 Alors max u = max u. Ω T Γ T 2 Si Ω est connexe et s il existe (t 0, x 0 ) Ω T t.q. u(t 0, x 0 ) = max Ω T u, alors u est constante sur Ω t0. A. Popier (Le Mans) EDP, solutions classiques. 29 / 52

34 PRINCIPE DU MAXIMUM, UNICITÉ. DÉFINITION Soit Ω ouvert borné de R d et T > 0. Cylindre parabolique : Ω T =]0, T ] Ω. Bord parabolique de Ω T : Γ T = Ω T \ Ω T = {0} Ω [0, T ] Ω. THÉORÈME Soit g C(Γ T ) et f C(Ω T ). Il existe au plus une solution u C 1,2 (Ω T ) C(Ω T ) au problème : u t u = f dans Ω T, u = g sur Γ T. A. Popier (Le Mans) EDP, solutions classiques. 29 / 52

35 PROBLÈME DE CAUCHY. THÉORÈME (PRINCIPE DU MAXIMUM) Soit u C 1,2 (]0, T ] R d ) C([0, T ] R d ) solution de u t u = 0 sur ]0, T [ R d, u = g sur {0} R d, et satisfaisant u(t, x) Ae a x 2 (avec A, a constantes). Alors sup u = sup g. [0,T ] R d R d A. Popier (Le Mans) EDP, solutions classiques. 30 / 52

36 PROBLÈME DE CAUCHY. THÉORÈME (UNICITÉ) Soit g C(R d ) et f C([0, T ] R d ). Il existe au plus une solution u C 1,2 (]0, T ] R d ) C([0, T ] R d ) au problème : u t u = f sur ]0, T [ R d, u = g sur {0} R d, satisfaisant u(t, x) Ae a x 2 (avec A, a constantes). A. Popier (Le Mans) EDP, solutions classiques. 30 / 52

37 REMARQUES. REMARQUE SUR LES BORNES Il existe une infinité de solutions pour u t u = 0 sur ]0, T [ R d, u = 0 sur {0} R d, THÉORÈME (RÉGULARITÉ) Si u C 1,2 (Ω T ) satisfait l équation de la chaleur sur Ω T, alors u C (Ω T ). A. Popier (Le Mans) EDP, solutions classiques. 31 / 52

38 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 32 / 52

39 PRINCIPALES MÉTHODES DE DISCRÉTISATION. DIFFÉRENCES FINIES (ou volumes finis) : discrétisation du domaine Ω et remplacement de l opérateur différentiel par un quotient différentiel. ÉLÉMENTS FINIS : trés liée à la formulation variationnelle des EDP. Principe : remplacer un espace de Hilbert H par un sous-espace de dimension finie H N. MÉTHODES SPECTRALES : chercher une solution approchée sous forme d un développement sur une certaine famille de fonctions (Fourier, polynômes, splines, etc.) : u = N α i (u)p i, i=1 (voir exercices de TD). Méthodes souvent coûteuses, mais précises. A. Popier (Le Mans) EDP, solutions classiques. 33 / 52

40 PRINCIPE. DÉRIVÉE : du u(x + h) u(x) (x) = lim dx h 0 h u(x + h) u(x), si h est assez petit. h LEMME (EN EXERCICE) Si u est de classe C 2 au voisinage de x, alors ( du u(x + h) u(x) (x) dx h sup y [x,x+h 0 [ ) u (y) h. 2 DÉFINITION Une approximation est consistante d ordre p s il existe une constante C positive indépendante de h, t.q. cette erreur soit majorée par Ch p. A. Popier (Le Mans) EDP, solutions classiques. 34 / 52

41 PRINCIPE. DÉRIVÉE : du u(x + h) u(x h) (x) = lim dx h 0 2h u(x + h) u(x h). 2h LEMME (EN EXERCICE) Si u est de classe C 3 au voisinage de x, alors ( du u(x + h) u(x h) (x) dx 2h sup y ]x h 0,x+h 0 [ ) u (3) (y) h 2. 6 A. Popier (Le Mans) EDP, solutions classiques. 34 / 52

42 PRINCIPE. DÉRIVÉE D ORDRE 2 : PROPOSITION Si u est de classe C 4 au voisinage de x, alors d 2 ( u u(x + h) 2u(x) + u(x h) (x) dx 2 h 2 sup y [x,x+h 0 [ ) u (4) (y) h 2. 2 A. Popier (Le Mans) EDP, solutions classiques. 34 / 52

43 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 35 / 52

44 PROBLÈME. Soit u : [0, 1] R solution de d 2 u (x) + c(x)u(x) = f (x) pour 0 < x < 1, dx 2 u(0) = g 0, u(1) = g 1. HYPOTHÈSES : f C([0, 1]), c C([0, 1]), c 0. RÉSULTAT : il existe une unique solution u C 2 ([0, 1]). Mais pas de forme explicite de la solution si c 0. DISCRÉTISATION DU DOMAINE : pour tout entier N, x 0 = 0 < x 1 <... < x N < x N+1 = 1. DISCRÉTISATION RÉGULIÈRE : x i = ih avec h = 1/(N + 1) et i = 0,..., N + 1. A. Popier (Le Mans) EDP, solutions classiques. 36 / 52

45 SCHÉMA DE DIFFÉRENCES FINIES. BUT : chercher en tout point x i une valeur u i t.q. u i u(x i ). Donc u 0 = g 0, u N+1 = g 1, U = (u 1,..., u N ) R N. APPROXIMATION : en chacun des sommets internes x i : d 2 u dx 2 (x i) + c(x i )u(x i ) = f (x i ); u(x i + h) 2u(x i ) + u(x i h) h 2 + c(x i )u(x i ) f (x i ); u i+1 2u i + u i 1 h 2 + c(x i )u i f (x i ), i {1,..., N}. A. Popier (Le Mans) EDP, solutions classiques. 37 / 52

46 ÉCRITURE MATRICIELLE. A h U = b h, avec A h R N N et b h R N : c(x A h = ) h c(x 2 ) c(x N ) b h = f (x 1 ) + g 0 h 2 f (x 2 ). f (x N 1 ) f (x N ) + g 1 h 2 ATTENTION AUX BORDS! A. Popier (Le Mans) EDP, solutions classiques. 38 / 52

47 PROPRIÉTÉS DE A h. PROPOSITION Si c 0, A h est symétrique et définie positive. CONSÉQUENCE : U existe et est unique. INÉGALITÉ DE STABILITÉ Si c 0, (A h ) A. Popier (Le Mans) EDP, solutions classiques. 39 / 52

48 ERREUR DE CONSISTANCE. DÉFINITION On appelle erreur de consistance du schéma la quantité obtenue en remplaçant l inconnue par la solution exacte dans le schéma numérique : ε h (u) = A h π h (u) b h, π h (u) = Le schéma est consistant si lim h 0 ε h (u) = 0. u(x 1 ). u(x N ). Le schéma est consistant d ordre p s il existe C > 0 et h 0 > 0 t.q. pour tout 0 < h < h 0, ε h (u) Ch p. A. Popier (Le Mans) EDP, solutions classiques. 40 / 52

49 ERREUR DE CONSISTANCE. PROPOSITION Supposons la solution u de classe C 4 sur [0, 1]. Alors le schéma est consistant d ordre 2 pour la norme infinie : ε h (u) h2 12 sup u (4) (y). y [0,1] A. Popier (Le Mans) EDP, solutions classiques. 41 / 52

50 CONVERGENCE DU SCHÉMA. THÉORÈME Soit u : [0, 1] R solution exacte de d 2 u (x) + c(x)u(x) = f (x) pour 0 < x < 1, dx 2 u(0) = g 0, u(1) = g 1. On suppose u C 4 ([0, 1]). Soit U R N la solution du schéma. Alors l erreur de discrétisation, i.e. la différence π h (u) U, vérifie : π h (u) U h2 96 sup u (4) (y). y [0,1] REPOSE SUR π h (u) U = (A h ) 1 ε h (u). A. Popier (Le Mans) EDP, solutions classiques. 42 / 52

51 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 43 / 52

52 UN PROBLÈME DE GÉOMÉTRIQUE. Problème de Laplace inhomogène : u(x) = f (x) pour x Ω, u = 0 sur Ω. DISCRÉTISATION : points alignés dans les directions x et y. A. Popier (Le Mans) EDP, solutions classiques. 44 / 52

53 APPROXIMATION. EN UN POINT RÉGULIER : u(p 1 ) u(p 2) + u(p 3 ) 2u(P 1 ) h u(p 5) + u(p 4 ) 2u(P 1 ) h2 2. Si u de classe C 4, approximation d ordre 2. EXEMPLE : si Ω est un rectangle, tous les points sont réguliers. A. Popier (Le Mans) EDP, solutions classiques. 45 / 52

54 APPROXIMATION. EN UN POINT SINGULIER : CORRECTION : 2 u x 2 (P 1) + O(h) = αu( P 2 ) + βu( P 1 ) + γu(p 3 ). Formule de Taylor : α + β + γ = 0, αh + γh = 0, αh 2 /2 + γh 2 /2 = 1. Erreur de consistance en O(h) et matrice du système linéaire non symétrique. A. Popier (Le Mans) EDP, solutions classiques. 45 / 52

55 PLAN 1 FORMULES DE GREEN 2 ÉQUATION DE LAPLACE Domaine R d tout entier Domaine borné 3 ÉQUATION DE LA CHALEUR Domaine R d tout entier Domaine borné 4 MÉTHODE DES DIFFÉRENCES FINIES Étude d un exemple en dimension 1 Remarques en dimension supérieure à 2 Équation de la chaleur A. Popier (Le Mans) EDP, solutions classiques. 46 / 52

56 SCHÉMAS D EULER POUR EDO. À résoudre EDO : u = f (u) sur ]0, 1[ avec u(0) = u 0. SCHÉMAS D EULER : EXPLICITE : u (x) u(x + h) u(x), d où h u(x + h) = u(x) + hf (u(x)). IMPLICITE : u (x) u(x) u(x h), d où h u(x + h) hf (u(x + h)) = u(x) u(x + h) = (Id hf ) 1 (u(x)). θ-schéma (θ [0, 1]) : u(x + h) (1 θ)hf (u(x + h)) = u(x) + θhf (u(x)). A. Popier (Le Mans) EDP, solutions classiques. 47 / 52

57 ÉQUATION DE LA CHALEUR. Soit u solution de u t (t, x) 2 u (t, x) = 0 pour x ]0, 1[, t ]0, T [ x 2 u(0, x) = u 0 (x) x ]0, 1[, u(t, 0) = u(t, 1) = 0 pour t ]0, T [. THÉORÈME Si u 0 C(]0, 1[), il existe une unique solution u C 2 (]0, T [ ]0, 1[) C([0, T ] [0, 1]). De plus u C (]0, T [ ]0, 1[). Si u 0 0, u(t,.) 0 pour tout t 0. Si u L (]0, 1[), alors u L (]0, T [ ]0, 1[) et u u 0. A. Popier (Le Mans) EDP, solutions classiques. 48 / 52

58 DISCRÉTISATION PAR EULER EXPLICITE EN TEMPS. DISCRÉTISATION : [0, T ] divisé en t n = nk, n = 0,..., M, pas k = T /M, [0, 1] divisé en x i = ih, i = 0,..., N + 1, pas h = 1/(N + 1). En chaque point (t n, x i ) : u t (t n, x i ) u(t n+1, x i ) u(t n, x i ) k 2 u x 2 (t n, x i ) 2u(t n, x i ) u(t n, x i+1 ) u(t n, x i 1 ) h 2. APPROXIMATION u (n) i de u(t n, x i ), i = 1,..., N et n = 1,..., M. A. Popier (Le Mans) EDP, solutions classiques. 49 / 52

59 DISCRÉTISATION PAR EULER EXPLICITE EN TEMPS. DISCRÉTISATION : [0, T ] divisé en t n = nk, n = 0,..., M, pas k = T /M, [0, 1] divisé en x i = ih, i = 0,..., N + 1, pas h = 1/(N + 1). SCHÉMA : pour tout i = 1,..., N et tout n = 1,..., M u (n+1) i u (n) i + 2u(n) i u (n) i+1 u(n) i 1 k h 2 (t, x) = 0, u (0) i = u 0 (x i ), u (n) 0 = u (n) N+1 = 0. A. Popier (Le Mans) EDP, solutions classiques. 49 / 52

60 DISCRÉTISATION PAR EULER EXPLICITE EN TEMPS. DISCRÉTISATION : [0, T ] divisé en t n = nk, n = 0,..., M, pas k = T /M, [0, 1] divisé en x i = ih, i = 0,..., N + 1, pas h = 1/(N + 1). SCHÉMA EXPLCITE car u (n+1) i u (n+1) i = u (n) i explicite en fonction de (u (n) i ) i=1,...,n : k h 2 (2u(n) i u (n) i 1 u(n) i+1 ). A. Popier (Le Mans) EDP, solutions classiques. 49 / 52

61 PROPRIÉTÉS. PROPOSITION Le schéma est consistant d ordre 1 en temps et d ordre 2 en espace : u t (t n, x i ) u(t n+1, x i ) u(t n, x i ) k Ck, u 2 x 2 (t n, x i ) 2u(t n, x i ) u(t n, x i+1 ) u(t n, x i 1 ) h 2 Ch2. DÉFINITION Un schéma est L -stable si la solution approchée est bornée dans L indépendamment du pas du maillage. PROPOSITION Si k h 2 1/2, alors le schéma est stable : sup i,n u (n) i u 0. A. Popier (Le Mans) EDP, solutions classiques. 50 / 52

62 PROPRIÉTÉS. THÉORÈME Si la condition de stabilité est satisfaite, alors il existe C 0 t.q. pour tout n = 1,..., M : sup u(t n, x i ) u (n) sup u(0, x i ) u (0) + TC(k + h 2 ). i=1,...,n i i=1,...,n i A. Popier (Le Mans) EDP, solutions classiques. 50 / 52

63 ÉCRITURE MATRICIELLE. NOTATIONS : λ = k/h 2. Pour n = 1,..., M, U n = (u (n) i ) i=1,...,n. U 0 = (u 0 (x i )) i=1,...,n. SYSTÈME LINÉAIRE : U n = AU n 1 avec 1 2λ λ λ 1 2λ λ 0. A = λ 2 λ λ 1 2λ REMARQUE : attention aux conditions de bord en x = 0 et x = 1. A. Popier (Le Mans) EDP, solutions classiques. 51 / 52

64 θ-schémas. Pour θ [0, 1] u (n+1) i u (n) i k = 1 θ ( ) h 2 2u (n) i + u (n) i+1 + u(n) i 1 + θ ( h 2 2u (n+1) i + u (n+1) i+1 + u (n+1) i 1 ). PROPRIÉTÉS. Euler implicite si θ = 1, Crank-Nicholson si θ = 1/2. D ordre 2 en espace. D ordre 2 en temps si θ = 1/2, d ordre 1 sinon. Inconditionnellement stable si θ 1/2. Sinon stable si k h 2 1 2(1 2θ). A. Popier (Le Mans) EDP, solutions classiques. 52 / 52

Un exemple de problème à résoudre. Introduction au calcul scientifique pour les EDP de la physique. p.4/27. La démarche de l ingénieur mathématicien

Un exemple de problème à résoudre. Introduction au calcul scientifique pour les EDP de la physique. p.4/27. La démarche de l ingénieur mathématicien Un exemple de problème à résoudre. Introduction au calcul scientifique pour les EDP de la physique. Patrick Joly INRIA-Rocquencourt Exemple: la conduction de la chaleur. Soit un domaine de R N (N =,, 3)

Plus en détail

Simulation numérique, contexte

Simulation numérique, contexte Introduction à la Simulation Numérique Jérémie Gressier Septembre 21 1 / 41 Plan 1 Présentation 2 Différences Finies 3 Intégration d un problème de Cauchy 4 Conclusion 2 / 41 Simulation numérique, contexte

Plus en détail

COURS MA103. Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies.

COURS MA103. Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies. COURS MA103 Introduction aux équations aux dérivées partielles hyperboliques et à leur discrétisation par différences finies Patrick Joly 1 Equation aux dérivées partielles : équation dont l inconnue est

Plus en détail

Stabilité des schémas aux différences finies et analyse de von Neumann

Stabilité des schémas aux différences finies et analyse de von Neumann Stabilité des schémas aux différences finies et analyse de von Neumann I- Schémas d Euler explicite/implicite pour l équation de la chaleur, étude de stabilité en " (µ > 0) u 0 à support compact " [#R,R],

Plus en détail

Résolution pratique des équations aux dérivées partielles. David Manceau

Résolution pratique des équations aux dérivées partielles. David Manceau Résolution pratique des équations aux dérivées partielles David Manceau 2 TABLE DES MATIÈRES 3 Table des matières Introduction 7 1 Exemples classiques d e.d.p. 9 1.1 Modélisation, mise en équation........................

Plus en détail

Discrétisation des équations. de Stokes et de Navier-Stokes. en formulation tourbillon-vitesse-pression. Christine Bernardi

Discrétisation des équations. de Stokes et de Navier-Stokes. en formulation tourbillon-vitesse-pression. Christine Bernardi Discrétisation des équations de Stokes et de Navier-Stokes en formulation tourbillon-vitesse-pression Christine Bernardi Laboratoire Jacques-Louis Lions C.N.R.S. et Université Pierre et Marie Curie Travail

Plus en détail

Séance 2 : Exercices corrigés FONCTIONS CONVEXES

Séance 2 : Exercices corrigés FONCTIONS CONVEXES Mathématiques 2 1 Séance 2 : Exercices corrigés FONCTIONS CONVEXES Question 1 Un circuit électrique : exemple de système non linéaire Montrer que les lois de Kirchhoff (la somme des intensités arrivant

Plus en détail

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites

TD9. ENS Cachan M1 Hadamard Exercice 1 Opérateurs compacts et extraction de sous-suites Analyse fonctionnelle A. Leclaire ENS Cachan M1 Hadamard 2016-2017 TD9 Exercice 1 Opérateurs compacts et extraction de sous-suites Soient E,F deux espaces de Banach. On note B la boule unité fermée de

Plus en détail

Université Paris-Dauphine Ceremade. Introduction aux méthodes particulaires. François BOLLEY

Université Paris-Dauphine Ceremade. Introduction aux méthodes particulaires. François BOLLEY Université Paris-Dauphine Ceremade o Introduction aux méthodes particulaires o François BOLLEY I - Les équations d Euler incompressibles : modèle macroscopique, particules déterministes II - L équation

Plus en détail

Chapitre Eléments finis en dimension N 2

Chapitre Eléments finis en dimension N 2 1 Chapitre 6 6.3 Eléments finis en dimension N 2 Plan du cours: 6.3.1 Eléments finis triangulaires (de Lagrange) 6.3.2 Convergence et estimation d erreur 6.3.3 Eléments finis rectangulaires (de Lagrange)

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Sommaire Sommaire I Applications continûment différentiables............... 2 I.1 Applications coordonnées......................... 2 I.2 Applications partielles........................... 2 I.3 Continuité..................................

Plus en détail

AH - FONCTIONS AFFINES PAR INTERVALLES

AH - FONCTIONS AFFINES PAR INTERVALLES AH - FONCTIONS AFFINES PAR INTERVALLES Définition On appelle fonction affine par intervalles une fonction f définie et continue sur R pour laquelle il existe une subdivision a 1 < a 2 < < a n telle que

Plus en détail

Alexandre Popier. ENSAI, Bruz. apopier. Janvier-Mars 2011

Alexandre Popier. ENSAI, Bruz.  apopier. Janvier-Mars 2011 CHAÎNES DE MARKOV. Alexandre Popier ENSAI, Bruz apopier@univ-lemans.fr http://www.univ-lemans.fr/ apopier Janvier-Mars 2011 A. Popier (ENSAI) Chaînes de Markov. Janvier-Mars 2011 1 / 51 PLAN 1 INTRODUCTION

Plus en détail

Méthodes variationnelles appliquées à la modélisation

Méthodes variationnelles appliquées à la modélisation Méthodes variationnelles appliquées à la modélisation Emmanuel Maitre et Clément Jourdana ENSIMAG 2A / MSIAM1 http://www-ljk.imag.fr/membres/emmanuel.maitre/doku.php?id= introef 1. Introduction : des différences

Plus en détail

Équations différentielles - Cours no 2 Résultats Généraux sur les équations différentielles

Équations différentielles - Cours no 2 Résultats Généraux sur les équations différentielles Équations différentielles - Cours no 2 Résultats Généraux sur les équations différentielles 1 Problème de Cauchy Cadre : I intervalle ouvert de R, Ω ouvert connexe d un espace de Banach E, f application

Plus en détail

Résumé du cours d Analyse Numérique du Professeur Marco Picasso

Résumé du cours d Analyse Numérique du Professeur Marco Picasso Résumé du cours d Analyse Numérique du Professeur Marco Picasso jean-eloi.lombard@epfl.c 19 juillet 2007 Table des matières 1 Problèmes d interpolation 3 2 Dérivation Numérique 3 2.1 Dérivées numériques

Plus en détail

Chap. 6 : Problèmes de Sturm-Liouville

Chap. 6 : Problèmes de Sturm-Liouville Chap. 6 : Problèmes de Sturm-Liouville Jean-Philippe Lessard Dépt. de mathématiques et de statistique Université Laval, Québec, Canada 4 novembre 2014 Introduction Espaces de fonctions et produits scalaires

Plus en détail

TD 3: Suites réelles

TD 3: Suites réelles Université Pierre et Marie Curie Année 2011/2012 LM115 TD 3: Suites réelles MIME Convergence des suites : Par définition, une suite (u n ) converge vers un réel l si : Pour tout ɛ réel strictement positif,

Plus en détail

Rappel de calcul différentiel

Rappel de calcul différentiel Calcul différentiel et géométrie Année 008-009 ENS Cachan Vincent Beck Différentiabilité. Rappel de calcul différentiel Exercice 1 Exemples et contre-exemples. a) Étudier suivant les valeurs de α > 0,

Plus en détail

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL

Université de Metz. Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL Université de Metz Licence de Mathématiques - 2ème année 1er semestre CALCUL DIFFERENTIEL par Ralph Chill Laboratoire de Mathématiques et Applications de Metz Année 2010/11 1 Table des matières Chapitre

Plus en détail

Simulation numérique à l échelle macroscopique par la méthode des éléments finis

Simulation numérique à l échelle macroscopique par la méthode des éléments finis Simulation numérique à l échelle macroscopique par la méthode des éléments finis F. Pigeonneau Surface du Verre et Interfaces, UMR 125 CNRS/Saint-Gobain, France Plan 1. Introduction 2. Quelques équations

Plus en détail

Feuille d exercices n o 3

Feuille d exercices n o 3 L3 Variable complexe Feuille d exercices n o 3 Exercice 1. Soit P (z) = z 2 +az+b un polynôme de degré 2 à coefficients complexes, avec b. On note α et β les racines complexes de P, et on pose f(z) = 1/P

Plus en détail

Corrigé du Concours Blanc

Corrigé du Concours Blanc Corrigé du Concours Blanc Exercice : On considère la fonction f définie par : f(x = x + 2 2 ln(e x + et on note (C la courbe représentative de f dans un repère orthonorrnal.. Etude de la fonction f. a.

Plus en détail

Jean-François Coulombel. CNRS, Université Lille 1 Laboratoire Paul Painlevé (UMR CNRS 8524) Equipe projet SIMPAF - INRIA Lille Nord Europe

Jean-François Coulombel. CNRS, Université Lille 1 Laboratoire Paul Painlevé (UMR CNRS 8524) Equipe projet SIMPAF - INRIA Lille Nord Europe Stabilité des schémas numériques pour les problèmes aux limites hyperboliques Jean-François Coulombel CNRS, Université Lille 1 Laboratoire Paul Painlevé (UMR CNRS 8524) Equipe projet SIMPAF - INRIA Lille

Plus en détail

AMéthode de parallélisation en temps: Application aux méthodes de décomposition de domaine

AMéthode de parallélisation en temps: Application aux méthodes de décomposition de domaine 1/17 AMéthode de parallélisation en temps: Application aux méthodes de décomposition de domaine Rim Guetat sous la direction de M. Yvon Maday Laboratoire Jacques Lious Lions Université Pierre et Marie

Plus en détail

MASTER M2 E.D.P. ET ANALYSE NUMERIQUE UNIVERSITE PARIS 6 - ECOLE POLYTECHNIQUE Cours de G. Allaire, Homogénéisation 13 Janvier 2011 (3 heures)

MASTER M2 E.D.P. ET ANALYSE NUMERIQUE UNIVERSITE PARIS 6 - ECOLE POLYTECHNIQUE Cours de G. Allaire, Homogénéisation 13 Janvier 2011 (3 heures) MASTER M2 E.D.P. ET ANALYSE NUMERIQUE UNIVERSITE PARIS 6 - ECOLE POLYTECHNIQUE Cours de G. Allaire, Homogénéisation 13 Janvier 2011 (3 heures On attachera le plus grand soin à la rédaction et à la présentation

Plus en détail

EXERCICES SUR LES DISTRIBUTIONS. 1 x 2 si x < 1. ϕ(x) = 0 si x 1 2

EXERCICES SUR LES DISTRIBUTIONS. 1 x 2 si x < 1. ϕ(x) = 0 si x 1 2 Université Chouaib Doukkali Faculté des Sciences Département de Mathématiques El Jadida A. Lesfari lesfariahmed@yahoo.fr http://lesfari.com EXERCICES SUR LES DISTRIBUTIONS Eercice. Soit ϕ : R R définie

Plus en détail

Dérivabilité, dérivée,

Dérivabilité, dérivée, Ai-Marseille Université 203-204 Analyse I PLANCHE 3 : DÉRIVATION Dérivabilité, dérivée, Eercice [Opérations sur les dérivées] Soit a < b, ]a, b[ et f, g deu applications de ]a, b[ dans R. On suppose que

Plus en détail

Différentiabilité des fonctions de plusieurs variables:

Différentiabilité des fonctions de plusieurs variables: Différentiabilité des fonctions de plusieurs variables: N. Tsouli University Mohamed I Faculty of Sciences Department of Mathematics Oujda, Morocco. Plan 1 I-Dérivées partielles : 2 II-7- Dérivées d ordre

Plus en détail

Variables aléatoires réelles

Variables aléatoires réelles Variables aléatoires réelles Table des matières 1 Généralités sur les variables aléatoires réelles. 3 1.1 Rappels sur les σ-algèbres ou tribus d événements................................. 3 1.2 σ-algèbre

Plus en détail

Transformation de Fourier. Convolution.

Transformation de Fourier. Convolution. Département de mathématiques Université D Orléans Préparation à l agrégation 22-23 Transformation de Fourier. Convolution. Voir [3],p.88 I Ensemble image de la transformation de Fourier Prouver que la

Plus en détail

Analyse numérique Exercices corrigés

Analyse numérique Exercices corrigés Université Sultan Moulay Slimane 9- Module : Analyse numérique par S. Melliani & L. S. Chadli Analyse numérique Exercices corrigés Interpolation polynômiale Exercice Déterminer le polynôme d interpolation

Plus en détail

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

DÉRIVABILITÉ. 1 Dérivabilité en un point, fonction dérivée. 1.1 Définitions et premières propriétés. Laurent Garcin MPSI Lycée Jean-Baptiste Corot DÉRIVABILITÉ 1 Dérivabilité en un point, fonction dérivée 1.1 Définitions et premières propriétés Définition 1.1 Dérivabilité en un point Soient f : I R une application et a I. On dit que f est dérivable

Plus en détail

Rappels de cours M1 Enseignement, Analyse M71. Rachid Regbaoui

Rappels de cours M1 Enseignement, Analyse M71. Rachid Regbaoui Rappels de cours M1 Enseignement, Analyse M71 Rachid Regbaoui 2 Chapitre 1 Rappels sur les suites et séries numériques 1.1 Suites numériques 1.1.1 Généralités Dans la suite K désignera le corps des réels

Plus en détail

FX 24 - EQUATIONS DIFFÉRENTIELLES

FX 24 - EQUATIONS DIFFÉRENTIELLES Lycée Thiers FX 24 - EQUATIONS DIFFÉRENTIELLES EDL - 1 Soit n N. Résoudre sur ], + [ l équation différentielle 2t + = t n. Résoudre sur R l équation différentielle ch (t) + sh (t) = 1 1 + t 2. Soit I un

Plus en détail

Devoir Surveillé /Evaluation

Devoir Surveillé /Evaluation Lycée Pierre-Gilles de Gennes BCPST Mathématiques 4-5 Devoir Surveillé /Evaluation Le 4 septembre 4 Documents écrits, électroniques, calculatrices et téléphones portables interdits La plus grande attention

Plus en détail

Dérivation des fonctions numériques d une variable réelle

Dérivation des fonctions numériques d une variable réelle Maths PCSI Exercices Dérivation des fonctions numériques d une variable réelle 1 Aspects locaux 1 + x 1 x si x 0 Exercice 1 Etudier la dérivabilité en 0 de x x 1 sinon Exercice 2 Dériver x 1 + 2 + x. Recommencer,

Plus en détail

Calcul d écoulements par méthode Vortex

Calcul d écoulements par méthode Vortex Calcul d écoulements par méthode Vortex Jérémie Gressier mars 2007 1/42 incompressible Bilan de masse Bilan de quantité de mouvement div(ρv) = 0 V t + div(v V) = g 1 ( gradp + div ν ) gradv ρ si la viscosité

Plus en détail

Quelle est la forme du tas de sable?

Quelle est la forme du tas de sable? Quelle est la forme du tas de sable? On verse du sable sec et fin sur une plaque horizontale et surélevée, jusqu à ce qu il déborde de tous les côtés. Question : quelle est la forme du tas de sable que

Plus en détail

Séries entières - Rayon de convergence - Propriétés de la somme

Séries entières - Rayon de convergence - Propriétés de la somme 1 Définition et premières propriétés 1.1 Notion de série entière Définition 1 On appelle série entière toute série d applications f n telle qu il existe une suite ( ) n N d éléments de C telle que : n

Plus en détail

Devoir surveillé 5 mathématiques

Devoir surveillé 5 mathématiques Devoir surveillé 5 mathématiques BCPST 205-206 Exercice. Soit t un réel strictement positif. On définit la suite ( n N par la donnée de x 0 = t et la relation de récurrence : n N, + =.. (a Soit g la fonction

Plus en détail

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007

Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Préparation au CAPES (IUFM/ULP) Strasbourg, octobre 2007 Corrigé en janvier 2009 Rapidité de convergence d une suite réelle L objectif de ce texte est de se donner des outils pour «mesurer» la rapidité

Plus en détail

Rappels de théorie des probabilités

Rappels de théorie des probabilités Rappels de théorie des probabilités 1. modèle probabiliste. 1.1. Univers, événements. Soit un ensemble non vide. Cet ensemble sera appelé l univers des possibles ou l ensemble des états du monde. Dans

Plus en détail

Dérivées partielles, différentielle, fonctions de classe C 1

Dérivées partielles, différentielle, fonctions de classe C 1 Chapitre 3 Dérivées partielles, différentielle, fonctions de classe C 1 Le but de ce chapitre est de généraliser la notion de dérivée pour une fonction f de plusieurs variables. L objectif est évidemment

Plus en détail

L2 MATH MASS INFO 2009/2010 M43. Analyse. Numérique. Examen, rattrapage, partiel et contrôles continus

L2 MATH MASS INFO 2009/2010 M43. Analyse. Numérique. Examen, rattrapage, partiel et contrôles continus L MATH MASS INFO 009/00 Gloria FACCANONI M4 Analyse Numérique Examen, rattrapage, partiel et contrôles continus Table des matières Partiel d Analyse Numérique 5 Exercice ❶ : interpolation de Lagrange

Plus en détail

Chapter 4. Espaces de Hilbert. 4.1 Produits scalaires et notion d espace de Hilbert CHAPTER 4. ESPACES DE HILBERT

Chapter 4. Espaces de Hilbert. 4.1 Produits scalaires et notion d espace de Hilbert CHAPTER 4. ESPACES DE HILBERT CHAPTER 4. ESPACES DE HILBERT Chapter 4 Espaces de Hilbert 4.1 Produits scalaires et notion d espace de Hilbert Définition 4.1.1. Soit H un espace vectoriel réel ou complexe. Un produit scalaire est une

Plus en détail

Schéma d Euler explicite

Schéma d Euler explicite Schéma d Euler explicite Définition Étant donnés un pas de temps t et une suite d instants t n = t + n t n N, le schéma d Euler explicite associé à l équation différentielle du dt = ft, u, où f est une

Plus en détail

Stabilité numérique et conditionnement. Jocelyne Erhel. équipe FLUMINANCE, Inria Rennes et IRMAR, France

Stabilité numérique et conditionnement. Jocelyne Erhel. équipe FLUMINANCE, Inria Rennes et IRMAR, France Stabilité numérique et conditionnement Jocelyne Erhel équipe UMINANCE, Inria Rennes et IRMAR, France INSA, Mai 2016 1 / 34 Plan duction Stabilité numérique Conditionnement Méthodes d approximation 2 /

Plus en détail

Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions

Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions 3 Espaces préhilbertiens : projection orthogonale sur un sous-espace de dimension finie. Applications à l approximation des fonctions 3. Espaces préhilbertiens On rappelle qu une forme bilinéaire sur un

Plus en détail

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels

Espaces de Banach. 1 Normes sur un espace vectoriel. 2 Topologie des espaces vectoriels normés. 2.1 Rappels 1 Normes sur un espace vectoriel Espaces de Banach Définition 1.1. (Norme) Soit V un R-espace vectoriel (abrégé R-ev dans la suite). Une norme est une application définie sur V à valeurs dans R +, notée

Plus en détail

Examen terminal (Éléments de correction)

Examen terminal (Éléments de correction) Université Rennes mardi 5 mars 23 Intégration géométrique des équations différentielles Master 2 Mathématiques (P. Chartier, G. Vilmart) (Analyse et Applications) Examen terminal (Éléments de correction)

Plus en détail

Stabilité des schémas numériques explicites en mécanique des fluides incompressibles.

Stabilité des schémas numériques explicites en mécanique des fluides incompressibles. Stabilité des schémas numériques explicites en mécanique des fluides incompressibles. Laboratoire de Mécanique, Modélisation & Procédés Propres Marseilles avec Dmitry Kolomenskiy dkolom@l3m.univ-mrs.fr

Plus en détail

métriques et introduction aux espaces topologiques

métriques et introduction aux espaces topologiques Chapitre 1 Généralités sur les espaces métriques et introduction aux espaces topologiques Les notations R, N, Z, Q, C sont comme d habitude. On utilisera les normes 1, 2, de R n. De même, on étudiera les

Plus en détail

UFR DE MATH EMATIQUES ET INFORMATIQUE Licence MIA, L3 Notes de cours Optimisation Georges Koepfler

UFR DE MATH EMATIQUES ET INFORMATIQUE Licence MIA, L3 Notes de cours Optimisation Georges Koepfler UFR DE MATHÉMATIQUES ET INFORMATIQUE Licence MIA, L3 Notes de cours Optimisation Georges Koepfler 26-21 - georgeskoepfler@miparisdescartesfr Table des matières 1 Introduction 1 2 Espace vectoriels normés

Plus en détail

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S

Chap. 2 : Fonctions : limites, continuité, dérivabilité Mathématiques T S I Notion de continuité 1) Fonctions continues Définition 1 : Soit f une fonction définie sur un intervalle I contenant a. Remarques : On dit que f est continue en a si lim f(x) = f(a) On dit que f est

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue Intégrale de Lebesgue 1 Nécessité de l intégrale de Lebesgue Une fonction f : [a,b] R est dite intégrable au sens de Riemann si les sommes de Riemann N 1 i=0 f(ξ i )(x i+1 x i ), a = x 0 x 1 x 2 x N =

Plus en détail

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ Chapitre 8 : COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ ECS2 Lycée La Bruyère, Versailles Année 2015/2016 1 Généralités sur les variables aléatoires réelles 2 1.1 Généralités.............................................

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL

FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL Chapitre 15 : FONCTIONS DE PLUSIEURS VARIABLES : CALCUL DIFFÉRENTIEL ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Objets du calcul différentiel du premier ordre 2 1.1 Dérivées partielles et gradient..................................

Plus en détail

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux.

CONCOURS ESIM FILIERE MP MATHEMATIQUES 2. + (puisque α n est pas entier) απ α 2 n 2 cos(nx). Maintenant, g est de classe C 1 par morceaux. SESSION CONCOURS ESIM FILIERE MP MATHEMATIQUES Préliminaire - Quand t tend vers, ft) t t t =. Par suite, f est prolongeable par continuité en. f étant d autre part continue / sur ], ], f est intégrable

Plus en détail

Equation différentielles

Equation différentielles Equation différentielles 1 Introduction La résolution numerique des équatins différentielles est très importante car les problèmes n ont pas de solution analytiques. De nombreux problèmes de mécanique

Plus en détail

IACS. Informatique Appliquée au Calcul Scientifique

IACS. Informatique Appliquée au Calcul Scientifique Conservatoire National des Arts et Métiers Centre d enseignement de Paris IACS Informatique Appliquée au Calcul Scientifique François Dubois Professeur des Universités spécialité Mathématiques édition

Plus en détail

Limite et continuité de fonctions réelles

Limite et continuité de fonctions réelles Limite et continuité de fonctions réelles Denis Vekemans Introduction : on désigne par "fonction réelle" tout fonction d une variable réelle à valeurs réelles. 1 Limite finie 1.1 Définitions 1.1.1 Définition

Plus en détail

Devoir de Mathématiques 1 : corrigé

Devoir de Mathématiques 1 : corrigé PCSI 0-04 Mathématiques Lycée Bertran de Born Devoir de Mathématiques : corrigé Exercice. Résolutions d inéquations (a) Disjonction de cas selon le signe de x. Si x [, ] alors x = x. Dans ce cas : x x

Plus en détail

UE MAT234 Notes de cours sur les fonctions de plusieurs variables

UE MAT234 Notes de cours sur les fonctions de plusieurs variables UE MAT234 Notes de cours sur les fonctions de plusieurs variables 1 Fonctions de plusieurs variables réelles 1.1 éfinitions générales 1.1.1 éfinition IR n = IR IR... IR est l ensemble des n-uplets de réels

Plus en détail

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2.

Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Chapitre 3 Les angles 3.1 Angles orientés de vecteurs du plan 3.1.1 Groupe des rotations Dans tout ce qui suit, on se place dans un espace vectoriel euclidien E de dimension 2. Définition 3.1 On appelle

Plus en détail

FONCTIONS D UNE VARIABLE RÉELLE

FONCTIONS D UNE VARIABLE RÉELLE CHAPITRE 4 FONCTIONS D UNE VARIABLE RÉELLE On appelle fonction numérique une application définie sur une partie D de R, à valeurs dans R. 1 Bornes d une fonction Définition 4.1 Soient D R et f : D R. f

Plus en détail

Parties majorées, minorées - borne supérieure, borne inférieure

Parties majorées, minorées - borne supérieure, borne inférieure Aix-Marseille Université 2012-2013 Analyse I PLANCHE 1 : LIMITES, CONTINUITÉ Parties majorées, minorées - borne supérieure, borne inférieure Exercice 1 Soit a, b R. Montrer les implications suivantes :

Plus en détail

Frontières de Poisson et de Martin

Frontières de Poisson et de Martin Frontière de Poisson et frontière de Martin Une introduction sur des exemples Jürgen Angst Institut de Recherche Mathématique Avancée Université Louis Pasteur, Strasbourg Séminaire des doctorants, 17 Avril

Plus en détail

Leçons d analyse et probabilités

Leçons d analyse et probabilités Leçons d analyse et probabilités 201 : Étude de suites numériques définies par différents types de récurrence. Applications. 202 : Séries à termes réels positifs. Applications. 203 : Séries à termes réels

Plus en détail

Année , Semestre 2 Analyse fonctionnelle 2. orleans.fr/mapmo/membres/anker/enseignement/af2.html

Année , Semestre 2 Analyse fonctionnelle 2.  orleans.fr/mapmo/membres/anker/enseignement/af2.html Universités de Tours & d Orléans M1 MA Année 216 217, Semestre 2 Analyse fonctionnelle 2 http://www.univ orleans.fr/mapmo/membres/anker/enseignement/af2.html Chapitre 5 : Distributions tempérées Définitions

Plus en détail

1. Espaces métriques. 1 Distance, boules, ouverts, fermés...

1. Espaces métriques. 1 Distance, boules, ouverts, fermés... 1. Espaces métriques 1 Distance, boules, ouverts, fermés... Définition 1.1. Soit E un ensemble (non vide). On appelle distance sur E une application d de E E dans [0, + [ vérifiant les trois propriétés

Plus en détail

u n lim S n (2) n=0 u n = ± quand lim n S n = ±. u n, ou n N u n si n 0 = 1.

u n lim S n (2) n=0 u n = ± quand lim n S n = ±. u n, ou n N u n si n 0 = 1. Chapitre III Séries III.a. Introduction Définition 31 (série) Soit (u n ) une suite de N dans un K-espace vectoriel normé E. La somme partielle S n = u 0 + u 1 + u 2 + + u n (1) définit une nouvelle suite,

Plus en détail

Fonctions continues. le développement décimal propre de x. 10 1) Soit f : [0, 1[ [0, 1[ définie par : f(x) = x k+1. k= k 1 + x ) x + a R.

Fonctions continues. le développement décimal propre de x. 10 1) Soit f : [0, 1[ [0, 1[ définie par : f(x) = x k+1. k= k 1 + x ) x + a R. Fonctions continues Exercice 1. Fonction périodique Soit f : R R et T > 0. On suppose que f est T -périodique cad : x R, f(x + T ) = f(x). 1) Si f possède une limite en +, montrer que f est constante.

Plus en détail

Changement de variables dans les intégrales sur un ouvert de R N. 1 Propriétés de la mesure de Lebesgue.

Changement de variables dans les intégrales sur un ouvert de R N. 1 Propriétés de la mesure de Lebesgue. Université d Artois Faculté des Sciences ean Perrin Mesure et Intégration Licence 3 Mathématiques-Informatique) Daniel Li Changement de variables dans les intégrales sur un ouvert de R N Daniel Li April

Plus en détail

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles

Mathématiques - ECS1. Dérivation. et accroissements finis. 30 avenue de Paris Versailles Mathématiques - ECS 6 Dérivation et accroissements finis. Lycée La Bruyère 30 avenue de Paris 78000 Versailles c 06, Polycopié du cours de mathématiques de première année. 6 Dérivation et accroissements

Plus en détail

Master MIMSE - Année 2. Optimisation Quadratique Optimisation quadratique sans contraintes DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT --

Master MIMSE - Année 2. Optimisation Quadratique Optimisation quadratique sans contraintes DRAFT -- DRAFT -- DRAFT -- DRAFT -- DRAFT -- 1 Master MIMSE - Année 2 Optimisation Quadratique Optimisation quadratique sans contraintes 2 Optimisation quadratique Fonction quadratique = polynôme de degré 2, On veut Intérêt? min f(x) s.c. g k (x)

Plus en détail

Options américaines et problème de frontière libre. Rapuch Grégory EHESS et CREST

Options américaines et problème de frontière libre. Rapuch Grégory EHESS et CREST Options américaines et problème de frontière libre Rapuch Grégory EHESS et CREST rapuch@ensae.fr 1 options américaines Les options Un put américain donne la possibilité à tout moment jusqu'à la maturité

Plus en détail

TRANSFORMATION DE FOURIER (Corrigé des exercices )

TRANSFORMATION DE FOURIER (Corrigé des exercices ) RANSFORMAION DE FOURIER Corrigé des exercices. Déterminer les transformées de Fourier des fonctions : a t I [,] t, bt sin t,ct e t /,dt t π +t 2. [ ] e a FI [,] tν e 2it 2it dt e 2iπ ν e 2iπ ν sin2. 2i

Plus en détail

Intérpolations polynômials des fonctions numériques

Intérpolations polynômials des fonctions numériques Intérpolations polynômials des fonctions numériques 6 mars 2016 Introduction Approximation de fonctions Soit une fonctio n f(inconnue explicitement) Connue seulement en certains points x 0,x 1,,x n Ou

Plus en détail

Devoir Surveillé Vendredi 8 Avril

Devoir Surveillé Vendredi 8 Avril Devoir Surveillé Vendredi 8 Avril BCPST Lycée Hoche Pelletier Sylvain $\ CC BY: Durée : h Exercice inspiré de Véto 997) 8.5 Dans la savane, les lionnes chassent des gazelles et des zèbres pour le lion.

Plus en détail

1 Calcul de dérivées et mise sous forme exploitable

1 Calcul de dérivées et mise sous forme exploitable Faculté des Sciences de TOURS Préparation à l Agrégation ANALYSE Mini-cours de calcul différentiel par l exercice 1 Calcul de dérivées et mise sous forme exploitable Le problème du calcul différentiel

Plus en détail

Loi d une variable aléatoire réelle

Loi d une variable aléatoire réelle Licence Math et MASS, MATH504 : probabilités et statistiques Loi d une variable aléatoire réelle On introduit la notion de variable aléatoire dans le cas réel ainsi que la notion fondamentale de loi d

Plus en détail

2.1 Rappels sur la convergence dans les espaces topologiques. Lemme (Axiome du choix) Pour tout ensemble non vide X il existe une fonction :

2.1 Rappels sur la convergence dans les espaces topologiques. Lemme (Axiome du choix) Pour tout ensemble non vide X il existe une fonction : Chapitre 2 Opérateurs bornés 2.1 Rappels sur la convergence dans les espaces topologiques 2.1.1 Relations d ordre Soit une relation d ordre sur un ensemble X. Si Y X on définit les majorants (resp. minorants)

Plus en détail

Cours d Analyse I : les réels et les fonctions

Cours d Analyse I : les réels et les fonctions Introduction à R Suites numériques Cours d Analyse I : les réels et les fonctions Université Lyon 1 Institut Camille Jordan CNRS UMR 5208 FRANCE Automne 2014 - Licence L1 Introduction à R Suites numériques

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

COMPOSITION DE MATHÉMATIQUES D (U)

COMPOSITION DE MATHÉMATIQUES D (U) ÉCOLE NORMALE SUPÉRIEURE CONCOURS D ADMISSION 2016 FILIÈRE MPI COMPOSITION DE MATHÉMATIQUES D (U) (Durée : 6 heures) L utilisation des calculatrices n est pas autorisée. Préambule Ce problème est consacré

Plus en détail

Limites de fonctions

Limites de fonctions Aix-Marseille Université 013-014 Analyse I PLANCHE : LIMITES, CONTINUITÉ Les exercices marqués du symbole sont les exercices qui seront traités prioritairement en TD. Le site internet EXO7 (http ://exo7.emath.fr)

Plus en détail

Opérateurs bornés sur les espaces de Hilbert

Opérateurs bornés sur les espaces de Hilbert Chapitre 4 Opérateurs bornés sur les espaces de Hilbert 4.1 Adjoint d une application linéaire continue entre espaces de Hilbert On commence avec la notion d adjoint; plusieurs des classes particulières

Plus en détail

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1

Math206 Equations aux Dérivées Partielles Feuille d Exercices 1 Université de Paris Sud 11 L MPI Mathématiques ème semestre 14/15 Math06 Equations aux Dérivées Partielles Feuille d Exercices 1 NB. Ces exercices, et les corrigés qui suivent, sont issus du site http://www.bibmath.net

Plus en détail

Application de la formule de la co-aire à deux problèmes d évolution géométrique.

Application de la formule de la co-aire à deux problèmes d évolution géométrique. Application de la formule de la co-aire à deux problèmes d évolution géométrique. François Dayrens Journées MMCS 19 décembre 2014 François Dayrens (Journées MMCS) Co-aire et flots géométriques 19 décembre

Plus en détail

2 Variétés Abstraites

2 Variétés Abstraites Université de Rennes1 Année 2006-2007 M1-H02 (Analyse sur les variétés) - Exercices 2 2 Variétés Abstraites 2.1 Variétés topologiques Exercice 2.1 Soit X un espace topologique. On dit que X est 1) à base

Plus en détail

Analyse numérique. et optimisation. Une introduction à la modélisation mathématique et à la simulation numérique. Grégoire Allaire.

Analyse numérique. et optimisation. Une introduction à la modélisation mathématique et à la simulation numérique. Grégoire Allaire. Analyse numérique et optimisation Une introduction à la modélisation mathématique et à la simulation numérique Grégoire Allaire c^'qv, Table des matières INTRODUCTION A LA MODÉLISATION MATHÉMATIQUE ET

Plus en détail

J.F.C. p. 1. Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route. EDHEC 2014 EXERCICE 1. Φ ( x) + Φ ( x) ).

J.F.C. p. 1. Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route. EDHEC 2014 EXERCICE 1. Φ ( x) + Φ ( x) ). 3-- 4 JFC p JF COSSUTTA jean-francoiscossutta@wanadoofr Ceci est un premier jet et a besoin encore de relectures pour bien tenir la route EDHEC 4 EXERCICE a U est une variable aléatoire réelle sur Ω, A,

Plus en détail

Croissance comparée des fonctions logarithmes, puissances et exponentielles

Croissance comparée des fonctions logarithmes, puissances et exponentielles DOCUMENT 30 Croissance comparée des fonctions logarithmes, puissances et exponentielles Rappelons que : 1. Introduction et résultats préinaires Les fonctions logarithmes sont les primitives sur R + des

Plus en détail

Dérivabilité des fonctions réelles

Dérivabilité des fonctions réelles Chapitre 3 Dérivabilité des fonctions réelles La notion de dérivée est une notion fondamentale en analyse. Elle permet d étudier les variations d une fonction, de construire des tangentes à une courbe

Plus en détail

CH V : Généralités sur les suites réelles

CH V : Généralités sur les suites réelles CH V : Généralités sur les suites réelles I. Notion de suite I.1. Définition générale Définition Une suite de nombre réels u est une application de N dans R i.e. une fonction de N dans R telle que tout

Plus en détail

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ

COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ Chapitre 8 : COMPLÉMENTS SUR LES VARIABLES ALÉATOIRES RÉELLES, VARIABLES À DENSITÉ ECS2 Lycée La Bruyère, Versailles Année 2013/2014 1 Généralités sur les variables aléatoires réelles 2 1.1 Généralités.............................................

Plus en détail

Transformation de Fourier

Transformation de Fourier Chapitre 9 Transformation de Fourier La transformation de Fourier décompose une fonction à valeurs complexes de plusieurs variables réelles en ondes planes. Il s agit donc d une extension de la théorie

Plus en détail

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u)

Matrices symétriques réelles. Exercice 2 Le produit de deux matrices symétriques réelles est-il symétrique? R n = ker (u) Im (u) Matrices symétriques réelles 1 Préliminaires On se place dans (R n, ) euclidien, le produit scalaire canonique étant défini par : (x, y) R n R n, x y = t x y = x k y k On note : M n (R) l algèbres des

Plus en détail

2. Espaces de Hilbert

2. Espaces de Hilbert 2. Espaces de Hilbert 2.1. Produits scalaires Définition 2.1.1. Soient X et Y deux espaces vectoriels complexes ; une application f : X Y est dite antilinéaire si, pour tous x, y X et tout λ C on a f(x

Plus en détail