Chapitre 1 Les nombres complexes

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 1 Les nombres complexes"

Transcription

1 Chapitre 1 Les nombres complexes A) Définition et propriétés de base (rappels) 1) Définition a) On appelle C l'ensemble des nombres complexes. Un nombre complexe s'écrit z a bi, où a et b sont des réels et i est un nombre (non réel) tel que i² -1. Cette écriture est dite "forme algébrique" du nombre complexe. a est la partie réelle, et b la partie imaginaire de z. b) Cas particuliers Si b 0, z est un nombre réel ( R C ) Si a 0, z est dit "imaginaire pur". Exemples : 4, -15, 1/3 sont des réels 1 i ; 3 i sont des complexes i ; -i ; 5i ; -3i sont des imaginaires purs. c) Conjugué d'un complexe On appelle complexe conjugué, ou conjugué de za bi, et on note z, que l'on prononce "z barre" le nombre za bi. ) Propriétés de base B) Représentation géométrique a + bi a + b'i <> a a et b b (a + bi) + (a + b i) (a + a ) + (b + b )i (a + bi) (a + b i) (aa - bb ) + (ab + a b)i z ẕ a² +b² z+ẕ a 1) Définition De par sa définition, tout nombre complexe correspond de façon biunivoque à un point dans un plan rapporté à un repère orthonormal O, u, v. Si z a + ib, a sera l abscisse du point et b son ordonnée. De même, tout vecteur représente un nombre complexe et un seul, suivant le même système. Un point M étant défini entièrement par sa distance à l origine ρ OM et par l angle entre u et le Page 1/6

2 vecteur OM, θ u, OM, un nombre complexe est aussi défini par ces deux données, qu on appelle alors le module (noté z ) et l argument (noté Arg(z)). On écrit alors z [ρ ; θ]. Ceci s'appelle la forme trigonométrique. Remarques : - Le nombre O n a pas d argument. - L'argument d'un complexe est seulement défini à kπ près! - Le point d'affixe z est le symétrique du point d'affixe z par rapport à l'axe des abscisses. ) Passage d une forme à l autre z a + bi ρ a² +b² Calcul de θ : On cherche cos -1 (a/ ρ), c'est la bonne réponse si b>0, sinon, on change son signe. z [ρ ; θ] a ρ cos(θ) et b ρ sin(θ), soit z ρ(cos(θ) + i sin(θ)) 3) Différence de deux complexes Si z 1 représente M 1 (et donc OM 1 ), et z représente M (et donc OM ), la différence z z 1 représentera OM 1 OM OM 1 + M O M 1 M. En particulier, la distance M 1 M vaudra z z 1. C) Calculs sous forme trigonométrique 1) Produit de complexes Le produit de z [ρ ; θ] par z' [ρ' ; θ'] est : z z' [ρ ρ' ; θ + θ']. Autrement dit, les modules se multiplient et les arguments s ajoutent. (Démontrer) ) Puissances d un complexe soit, si z [ρ ; θ], z n [ρ n ; nθ] Exemple : z [3 ; π/4] 3) Inverse d un complexe z n z n et Arg(z n ) n Arg(z) z 5 [3 5 ; 5π/4] [43 ; -3π/4] 1 z 1 z et Arg 1 Arg z z On peut retrouver ce résultat en faisant n -1 dans le ) ci-dessus. 4) Quotient de deux complexes Devoir : Exercice 46 page 57 z z ' z z' et Arg z Arg z Arg z ' z ' Page /6

3 D) Notation exponentielle des complexes 1) Définition et propriétés de base a) Au lieu d écrire z [ ρ ; θ], écrivons z ρ e iθ Avec e iθ cos(θ) + i sin(θ), pour retrouver les égalités a cos(θ) et b sin(θ). Le fait de mettre z sous forme de puissance permet de retenir facilement que la multiplication se transforme en addition pour les arguments (comme pour les puissances) : e iθ e iθ' e i(θ+θ') b) On retrouve naturellement les formules du C) c) Formule de Moivre z z' ρ e iθ ρ' e iθ' ρ ρ' e i(θ+θ') z z ' z n ρ n e inθ 1 z 1 ρ e i θ ρ (θ θ ') ei ρ' (e iθ ) n e inθ autrement dit, (cos(θ) + i sin(θ)) n cos(nθ) + i sin(nθ) A l aide de cette formule, on peut exprimer cos(nθ) en fonction de sin(θ) et de cos(θ), en développant le côté gauche de l égalité. Exemple : Exprimer cos(x) et sin(x) en fonction de sin(x) et cos(x). En déduire l expression de cos²(x) et sin²(x) en fonction de cos(x). Indice : utiliser aussi la formule sin²(x) + cos²(x) 1 d) Formule d Euler On sait que e -iθ e i( -θ) cos(- θ) + i sin(- θ) cos(θ) i sin(θ). En combinant cette formule avec e iθ cos(θ) + i sin(θ), et en résolvant en cos(θ) et sin(θ) ce système de deux équations à deux inconnues, on trouve : Exercices : 6, 7, 8 page 5, 1 page 53 et 4 page 54 sin(θ) e i θ e i θ i cos(θ) ei θ +e i θ Page 3/6

4 E) Equations du second degré 1) Origine des nombres complexes Le nombre i ou 1, a été inventé pour nommer la "solution" de l équation du second degré qui s écrit x² Cette équation du second degré n a pas de solution dans R : son discriminant (b² 4 a c) est : 0² 4 * 1 * 1-4, donc négatif (on peut aussi dire qu un nombre négatif n a pas de racine carrée, du moins dans les réels!). On a donc inventé un nombre, non réel (on l appelle imaginaire pur), qu on a appelé i, et qui serait la solution de cette équation, c est à dire qu on aurait i² -1. Remarque : Cela veut dire qu il y a aussi une autre solution à cette équation, à savoir -i, puisqu en élevant -i au carré, - par - fait + et i par i fait i²! ) Application à la résolution des équations du second degré à discriminant négatif Prenons une équation du second degré quelconque. Si on applique la méthode connue pour b²- 4 ac > 0, on trouve x 1 b b 4 ac a et x b b 4 ac a. Quand le discriminant b² - 4ac est négatif, ces solutions n existent pas dans R, mais existent dans C, car la racine carrée d'un nombre négatif y est possible : par exemple (i)² 4i² 4(-1) -4! Ainsi, si b² 4ac < 0, on remplacera b² 4ac par i 4ac b². On trouve donc deux solutions dans C lorsque b² 4ac < 0, à savoir x 1 Grâce à cela, on peut dire que : b i 4 ac b² a b+i et x 4 a c b² a Toute équation du second degré du type ax² + bx + c 0 à coefficients réels admet deux solutions, réelles ou complexes, distinctes ou confondues. Si l une des solutions n est pas réelle, les deux solutions seront des nombres complexes conjugués. Plus généralement, toute équation de degré n admet n solutions, réelles ou complexes, distinctes ou confondues (Théorème fondamental de l algèbre). Exemples : Résoudre les équations : x² x² + 4x x² -6x Exercices : 1,, 3, 4, 5, 6, 7 page 5 puis 8, 10, 16, 35, 36 page 53. Page 4/6

5 F) Linéarisation de Polynômes Trigonométriques 1) Principe Grâce aux formules de Moivre, on peut trouver des relations entre les puissances des sinus et cosinus et les sinus et cosinus de multiples des angles concernés. On peut aussi utiliser à cet effet les formules d'euler vues plus haut. ) Applications a) Linéarisation des carrés cos (x ) 1+cos(x) sin ( x) 1 cos(x) c) Transformation des sommes en produits et vice-versa cos (a + b) cos a cos b - sin a sin b cos (a - b) cos a cos b + sin a sin b sin (a + b) sin a cos b + sin b cos a sin (a - b) sin a cos b sin b cos a Par somme des deux premières et des deux dernières, on trouve cos a b cos a b cos a cos b cos a b cos a b sin asin b sin a b sin a b sin a cos b Exemples : appliquer les formules ci-dessus aux expressions suivantes :. P(x) cos 3x sin 5x On pose a 5x et b 3x, d où P(x) (sin 8x + sin x)/. P(x) sin 3 (x) On utilise la formule d'euler et on regroupe les puissances opposées deux à deux, d'où : P(x) (3sin(x) - sin(6x))/4 Détail : sin 3 x eix e ix 3 i sin 3 x sin 6x 3 4 Devoir maison : Exercice 48 page 57 e6ix 3e 4ix e ix 3 e ix e 4ix e 6i x e6ix e 6ix 8 i 3 8i sin x 3sin x sin 6x 4 4 Page 5/6 3 eix e ix 8i

6 Complexes : Fiche de révision Forme algébrique : z a + b i avec i le nombre complexe tel que i² -1 Forme trigonométrique : z [ρ ; θ] avec θ Arg(z) (argument de z) et ρ z (module de z) Forme exponentielle: z ρ e iθ avec θ Arg(z) (argument de z) et ρ z (module de z) Formules en format algébrique : Passage d une forme à l autre a + bi a + b'i <> a a et b b (a + bi) + (a + b i) (a + a ) + (b + b )i (a + bi) (a + b i) (aa - bb ) + (ab + a b)i z ẕ a² +b² z+ẕ a z a + bi ρ a² b² Calcul de θ : On cherche cos -1 (a/ ρ), c'est la bonne réponse si b>0, sinon, on change son signe pour trouver θ. z [ρ ; θ] a ρ cos(θ) et b ρ sin(θ), soit z ρcos(θ) + i ρsin(θ) Distance entre deux points complexes M 1 (z 1 ) et M (z ) : M 1 M z z 1. Formules en format trigonométrique : Formules en format exponentielle : [ρ ; θ] * [ρ ; θ ] [ρ ρ' ; θ + θ'] ρ e iθ * ρ' e iθ' ρ ρ' e i(θ+θ') [ρ ; θ] n [ρ n ; n θ] (ρ e iθ ) n ρ n e inθ 1 / [ρ ; θ ] [1 / ρ' ; θ'] [ρ ; θ] / [ρ ; θ ] [ρ / ρ' ; θ θ'] 1 ρ e i θ 1 ρ e i θ ρ e i θ ρ' e i θ' ρ (θ θ' ) ei ρ' Formules d Euler : sin θ e i θ e i θ i cos θ ei θ e i θ Formule de Moivre : (cos(θ) + i sin(θ)) n cos(nθ) + i sin(nθ) Équation du second degré : b i x 1 4 a c b² a b i et x 4 a c b² a Page 6/6

Chapitre 4 Les nombres complexes : 1ère Partie

Chapitre 4 Les nombres complexes : 1ère Partie Chapitre 4 Les nombres complexes : 1ère Partie A) Définition et propriétés de base 1) Historique Les nombre complexes ont été inventés au départ en 1545 par le mathématicien italien Jérôme Cardan (Girolamo

Plus en détail

Relations entre forme trigonométrique et forme algébrique

Relations entre forme trigonométrique et forme algébrique FORMULES ET THÉORÈMES Carré du nombre i On définit le nombre i de la façon suivante. i = 1 Forme algébrique d'un nombre complexe Tout nombre complexe z peut s'écrire sous une forme algébrique. z = a +

Plus en détail

Cours de terminale S Les nombres complexes

Cours de terminale S Les nombres complexes Cours de terminale S Les nombres complexes V. B. et S. B. Lycée des EK 20 décembre 2014 Définition Vocabulaire Conséquences Définition Il existe un ensemble, noté C, d éléments appelés nombres complexes,

Plus en détail

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3

( ) = 1, Im( z 1 ) = 2. ( ) = 0, Im( z 2 ) = 1. ( ) = 7, Im( z 3 ) = 0. = 1+ 2i. Re z 1 = i. Re z 2 z 3. z 1. = 7. Re z 3 I Forme algébrique d un nombre complexe 1 Il existe un ensemble noté et appelé ensemble des nombres complexes qui vérifie les propriétés suivantes : " ; L'ensemble est muni d'une addition et d'une multiplication

Plus en détail

CHAPITRE 1 : LES NOMBRES COMPEXES :

CHAPITRE 1 : LES NOMBRES COMPEXES : CHAPITRE 1 : LES NOMBRES COMPEXES : I-Forme algébrique d un nombre complexe : I.1) Définitions : On appelle nombre complexe tout nombre de la forme z=a+ib où a et b sont des nombres réels et où la quantité

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Les nombres complexes. Il existe un ensemble, noté C, d éléments appelés..........................., tels que : C contient l ensemble............... ; C contient un élément i tel

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Hervé Hocquard Université de Bordeaux, France 6 septembre 017 Rappels ou pas Introduction Soit (O; i, j ) un repère orthonormal direct et soit C le cercle trigonométrique de centre

Plus en détail

Ecritures des nombres complexes

Ecritures des nombres complexes Ecritures des nombres complexes I. Rappel sur les nombres complexes Le nombre i est un nombre dont le carré vaut 1. Donc : i² = 1 De plus, son opposé i a aussi pour carré 1. ( i)² = i² = 1 Les deux racines

Plus en détail

Nombres complexes - Équations et forme trigonométrique

Nombres complexes - Équations et forme trigonométrique Lycée Paul Doumer 0-04 TS Cours Nombres complexes - Équations et forme trigonométrique Contents Équation du second degré. Racines carrées..................................... Équation du second degré à

Plus en détail

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2

Université de Tours Année Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 Université de Tours Année 2015-2016 Licence L1 de Mathématiques, Informatique et Sciences de la Matière - S1 CHAPITRE 2 NOMBRES COMPLEXES ET ÉQUATIONS ALGÉBRIQUES (12 h) 1 Nombres complexes 1.1 Introduction

Plus en détail

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009

CH 1 Géométrie : Complexes 4 ème Sciences Septembre 2009 CH 1 Géométrie : Complexes 4 ème Sciences Septembre 009 A. LAATAOUI I. INTRODUCTION ET DEFINITION Tous les nombres positifs ont une racine carrée, par exemple, 9 a pour racine 3 et 3 et a pour racine et

Plus en détail

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet

Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER. D. Poquillon, C. Mijoule et P. Floquet Math module 3 NOMBRES COMPLEXES SERIES DE FOURIER TRANSFORMATIONS DE FOURIER D Poquillon, C Mijoule et P Floquet SEPTEMBRE 005 Cours semaine 1 :Introduction, définitions, résolution d équations 1-1 Introduction

Plus en détail

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe

Chapitre 7. Les nombres complexes. Objectifs du chapitre : item références auto évaluation. forme algébrique d un nombre complexe Chapitre 7 Les nombres complexes Objectifs du chapitre : item références auto évaluation forme algébrique d un nombre complexe résolution d équation du second degré dans C forme exponentielle d un nombre

Plus en détail

Terminale STI-GE

Terminale STI-GE Le programme : Les premiers éléments de l'étude des nombres complexes ont été mis en place en première. L'objectif est de compléter cet acquis pour fournir des outils utilisés en algèbre, en trigonométrie

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombrescomplexes

BTS Mécanique et Automatismes Industriels. Nombrescomplexes BTS Mécanique Automatismes Industriels Nombrescomplexes, Année scolaire 008/009 Table des matières Nombres complexes.lesdifférentesécritures....... Forme algébriqued unnombre complexe.... Représentationgéométrique

Plus en détail

Nombres complexes. I.2 Représentation géométrique des nombres complexes

Nombres complexes. I.2 Représentation géométrique des nombres complexes MTA - ch3 Page 1/11 Nombres complexes I L'ensemble C des nombres complexes I.1 Écriture des nombres complexes Il existe un ensemble noté C de nombres dits complexes vériant : R C C contient le nombre i

Plus en détail

NOMBRES COMPLEXES. I Définitions

NOMBRES COMPLEXES. I Définitions NOMBRES COMPLEXES Objectifs Définitions C, nombre complexe, forme algébrique, parties réelles imaginaires, imaginaire pur. Plan complexe, affixe, image, axe imaginaire, axe réel Introduction. Inclusions

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 8 novembre 009 Table des matières Définitions Forme algébrique Représentation graphique Opérations sur les nombres complexes Addition et multiplication Inverse d un nombre complexe

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71

NOMBRES COMPLEXES. avec une calculatrice TI on écrit par exemple 5^(1/3) et on obtient environ 1,71. On a donc 3 5 1,71 NMBRES CMPLEXES I - Représentation géométrique Rappel Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k n a par

Plus en détail

Chapitre VII Les nombres complexes

Chapitre VII Les nombres complexes Chapitre VII Les nombres complexes Extrait du programme : I. Ensemble des nombres complexes 1. Existence Théorème (admis) : Il existe un ensemble noté, appelé ensemble des nombres complexes, qui possède

Plus en détail

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b

NOMBRES COMPLEXES. Définition Deux nombres complexes Z = a + i b et Z = a + i b' sont égaux si et seulement si a = a et b = b NOMBRES COMPLEXES I- s et règles de calcul dans C Un nombre complexe est un nombre de la forme Z = a + i b où a et b sont des réels et i un nombre vérifiant i² = 1 L'ensemble des nombres complexes est

Plus en détail

NOMBRES COMPLEXES ET TRIGONOMÉTRIE

NOMBRES COMPLEXES ET TRIGONOMÉTRIE CHAPITRE 2 NOMBRES COMPLEXES ET TRIGONOMÉTRIE 1 Rappels de trigonométrie tanα sinα π 2 M(α) π α cosα 0 3π 2 Figure 2.1 Sinus, cosinus, tangente Définition 2.1 La tangente d un nombre réel x, notée tan

Plus en détail

Nombres complexes, cours, Terminale S

Nombres complexes, cours, Terminale S Nombres complexes, cours, Terminale S F.Gaudon 18 décembre 2013 Table des matières 1 Notion de nombre complexe 2 2 Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes

Plus en détail

BTS Mécanique et Automatismes Industriels. Nombres complexes

BTS Mécanique et Automatismes Industriels. Nombres complexes BTS Mécanique et Automatismes Industriels, Année scolaire 006 007 Table des matières. Les différentes écritures. - Forme algébrique d un nombre complexe. - Représentation géométrique d un nombre complexe.3

Plus en détail

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique :

Module d'un nombre complexe. Nombres complexes. Définition. Forme algébrique : Définition Nombres complexes L'ensemble des nombres complexes noté est l'ensemble des nombres de la forme z = a + biou a et b sont des réels quelconques et i un nouveau nombre tel que i²= -1. Le nombre

Plus en détail

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i.

Chap. 5 : Ensemble C 1. L ensemble C. Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + i. Chap 5 : Ensemble C 1 Arthur LANNUZEL le 1 Octobre 005 L ensemble C 1 Définition de C 11 Rappels Pour généraliser la notion de racine d une équation on introduit l ensemble C := {a + ib, a, b R} où i =

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes 1 Un peu d histoire En 157, l italien NICCLÓ FNTANA dit TARTAGLIA le bègue) découvre une méthode de résolution d équations du troisième degré. Il la dévoile à CARDAN. Celui que les

Plus en détail

LES COMPLEXES. Il existe plusieurs formes pour écrire un nombre complexe z. Selon le contexte, une est plus appropriée qu'une autre.

LES COMPLEXES. Il existe plusieurs formes pour écrire un nombre complexe z. Selon le contexte, une est plus appropriée qu'une autre. 1A 010-011 LES COMPLEXES Objectifs Connaître les diérentes formes d'un nombre complexe. Savoir résoudre une équation complexe. Savoir linéariser un sinus ou un cosinus. Dénition 1. On note C l'ensemble

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES LES NMBRES CMPLEXES Table des matières Écriture algébrique d un nombre complee Définitions Propriétés 3 Somme, produit et inverse 4 Équation dans C Représentation géométrique d un nombre complee 4 Définitions

Plus en détail

9 Nombres. complexes. Sommaire CHAPITRE. Partie A (s14) 2

9 Nombres. complexes. Sommaire CHAPITRE. Partie A (s14) 2 CHAPITRE 9 Nombres complexes Sommaire Partie A (s14) 2 1 Rappels de première.................................................. 2 1.1 Forme algébrique 2 1.2 Forme trigonométrique 3 2 Forme exponentielle..................................................

Plus en détail

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS

II ÉQUATIONS DU SECOND DEGRÉ À COEFFICIENTS RÉELS Terminale S (3-4) I GÉNÉRALITÉS I. Présentation des nombres complexes Définition - Théorème : (admis) Il existe un ensemble noté C, contenant R, vérifiant les conditions suivantes : C est muni d une addition

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Table des matières 1 Approche historique 2 2 Définition 2 3 Représentation graphique des nombres complexes 3 4 Opérations sur les nombres complexes 4 4.1 Addition et soustraction

Plus en détail

Nombres complexes, cours, terminale S

Nombres complexes, cours, terminale S Nombres complexes, cours, terminale S 1 Notion de nombre complexe Il existe un ensemble noté C et appelé ensemble des nombres complexes tel que : C contient l'ensemble des...... ; l'addition et la multiplication

Plus en détail

1 Forme algébrique d un nombre complexe

1 Forme algébrique d un nombre complexe Chapitre 2 Nombres complexes 1 BCPST 851 27 septembre 2011 Chapitre 2 Nombres complexes On suppose donné un nombre i n appartenant pas à R. 1 Forme algébrique d un nombre complexe Définition 1 Propriété

Plus en détail

NOMBRES COMPLEXES. 2 + q 2

NOMBRES COMPLEXES. 2 + q 2 NMBRES CMPLEXES I - Représentation géométrique f(x) = x 3 Pour tout réel k, il existe un unique nombre réel dont le cube est k. Ce nombre est appelé racine cubique de k. Il est noté 3 k ou aussi k 3. k

Plus en détail

Ecriture algébrique, écriture trigonométrique, écriture exponentielle

Ecriture algébrique, écriture trigonométrique, écriture exponentielle Ecriture algébrique L écriture algébrique d un nombre complexe est de la forme x + i y, avec x et y des réels. La partie x s appelle partie réelle, la partie y s appelle partie imaginaire. Dans le plan,

Plus en détail

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque...

4 Racines n-ièmes d un nombre complexe Racines n-ièmes de l unité Racines n-ièmes d un nombre complexe quelconque... Le corps C des nombres complexes Table des matières 1 Définitions algébrique et géométrique de C 1 1.1 Définition de C............................................. 1 1. Structure algébrique de C.......................................

Plus en détail

Mathématique en Terminale S Les nombres complexes

Mathématique en Terminale S Les nombres complexes Mathématique en Les nombres complexes Table des matières 1 Approche historique 3 2 4 3 Représentation graphique des nombres complexes 4 4 Opérations sur les nombres complexes 5 4.1 Addition et soustraction

Plus en détail

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec

Dans l ensemble du chapitre, on considère le plan muni d un repère orthonormal. est un nombre «complexe» (au sens de «composé» défini avec 1/Les Nombres Complexes Chapitre 4 Les Nombres Complexes. I. Définitions Objectif : On veut «construire» un ensemble de nombres contenant l ensemble des nombres réels, muni de deux opérations qui généralisent

Plus en détail

Nombre complexe. 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que

Nombre complexe. 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que Nombre complexe I. Forme algébrique, Représentation géométrique 1. Il existe un nombre noté i, (ou j dans les matières comportant de l électricité), tel que 2. On appelle nombre complexe tout nombre de

Plus en détail

Nombres complexes, fonctions et formules trigonométriques

Nombres complexes, fonctions et formules trigonométriques Chapitre 4 Nombres complexes, fonctions et formules trigonométriques 41 Nombres complexes L ensemble C des nombres complexes est où i = 1 R C C = {z = a + ib : a, b R} Définition 411 On dit que l écriture

Plus en détail

AL1 Complexes FC - Exercices -

AL1 Complexes FC - Exercices - AL Complexes FC - Exercices - CALCULS TRANSFORMATIONS D ÉCRITURES TRIGONOMÉTRIE 4 4 POLYNÔMES 4 5 EXERCICES DE TESTS 5 Page sur 9 Calculs. Additions.. ( i) ( 4i) Mathématiques AL - Complexes + + +.. i

Plus en détail

Nombres complexes. Emmanuel Vieillard-Baron 5 avril Nombres complexes

Nombres complexes. Emmanuel Vieillard-Baron 5 avril Nombres complexes Nombres complexes Emmanuel Vieillard-Baron 5 avril 2005 Programme officiel 1- Nombres complexes L objectif est de consolider et d approfondir les notions sur les nombres complexes déjà abordées en classe

Plus en détail

Rappels : nombres complexes

Rappels : nombres complexes INSA Toulouse Cycle Préparatoire IFCI Module Outils Mathématiques Regroupement n Rappels : nombres complexes Nombres complexes Définition Définition Il existe un ensemble C appelé ensemble des complexes

Plus en détail

CHAPITRE 4 : Les nombres complexes

CHAPITRE 4 : Les nombres complexes CHAPITRE 4 : Les nombres complexes 1 Définition... 1.1 Théorème... 1. Définitions... 1.3 Théorème... Nombre complexe conjugué... 3.1 Définition... 3. Théorème 1... 3.3 Théorème... 3.4 Théorème 3... 5 3

Plus en détail

Module et Argument d un nombre complexe

Module et Argument d un nombre complexe I Module et Argument d un nombre complexe Tout point M du plan peut être repéré par un couple de coordonnées polaires (r, θ) (r > 0, θ réel) M r est la distance OM ; θ est une mesure de l angle ( u, OM).

Plus en détail

Les nombres complexes - 2

Les nombres complexes - 2 Chapitre 9 Les nombres complexes - Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

Nombres complexes, cours, première STI2D

Nombres complexes, cours, première STI2D Nombres complexes, cours, première STID F.Gaudon 9 juin 015 Table des matières 1 Notion de nombre complexe Opérations sur les nombres complexes 3 3 Représentation géométrique des nombres complexes 3 4

Plus en détail

Chapitre 9 Les nombres complexes

Chapitre 9 Les nombres complexes Chapitre 9 Les nombres complexes Vocabulaire-représentation Définition des nombres complexes Définition Nombres complexes, partie réelle, partie imaginaire) On introduit i, un nombre qui vérifie i = On

Plus en détail

GEOMETRIE PLANE : NOMBRES COMPLEXES

GEOMETRIE PLANE : NOMBRES COMPLEXES GEOMETRIE PLANE : NOMBRES COMPLEXES I Les points du plan et les nombres complexes - Notion de nombre complexe Dans ce chapitre, on définit un ensemble noté C, qui prolonge l ensemble R, muni d une addition

Plus en détail

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1

NOMBRES COMPLEXES. I Introduction 1 I.1 Le nombre i... 1 I.2 L ensemble des nombres complexes... 1 re STI Ch03 : Nombres complexes 006/007 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombre i............................................ I. L ensemble des nombres complexes...............................

Plus en détail

Les nombres complexes

Les nombres complexes DERNIÈRE IMPRESSION LE 17 février 016 à 15:35 Les nombres complexes Table des matières 1 Introduction 1.1 Un problème historique......................... 1. Création d un nouvel ensemble.....................

Plus en détail

Nombres complexes. Chapitre 1

Nombres complexes. Chapitre 1 Chapitre 1 Nombres complexes Les nombres complexes sont apparus en Italie au XVI e siècle. Niccolo Tartaglia le premier résout des équations du troisième degré. Il révèle sa formule à Jérôme Cardan qui

Plus en détail

, obtenu par la construction du parallélogramme (voir figure 8.2).

, obtenu par la construction du parallélogramme (voir figure 8.2). CHAPITRE 8 Équations et nombres complexes L équation du second degré ax 2 bx c 0 a pour racines, comme chacun sait, b b2 4ac et b b2 4ac. Nous supposons ici que a, b, c sont des nombres réels, avec a 0,

Plus en détail

TS Applications géométriques des nombres complexes Cours

TS Applications géométriques des nombres complexes Cours TS Applications géométriques des nombres complexes Cours I. Forme trigonométrique d un nombre complexe non nul (O ; u ; v ) est un repère orthonormal direct du plan complexe 1. Module et argument d un

Plus en détail

Chap9 Forme trigonométrique et forme exponentielle de nombres complexes

Chap9 Forme trigonométrique et forme exponentielle de nombres complexes Chap9 Forme trigonométrique et forme exponentielle de nombres complexes I Module, argument et forme trigonométrique d un nombre complexe Rappel : le plan complexe est le plan muni d un repère orthonormé

Plus en détail

Cours de Terminale S /Nombres complexes. E. Dostal

Cours de Terminale S /Nombres complexes. E. Dostal Cours de Terminale S /Nombres complexes E. Dostal aout 01 Table des matières 8 Nombres complexes 8.1 Introduction............................................ 8. Le plan complexe.........................................

Plus en détail

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire :

Nombres complexes. Deux nombres complexes sont égaux si, et seulement si, ils ont même partie réelle et même partie imaginaire : Nombres complexes 1 Ensemble des nombres complexes 1.1 Forme algébrique d un nombre complexe Théorème Admis 1. Il existe un ensemble, noté C, d éléments appelés nombres complexes, tel que : C contient

Plus en détail

NOMBRES COMPLEXES. I Introduction 2 I.1 Le nombrei... 2 I.2 L ensemble des nombres complexes... 2

NOMBRES COMPLEXES. I Introduction 2 I.1 Le nombrei... 2 I.2 L ensemble des nombres complexes... 2 T ale STI Nombres complexes 008/009 NOMBRES COMPLEXES Table des matières I Introduction I. Le nombrei.............................................. I. L ensemble des nombres complexes.................................

Plus en détail

Chapitre VII : LES NOMBRES COMPLEXES

Chapitre VII : LES NOMBRES COMPLEXES I - Ecriture algébrique des nombres complexes 1) Définition Chapitre VII : LES NOMBRES COMPLEXES Définition 1 : On admet qu il existe un ensemble de nombres, noté C, vérifiant les propriétés suivantes

Plus en détail

I. Nombres complexes. 1 Corps C des nombres complexes

I. Nombres complexes. 1 Corps C des nombres complexes 1 Corps C des nombres complexes Théorème 1. Il existe un ensemble C des nombres complexes qui possède les propriétés suivantes : C contient R. C est muni d une addition et d une multiplication qui suivent

Plus en détail

MATHÉMATIQUES T erminale S

MATHÉMATIQUES T erminale S L Oasis Des M@Thém@tiques MATHÉMATIQUES T erminale S Boubacar MANÉ Mansour SANÉ Préface Table des matières 1 Les Nombres Complexes 5 I Historique......................................... 5 II Fabrication

Plus en détail

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0.

Ch 4. Complexes. D où l idée d introduire de nouveaux nombres dont le carré serait négatif, pour traiter le cas < 0. PTSI2 2016/2017 Maths Lycée La Martinière-Monplaisir Lyon Ch 4. Complexes. 1 L ensemble C des nombres complexes 1.a Introduction Pour résoudre une équation de la forme ax 2 + bx + c = 0, avec a, b, c réels

Plus en détail

Cours Chapitre 1 : Nombres complexes

Cours Chapitre 1 : Nombres complexes Mr Arfaoui.O Tél : 563334 4 éme année sc & tech Cours Chapitre : Nombres complexes Forme cartésienne (algébrique) : Définition : La forme algébrique d un nombre complexe zεc est : z = a + ib avec a et

Plus en détail

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban.

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban. COMPLEXES Sujets septembre 01 novembre 01 avril 01 mai 01 Antilles-Guyane Amérique du Sud Pondichéry Liban Formulaire COMPLEXES 1 Antilles-Guyane septembre 01. EXERCICE Le plan complexe est rapporté à

Plus en détail

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE

Chapitre 2 : LES NOMBRES COMPLEXES : FORME ALGEBRIQUE SOMMAIRE 1.ACTIVITES... 2 ACTIVITE 1... 2 ACTIVITE 2... 2 2. NOTION DE NOMBRE COMPLEXE... 3 DEFINITIONS ET PROPRIETES.... 3 3. INTERPRETATION GEOMETRIQUE.... 4 4. AFFIXE D UN VECTEUR, D UN BARYCENTRE...

Plus en détail

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 01-014 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Complexes 1 Le Plan complexe 1.1 Introduction Dans tout ce chapitre,

Plus en détail

Chapitre 14 : Nombres complexes et géométrie

Chapitre 14 : Nombres complexes et géométrie Chapitre 14 : Nombres complexes et géométrie I Affixe, module et argument I.1 Représentation géométrique d un nombre complexe Le plan est muni d un repère orthonormal direct (O; u; v. Il est ainsi appelé

Plus en détail

1.1 Nombres complexes

1.1 Nombres complexes Université de Provence 011 01 Mathématiques Générales I Parcours PEIP Cours : Nombres complexes 1 Définitions 11 Nombres complexes Définition 1 On appelle nombre complexe tout élément z de la forme z a

Plus en détail

Les nombres complexes : exercices page 1

Les nombres complexes : exercices page 1 Les nombres complexes : exercices page 1 Ex 1 : Vrai ou faux Forme algébrique 1 ) =(4 5i ) 2 6 ) z 6 =i 4 i 3 2 ) z 2 =(4 5i ) ( 4+5i ) 7 ) z 7 =(1 2i ) 2 1 ) Si z=4i 3, alors a ) Im( z )= 3 d ) z=4 i+3

Plus en détail

Nombres complexes et application à la géométrie

Nombres complexes et application à la géométrie Nombres complexes et application à la géométrie I) Représentation graphique d un nombre complexe Le plan est muni d un repère orthonormé (O,u,v). 1) Affixe d un point a) Définition Si M est le point de

Plus en détail

Pierre-Louis CAYREL Licence 1 Introduction aux Mathématiques Générales Université de Paris 8. Nombres complexes

Pierre-Louis CAYREL Licence 1 Introduction aux Mathématiques Générales Université de Paris 8. Nombres complexes Pierre-Louis CAYREL 008-009 Licence 1 Introduction aux Mathématiques Générales Université de Paris 8 Nombres complexes 1 Forme cartésienne, forme polaire Exercice 1 Calculer le module des nombres complexes

Plus en détail

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats

Fiche BAC 09 Terminale S Nombres complexes (2ème partie) Exercice 1 ( Ex n 2 Antilles-Guyane juin 2000 adapté) Commun à tous les candidats Fiche BAC 09 Terminale S Nombres complexes (ème partie) Exercice 1 ( Ex n Antilles-Guyane juin 000 adapté) Commun à tous les candidats 1 ) Pour tout nombre complexe z, on pose P (z)=z 3 3 z +3 z+7. a)

Plus en détail

NOMBRES COMPLEXES (exercices)

NOMBRES COMPLEXES (exercices) Exercice : NOMBRES COMPLEXES (exercices). Placer les points A,B,C,D et E d affixes a = 3 + 3 i, b = - i, c = 4, d = -i, e = - + i dans le plan complexe.. Calculer l affixe du milieu I de [BD] Exercice

Plus en détail

1 Argument d un nombre complexe. 2 Ecriture trigonométrique. M(z = a + ib) r = z = OM. θ = arg(z) Chapitre 5 Les nombres complexes (2)

1 Argument d un nombre complexe. 2 Ecriture trigonométrique. M(z = a + ib) r = z = OM. θ = arg(z) Chapitre 5 Les nombres complexes (2) Chapitre 5 Les nombres complexes ) 1 rgument d un nombre complexe Un point M peut être repéré dans le plan muni d un repère orthonormé direct O; u, v ) de deux façons : par ses coordonnées cartésiennes

Plus en détail

TS Nombres complexes Cours

TS Nombres complexes Cours TS Nombres complexes Cours I. Le plan complexe 1. Définitions générales Théorème( admis ) Il existe un ensemble noté, appelé ensemble des nombres complexes qui possède les propriétés suivantes : contient

Plus en détail

Exercices de mathématiques

Exercices de mathématiques Exercices de mathématiques Exercice 1 Mettre sous la forme a + ib (a, b R) les nombres : + 6i 4i ; ( ) 1 + i + + 6i i 4i ; + 5i 1 i + 5i 1 + i Exercice Mettre chacun des nombres complexes suivants sous

Plus en détail

Nombres complexes. s'écrit alors i

Nombres complexes. s'écrit alors i Nombres complexes préambule : En 1545, dans son ouvrage Artis magnae sive regulis algebraicus, le mathématicien italien Cardan veut résoudre l'équation : x(10 x) 40. Il est confronté à une opération impossible

Plus en détail

Nombres complexes - Partie 2

Nombres complexes - Partie 2 Chapitre F Nombres complexes - Partie 2 Contenus Capacités attendues Commentaires Forme trigonométrique : module et argument, interprétation géométrique dans un repère orthonormé direct ; notation exponentielle.

Plus en détail

Nombres et plan complexes Les exercices fondamentaux à connaître

Nombres et plan complexes Les exercices fondamentaux à connaître Nombres et plan complexes Les exercices fondamentaux à connaître Y. Morel Version en ligne et interactive : http://xymaths.free.fr/lycee/ts/exercices-corriges-complexes.php Table des matières 1 Formes

Plus en détail

Les similitudes. Table des matières

Les similitudes. Table des matières Les similitudes Table des matières 1 Rappels sur les nombres complexes 3 1.1 Expression d un nombre complexe................... 3 1.2 Représentation d un nombre complexe................. 3 1.3 Opérations

Plus en détail

Les nombres complexes

Les nombres complexes Chapitre 6 Terminale S Ce que dit le programme : Les nombres complexes CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 1ère partie Forme algébrique, conjugué. Somme, produit, quotient. Équation du second degré

Plus en détail

TERMINALE S Les nombres complexes [forme algébrique]

TERMINALE S Les nombres complexes [forme algébrique] Définitions et propriétés. Il existe un ensemble de nombres, noté C, qui contient tous les nombres réels et qui de plus : -contient un nombre noté i, un symbole tel que i 2 = -1. -tous les nombres de C

Plus en détail

NOMBRES COMPLEXES. I Définition - Représentation géométrique. II Forme trigonométrique - Module - Argument. Exercice 01 Apprendre le cours!...

NOMBRES COMPLEXES. I Définition - Représentation géométrique. II Forme trigonométrique - Module - Argument. Exercice 01 Apprendre le cours!... NOMBRES COMPLEXES I Définition - Représentation géométrique Exercice 0 Apprendre le cours!... Exercice 0 Soit z + i ; z' i - 5. Calculer et écrire sous la forme algébrique z + z' ; z - z' ; z - z' ; z.z'

Plus en détail

Introduction universitaire aux mathématiques. Notes de cours. 1 re année du Bachelier en Sciences chimiques

Introduction universitaire aux mathématiques. Notes de cours. 1 re année du Bachelier en Sciences chimiques Introduction universitaire aux mathématiques Notes de cours re année du Bachelier en Sciences chimiques Introduction Ce cours se donne comme objectif principal de rappeler et fixer quelques notions mathématiques

Plus en détail

NOMBRES COMPLEXES. Jean Chanzy. Université de Paris-Sud. u 3 + v 3 = q. = q = p3 27. u 3 + v 3 u 3 v p3. q v 3 = q p3.

NOMBRES COMPLEXES. Jean Chanzy. Université de Paris-Sud. u 3 + v 3 = q. = q = p3 27. u 3 + v 3 u 3 v p3. q v 3 = q p3. NMBRES CMPLEXES Jean Chanz Université de Paris-Sud Nécessité d introduire l ensemble C : Considérons l équation 3 5 4 = 0. Elle a pour solution évidente = 4. Le trinôme 3 5 4 se factorise en ( 4)( + b

Plus en détail

i i =e π 2 e i π +1=0 0, NOMBRES COMPLEXES : PARTIE 2 e 2, i 2 = 1 π 3,

i i =e π 2 e i π +1=0 0, NOMBRES COMPLEXES : PARTIE 2 e 2, i 2 = 1 π 3, NOMBRES COMPLEXES : PARTIE 2 I. Forme trigonométrique d'un nombre complexe... 2 II. Notation exponentielle... 5 III. Applications en géométrie... 8 IV. L'imaginaire à la puissance imaginaire...... 10 i

Plus en détail

Nombres complexes. Représentation géométrique. Notation exponentielle.

Nombres complexes. Représentation géométrique. Notation exponentielle. Nombres complexes. Représentation géométrique. Notation exponentielle. 1. Représentation géométrique d'un nombre complexe... P2 4. Propriétés... P15 2. Module d'un nombre complexe... p7 5. Compléments...

Plus en détail

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5.

9 page 333 du LIVRE : EXERCICE N 5 : Extrait de l épreuve du concours EFREI (mai 2010) ÉLÉMENTS DE RÉPONSE DES EXERCICES DU CHAPITRE 5. 1 FICHE : EXERCICE N 1 : 1. j = 1.. j = j. 1 + j + j = 0 et j = 1. EXERCICE N : 15 page du LIVRE : correction page 474 du livre. EXERCICE N : 6 page du LIVRE : z 1 = 1 + 1 i ; z = 7 + 7 i ; z = 4 5 + 5

Plus en détail

LES NOMBRES COMPLEXES

LES NOMBRES COMPLEXES S.A.Q LES NOMBRES COMPLEXES Aperçu historique Définition Module d'un nombre complexe Argument d'un nombre complexe Nombre complexe et géométrie Ensemble des points M dont l'affixe z vérifie une propriété

Plus en détail

1) Donner une valeur en radians pour les angles : ( i, OMi ) pour i de 1 à 8. 2) Placer sur le cercle les points tels que :

1) Donner une valeur en radians pour les angles : ( i, OMi ) pour i de 1 à 8. 2) Placer sur le cercle les points tels que : GÉOMÉTRIE Nombres complexes Connaissances nécessaires à ce chapitre Factoriser une expression Utiliser les formules de géométrie dans les repères Représenter des angles sur un cercle trigonométrique Connaître

Plus en détail

Les nombres complexes (forme algébrique)

Les nombres complexes (forme algébrique) Les nombres complexes (forme algébrique) I. L'ensemble IC des nombres complexes. ) Notion de nombre complexe. def : Soit i le nombre "imaginaire" tel que i ² =. L'ensemble IC des nombres complexes est

Plus en détail

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique]

TERMINALE S Chapitre 1 : les nombres complexes [forme algébrique] SOMMAIRE * 1. NOTION DE NOMBRE COMPLEXE... 2 DEFINITIONS ET PROPRIETES.... 2 * 2. INTERPRETATION GEOMETRIQUE.... 3 * 3. AFFIXE D UN VECTEUR, D UN BARYCENTRE... 3 * 4. NOMBRES COMPLEXES CONJUGUES... 4 *

Plus en détail

Nombres complexes. Chapitre 2 ÉCRITURE ALGÉBRIQUE. Sommaire. 1) L ensemble des complexes

Nombres complexes. Chapitre 2 ÉCRITURE ALGÉBRIQUE. Sommaire. 1) L ensemble des complexes Chapitre Nombres complexes Sommaire I Écriture algébrique........................................... 11 1) L ensemble des complexes................................... 11 ) Partie réelle, partie imaginaire.................................

Plus en détail

Exercices du chapitre 8 avec corrigé succinct

Exercices du chapitre 8 avec corrigé succinct Exercices du chapitre 8 avec corrigé succinct Exercice VIII.1 Ch-Exercice7 Soient les deux lois définies sur R de la manière suivante. Étant donnés deux couples (x, y) et (x, y ) de R, on pose : (x, y)

Plus en détail

Cours d analyse L1S1P. Analyse L1S1 P

Cours d analyse L1S1P. Analyse L1S1 P Cours d analyse L1S1P 017 Objectifs : 1 Apprendre à calculer avec des formules : domaines de définition, dérivées primitives développements limités Se désinhiber face auxdites formules. À la fin de ce

Plus en détail

Nombres complexes Forme polaire Algèbre linéaire I MATH 1057 F

Nombres complexes Forme polaire Algèbre linéaire I MATH 1057 F Nombres complexes Forme polaire Algèbre linéaire I MATH 1057 F Julien Dompierre Département de mathématiques et d informatique Université Laurentienne Sudbury, 3 avril 2011 Forme polaire Le nombre complexe

Plus en détail

Nombres complexes. Les Nombres Complexes

Nombres complexes. Les Nombres Complexes Introduction : Historique : Les Nombres Complexes Au début du XVI ème siècle, le mathématicien Scipione dal Ferro, propose une formule donnant une solution de l'équation du 3 ème degré : A la fin du XVI

Plus en détail

Séance de soutien PCSI2 numéro 3 : Représentations des nombres complexes

Séance de soutien PCSI2 numéro 3 : Représentations des nombres complexes Séance de soutien PCSI2 numéro 3 : Représentations des nombres complexes Tatiana Labopin-Richard 5 novembre 2014 Il existe plusieurs façons de représenter des nombres complexes. Nom Notation Unicité Neutre

Plus en détail