FONCTIONS POLYNÔMES et SECOND DEGRE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "FONCTIONS POLYNÔMES et SECOND DEGRE"

Transcription

1 FONCTIONS POLYNÔMES et SECOND DEGRE I/ Fonctions polynômes et rationnelles a- Fonctions polynômes Une fonction polynôme (ou plus simplement un polynôme) est une fonction définie sur R par: f (x) = a n x n + a n 1 x n a 1 x 1 + a 0 où n est un entier naturel et a 0, a 1. a n des nombres réels fixés. Si an 0, on dit que le polynôme est de degré n (On note deg f = n ) et a 0, a 1. a n sont appelés coefficients du polynôme. f (x) = x + 5 Fonction polynôme de degré f (x) = 5x 6 x 3 + x 1 Fonction polynôme de degré f (x) = x 3 x +1 Remarque : La forme f (x) = a n x n + a n 1 x n a 1 x 1 + a 0 est appelée «forme développée, réduite et ordonnée» du polynôme f. Un polynôme est ordonné suivant les puissances décroissantes de x. Propriété : Un polynôme s écrit de façon unique sous forme développée, réduite et ordonnée. Remarques : La fonction définie sur R, par x 0 est la fonction polynôme nulle. Ce polynôme n a pas de degré. Toute fonction constante non nulle est un polynôme de degré 0. b- Egalité de deux polynômes Un polynôme est nul si et seulement si tous ses coefficients sont nuls. Exemple : Trouver des nombres réels a, b, c tels que, pour tout x : ax + bx + x + ax + 6 c = 0 Deux polynômes sont égaux si et seulement si : Ils ont le même degré Les coefficients de leurs termes de même degré sont égaux. 1S 1

2 Propriétés : 1/ la somme, la différence, le produit, la composée de deux fonctions polynômes est une fonction polynôme. / la somme f + g des deux polynômes f et g, est soit le polynôme nul, soit d un degré inférieur ou égal au plus grand des degrés de f et de g. 3/ le produit de deux fonctions polynômes f et g est une fonction polynôme. Si f et g sont distincts deg fg = deg( f) + deg( g ). du polynôme nul, alors ( ) Définition : On dit que le réel α est «racine» du polynôme f lorsque f ( α ) = 0. Ainsi, α est «racine» du polynôme f si et seulement si α est solution de l équation f( x ) = 0. Remarque : Si ax + bx + c possède une racine parmi les nombres : 1, -1,, -, on dit que le trinôme a une racine évidente. (Il suffit de vérifier si le polynôme s annule pour ces valeurs) Dans ce cas, si α est cette racine, le trinôme est factorisable par ( x α ). x 5x + 3 possède comme racine évidente car Factorisation : 3x x+10 possède comme racine évidente car Factorisation : 1S

3 3 Px ( ) = x 6x + 11x 6 c- Fonctions rationnelles Soit f et g deux polynômes. La fonction h définie, pour g(x) 0, par h(x) = f (x) est appelée fonction rationnelle. g(x) II/ Fonctions polynômes du 1 er degré. Définition : Un polynôme du premier degré est une fonction P, définie sur R, de la forme P: x ax+ b avec a R et b R. L équation ax + b = 0 (avec a 0 ) admet une unique solution Le signe de ax + b (avec a 0 ) est donné par le tableau suivant : x ax + b La représentation graphique de la fonction P: x ax+ b est une droite D, de coefficient directeur a. Si a 0, la fonction est croissante et si a 0, la fonction est décroissante. 1S 3

4 III/ Trinôme du second degré Dans toute la suite, a, b et c sont des nombres réels avec a 0. a- Définition On appelle trinôme du second degré, toute fonction polynôme, définie sur R, qui peut s écrire sous la forme x ax + bx + c. Par abus de langage, on utilise souvent l expression trinôme du second degré ax + bx + c au lieu de trinôme du second degré x ax + bx + c. (Trinôme : somme de 3 termes) La fonction x x x est un trinôme du second degré, avec a=..., b=... et c=... La fonction 3 x ( x+ 1) ( x ) est un trinôme du second degré, car ( x+ 1) ( x 1) = donc, a=..., b=... et c=... ( ) ( ( ) ( ) La fonction x x+ 1 x ) 1 n est pas un trinôme du second degré, car x+ 1 x 1 = b- Discriminant On appelle discriminant d un polynôme ax + bx + c, le réel : c- Forme canonique Pour tout trinôme du second degré, on a : b ax + bx + c = a ( x + ) a 4a On dit qu on a mis le trinôme sous forme canonique. Démonstration : b b 4ac = a ( x+ ) a 4a 1S 4

5 Exemple : Px x x ( ) = 3 1 d- Equation du second degré : Résolution et factorisation Définition : Une équation du second degré à une inconnue x est une équation qui peut s écrire sous la forme : ax bx c + + = 0, où a, b et c sont des réels et a 0. Soit le trinôme du second degré f : x ax + bx+ c ( a 0 ), l équation ax + bx + c = 0 s écrit aussi f( x ) = 0. Résoudre cette équation dans R, c est trouver tous les réels u qui vérifient appelées racines du trinôme f. f( u ) = 0. Ces solutions sont Pour résoudre une telle équation, on utilise la forme canonique : Si <0 : L équation. car un carré n est jamais strictement négatif Dans ce cas, on ne peut pas factoriser le trinôme en produit de polynômes du premier degré. Si =0 : L équation admet une unique solution dans R : appelée racine double du trinôme Factorisation du trinôme : ax + bx + c = 1S 5

6 Si >0 : L équation admet deux solutions distinctes dans R : Factorisation du trinôme : ax + bx + c = Résoudre dans R et factoriser les équations suivantes : 6x x 1= 0 x 3x+ 4= 0 x 1x +18 = 0 1S 6

7 Remarques : Il n est pas toujours utile de calculer le discriminant. Il faut penser aux factorisations classiques vues en classe de nde. 4x 9= 0 5x 4 x=0 Lorsque a et c sont de signes contraires, l équation distinctes car 4ac >0 donc > 0. ax bx c + + = 0 admet deux solutions Lorsque l équation ax + bx + c = 0 admet deux racines x1 et x, alors : x 1 + x = b a et x 1 x = c a Démonstration : Application de ces formules : - Vérifier le calcul des solutions de l équation a x + b x + c = 0. - Trouver une racine connaissant l autre. ex : 1 est une solution évidente de x 5 x + 3 = 0, donc l autre racine est : - Déterminer le signe des racines sans en connaître les valeurs. Exemple : 4x 9x+ 1=0 1S 7

8 e- Variations et représentations graphiques Le trinôme du second degré f : x ax + bx+ c ( avec a 0 ), peut aussi s exprimer sous la forme f : x a ( x α) + β. Ainsi f est une fonction associée à la fonction carrée x x. La courbe représentative est obtenue à partir de la parabole P d équation y = x en effectuant une translation de vecteur (α i + β j), puis une dilatation de coefficient a, c est à dire une une multiplication par a. La représentation graphique de la fonction f : x ax + bx+ c, dans un repère orthogonal, est une parabole, dont le sommet est S ( α ; β ) soit, x - b a a > 0 a < 0 ) f ( x ) f ( x ) f ( b a f admet un minimum en b a + x - b a f ( b a + f admet un maximum en b a ) La droite d équation x = b est un axe de symétrie de P. a Si a > 0, les branches de la parabole sont tournées vers le haut. Si a < 0, les branches de la parabole sont tournées vers le bas. y = x + 4 x + 1 1S 8

9 y = 0.5 x + x + Dresser le tableau de variations de la fonction définie par f x x x ( ) = + 3 Dresser le tableau de variations de la fonction définie par gx x x ( ) = f- Signe du trinôme a x + b x + c Etudions le signe de f (x) = ax + bx + c ( a 0 ) Si > 0. Soit x 1 et x les racines du trinôme, avec, par exemple x1 < x f ( x) = a x x x x On obtient le polynôme factorisé : ( )( ) 1 x - x 1 x + x x 1 x x ( x x1)( x x) f ( x) = a( x x )( x x ) 1 1S 9

10 Si 0, on utilise la forme canonique : ax + bx + c = a b x + a 4a b Si < 0, x + est strictement positif et donc, a 4a pour tout réel x, f ( x) est.. b Si = 0, ax + bx + c = a x + et donc, a b Pour x =, f( x) =. a b pour tout réel x, f ( x) est.. a Pour résumer : a x + b x + c est toujours du signe de a sauf entre les racines si elles existent Résoudre dans R l inéquation f( x ) < 0 avec f x x x ( ) = Résoudre dans R l inéquation gx> ( ) 0 avec gx x x ( ) = S 10

11 III/ RECAPITULATIF ET LIENS AVEC LES REPRESENTATIONS GRAPHIQUES > 0 = 0 < 0 Racines de f x 1 = Erreur! et x = Erreur! x 0 = Erreur! Pas de racine Factorisation f ( x ) = a ( x x 1 ) ( x x ) f ( x ) = a ( x - x 0 ) ² = a ( x + Erreur! ) ² Pas de factorisation a > 0 x x x x x x Signe de f ( x ) x x x x x x a < 0 Signe de f ( x ) S 11

Polynômes et fractions rationnelles Trinômes du second degré

Polynômes et fractions rationnelles Trinômes du second degré Polynômes et fractions rationnelles Trinômes du second degré 1 Rappels 1. Carré d une somme : 2. Carré d une différence : 3. Différence de deux carrés : Pour tous réels a et b, a + b) 2 =........ Pour

Plus en détail

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes

1.1 Définition. 1.2 Déterminer la forme canonique. 1.3 Remarques importantes 1. Fonction du second degré 1.1 Définition Une fonction f définie sur R dont l expression peut se mettre sous la forme = ax 2 +bx +c (où a, b et c sont des réels avec a non nul) est une fonction du second

Plus en détail

TRINÔME DU SECOND DEGRÉ

TRINÔME DU SECOND DEGRÉ TRINÔME DU SECOND DEGRÉ On appelle fonction polynôme, toute fonction f définie sur IR pour laquelle, il existe un entier naturel n et des réels a 0 ; a ; a 2 ;... ; a n avec a n 0 tels que : f(x) = a 0

Plus en détail

Chapitre II : Fonctions polynômes du second degré

Chapitre II : Fonctions polynômes du second degré Chapitre II : Fonctions polynômes du second degré Extrait du programme : I. Forme canonique d un polynôme du second degré Définition : Dire qu une fonction f définie sur est une fonction polynôme de degré

Plus en détail

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ

CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ CHAPITRE 01 LES FONCTIONS POLYNÔMES DU SECOND DEGRÉ I OBJECTIFS L objectif de ce chapitre est de maîtriser parfaitement les fonctions polynômes du second degré, différentes formes, racines du polynôme,

Plus en détail

Fonction carrée Problèmes du second degré

Fonction carrée Problèmes du second degré Fonction carrée Problèmes du second degré Année scolaire 2015/2016 Table des matières 1 Quelques rappels 2 1.1 Les identités remarquables........................................ 2 1.2 Développement..............................................

Plus en détail

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités

Chapitre 5. Généralités sur les fonctions numériques. 5.1 Généralités Chapitre 5 Généralités sur les fonctions numériques 5.1 Généralités Définition 5.1 Une fonction numérique permet d associer à chaque nombre x d un ensemble D un autre nombre que l on note f(x). On note

Plus en détail

Exercices supplémentaires Second degré

Exercices supplémentaires Second degré Exercices supplémentaires Second degré Partie A : Forme canonique, équations, inéquations, factorisation Mettre sous forme canonique les trinômes suivants 8 ; 3 1 ; 5 ; 3 4 Exercice On considère : 5 6

Plus en détail

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8

D. CRESSON. 15 octobre D. CRESSON () Cours Première STL 15 octobre / 8 Polynômes D. CRESSON 15 octobre 2008 D. CRESSON () Cours Première STL 15 octobre 2008 1 / 8 I fonction polynôme On appelle monôme, une expression du type ax n, où n est un entier naturel, a une constante

Plus en détail

Étude des fonctions polynômes du second degré

Étude des fonctions polynômes du second degré Étude des fonctions polynômes du second degré Définitions Définition d une fonction polynôme de degré 2 Une fonction, définie sur est une fonction polynôme de degré 2 lorsqu il existe trois réels et avec

Plus en détail

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble

Les polynômes du second degré. Niveau : Première S. Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble Les polynômes du second degré Niveau : Première S Vincent OBATON, Enseignant de mathématiques au lycée Stendhal de Grenoble 1 I. Les trinômes du second degré 1. Grille d'auto-évaluation AN01 AN0 AN03 A

Plus en détail

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50]

Etude de la fonction bénéfice B telle que B(x) = -9x² + 450x 4050 pour un prix des places x variant de 0 à 50 : x [0 ; 50] Fonctions du second degré - Exemple d étude d un problème. Activité. La recette R(x) d un spectacle dépend du prix x de la place suivant la relation R(x) = 450x 9x². Pour chaque spectacle, les frais fixes

Plus en détail

Polynômes du second degré et fonctions homographiques 2nde

Polynômes du second degré et fonctions homographiques 2nde Fonctions de référence Polynômes du second degré et fonctions homographiques 2nde Table des matières I. Fonctions homographiques...1 A. La star de la famille : La fonction inverse (Normalement vous connaissez

Plus en détail

Formules importantes pour la fonction quadratique

Formules importantes pour la fonction quadratique Formules importantes pour la fonction quadratique Avec la forme générale f(x) = ax 2 + bx + c 1- Orientation de la parabole Si a> 0, la parabole sera ouverte vers le haut Si a

Plus en détail

Chapitre 7 : Exercices d approfondissement

Chapitre 7 : Exercices d approfondissement Chapitre 7 : Exercices d approfondissement Corrigés des exercices du chapitre 7 Exercice I Dans chaque cas, on va travailler avec la forme la plus adaptée aux données. Ici, on connaît le sommet S (3 ;

Plus en détail

PRATIQUE DES FONCTIONS NUMÉRIQUES

PRATIQUE DES FONCTIONS NUMÉRIQUES UNIVERSITÉ DE CERGY U.F.R. Economie et Gestion Licence d Économie et Gestion L1 - S1 PRATIQUE DES FONCTIONS NUMÉRIQUES EXAMEN PREMIÈRE SESSION - Janvier 01 - heures Les exercices sont indépendants et peuvent

Plus en détail

Exercice corrigé application de la dérivée. 1 er décembre 2010

Exercice corrigé application de la dérivée. 1 er décembre 2010 application de la dérivée 1 er décembre 2010 Enoncé On considère la fonction f définie sur R par : f : x 6x 3 3x 2 + 1 2 x + 24 1 Étudier les variations de f. 2 Justifier que l équation f(x) = 0 admet

Plus en détail

Fonctions polynômes Définition et factorisation Exercices corrigés

Fonctions polynômes Définition et factorisation Exercices corrigés Fonctions polynômes Définition et factorisation Exercices corrigés Exercice 1 (1 question) Niveau : facile Les fonctions numériques suivantes sont-elles des fonctions polynômes? Correction de l exercice

Plus en détail

Chapitre 4 : Fonctions de référence (1)

Chapitre 4 : Fonctions de référence (1) La notion de fonction a été vue au chapitre 1. Cette leçon met l'accent sur certaines fonctions que l'on retrouve au lycée : fonction carrée, fonction inverse, fonction racine carrée,... etc. La deuxième

Plus en détail

Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes

Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes Fonctions polynômes du second degré Trinômes Résolutions d équations et d inéquations, factorisations et étude de trinômes Exercice 1 (1 question) Niveau : facile Résoudre dans les équations suivantes

Plus en détail

Formulaire des fonctions usuelles

Formulaire des fonctions usuelles Université d Orléans Formulaire des fonctions usuelles Licence 1 de Mathématiques Groupe 2 Baptiste Morelle 29/09/2008 Page 1 sur 28 Page 2 sur 28 Table des matières Fonctions particulières... 4 Fonction

Plus en détail

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y.

LES FONCTIONS. Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. LES FONCTIONS I - RAPPELS I-1 - Définition Une fonction est une application qui pour tout «x» appartenant à I associe un unique «y» appartenant à J tel que f(x)=y. L ensemble des point tel f(x)=y est représenté

Plus en détail

LA FONCTION " CARRÉ " et LE SECOND DEGRÉ

LA FONCTION  CARRÉ  et LE SECOND DEGRÉ Index I- Définition... 1 I-1 Rappel... 1 I-2 Définition:... 2 II- Une propriété de la fonction carré:... 2 II-1 Observation... 2 Remarque et définition:... 2 II-2 Interprétation graphique de cette propriété...

Plus en détail

RAPPELS SUR LES FONCTIONS

RAPPELS SUR LES FONCTIONS T ale STI Fonctions : rappels 008/009 RAPPELS SUR LES FONCTIONS Table des matières I Fonctions affines I. Variations............................................... I. Signe deax +b............................................

Plus en détail

CHAPITRE 4 : Etudes de fonctions

CHAPITRE 4 : Etudes de fonctions CHAPITRE 4 : Etudes de fonctions 1 Sens de variation d une fonction... 2 2 Fonctions de référence... 3 2.1 Fonctions affines... 3 2.2 Fonction carré... 4 2.3 Fonction inverse... 5 2.4 Fonction valeur absolue...

Plus en détail

NOTIONS DE BASE SUR LES FONCTIONS

NOTIONS DE BASE SUR LES FONCTIONS NOTONS DE BASE SUR LES FONCTONS 1. GENERALTES 1. Notations, définitions On dit qu une fonction f est définie sur une partie de un nombre réel et un seul y noté f ( x ). quand, à tout x de on associe est

Plus en détail

6. Exercices et corrigés

6. Exercices et corrigés . Exercices et corrigés n 1 p.8 : Dans chacun des cas suivants, écrivez le trinôme fx) sous sa forme canonique. a) fx) x + x b) fx) x + x c) fx) x + x 1 d) fx) xx ) Corrigé du n 1 p.8 : Dans chacun des

Plus en détail

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan

Pour démarrer la classe de terminale S. Tout ce qu il faut savoir de la 1 re S. Paul Milan Pour démarrer la classe de terminale S Tout ce qu il faut savoir de la 1 re S Paul Milan 8 novembre 015 Table des matières 1 Second degré 7 1 Forme canonique............................. 7 Racines du

Plus en détail

Les fonctions polynômes du second degré définies par des formules de la

Les fonctions polynômes du second degré définies par des formules de la LE SECOND DEGRÉ Chapitre 1 I) Une transformation incontournable : la forme canonique Application 1 : factorisation éventuelle d une expression du nd degré Application : résolution des équations du nd degré

Plus en détail

Leçon : Les fonctions

Leçon : Les fonctions Leçon : Les fonctions 1. Notion de fonction et généralités 1.a) Fonction Soit D une partie R. Définir une fonction sur un ensemble D, c est associer à chaque réel x de D, un unique réel, appelé image de

Plus en détail

Notions d algèbre. ( ) m, sauf si a < 0 et n pair. ANNEXE. Définition. Produits remarquables Carré d une somme. Théorème

Notions d algèbre. ( ) m, sauf si a < 0 et n pair. ANNEXE. Définition. Produits remarquables Carré d une somme. Théorème Exposants et radicaux Exposant Si n est un nombre entier positif, et a un nombre réel, alors le produit de a par lui-même n fois est noté : a a a... a 14 2 34 = an n fois où n est appelé l exposant et

Plus en détail

Fonction exponentielle Résolutions d équations Exercices corrigés

Fonction exponentielle Résolutions d équations Exercices corrigés Fonction exponentielle Résolutions d équations Exercices corrigés Sont abordés dans cette fiche : (cliquez sur l exercice pour un accès direct) Exercice 1 : résoudre une équation de la forme Exercice 2

Plus en détail

On factorise par a : et on remarque que x 2 + b a x = x2 + 2 b. EXERCICE N O 2 Donner la forme canonique des expressions suivantes :

On factorise par a : et on remarque que x 2 + b a x = x2 + 2 b. EXERCICE N O 2 Donner la forme canonique des expressions suivantes : CAL1 1 DU CÔTÉ DU SECND DEGRÉ TRAVAILLER AVEC DES PLYNÔMES DE DEGRÉ 2 U 3 CADRE DE TRAVAIL ET/U NTATINS) UTILISÉES) Dans tout ce chapitre, sauf mention contraire, a, b c désigneront trois réels avec notamment

Plus en détail

FONCTIONS. représente une fonction. ne représente pas une fonction

FONCTIONS. représente une fonction. ne représente pas une fonction FONCTIONS Activité de recherche : Stratégie d entreprise Une entreprise fabrique des ballons de rugby. Sa production quotidienne peut varier de à 000 ballons. Le coût total, en centaines d euros, pour

Plus en détail

Chapitre 5 : Calcul littéral et équations

Chapitre 5 : Calcul littéral et équations Chapitre 5 : Calcul littéral et équations I Rappels. Définition : Une expression littérale est une expression dans laquelle un ou plusieurs nombres sont désignés par des lettres. Si une même lettre apparaît

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE L équipe des professeurs de mathématiques Lycée Stendhal J'aimais et j'aime encore les mathématiques pour elles-mêmes comme n'admettant pas l'hypocrisie et le vague, mes deux bêtes d'aversion. Stendhal

Plus en détail

SECOND DEGRE ACTIVITES

SECOND DEGRE ACTIVITES SECOND DEGRE ACTIVITES Activité 1 : Forme canonique d un polynôme de degré 2. Définition : f est une fonction polynôme de degré 2 définie sur par : f ( x) ax² bx c ( a 0 ). Nous montrerons à la fin de

Plus en détail

Fonctions de référence, cours, première S

Fonctions de référence, cours, première S Fonctions de référence, cours, première S F.Gaudon 8 mai Table des matières Fonction carré Fonction inverse Fonction racine carrée 4 Fonctions anes 5 Fonctions polynômes 4 5. Dénitions............................................

Plus en détail

EQUATIONS ET INEQUATIONS : rappels

EQUATIONS ET INEQUATIONS : rappels Chapitre 3 EQUATIONS ET INEQUATIONS : rappels 3.1 EQUATIONS 3.1.1 Remarques importantes 1. Considérons l équation (x 2)x = 3(x 2) (3.1) (a) Si on divise les deux membres de l équation (3.1) par x 2, on

Plus en détail

NOM : SECOND DEGRE 1ère S

NOM : SECOND DEGRE 1ère S Exercice 1 Dans un triangle ABC rectangle en A, on place les points D et E respectivement sur [AC] et [AB] tels que AD = BE = x. Déterminer x pour que l aire du triangle ADE soit égale à la moitié de celle

Plus en détail

CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS

CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS CHAPITRE II : FONCTIONS DE RÉFÉRENCE ET ÉTUDE DE FONCTIONS Premières fonctions de référence Les fonctions linéaires, qui traduisent la proportionnalité des grandeurs, et les fonctions affines, qui traduisent

Plus en détail

Devoir commun de Mathématiques Correction - Premières S

Devoir commun de Mathématiques Correction - Premières S Devoir commun de Mathématiques Correction - Premières S EXERCICE 1 : ( points) Restitution organisée de connaissances Dans un repère, (d) et (d ') sont les droites d'équations cartésiennes respectives

Plus en détail

Les polynômes du second degré

Les polynômes du second degré Les polynômes du second degré exercices corrigés 12 septembre 2013 Les polynômes du second degré Exercice 1 Exercice 2 Exercice 3 Les polynômes du second degré Exercice 1 Les polynômes du second degré

Plus en détail

LEÇON N 17 : Équations du second degré à coefficients réels ou complexes.

LEÇON N 17 : Équations du second degré à coefficients réels ou complexes. LEÇON N 17 : Équations du second degré à coefficients réels ou complexes Pré-requis : Nombres complexes : définition et propriétés ; Notions d anneaux, de corps ; Théorème de Liouville) 171 Équations du

Plus en détail

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2.

Exemple : déterminer la dérivée f de la fonction f définie sur [1 ; + [ par : f(x) = 5x 2. Chapitre III : Dérivées de fonctions composées et primitives I. Dérivées de fonctions composées a) Formule Propriété : g est une fonction dérivable sur un intervalle J. u est une fonction dérivable sur

Plus en détail

Calcul littéral, équations, inéquations

Calcul littéral, équations, inéquations Calcul littéral, équations, inéquations 1) Calcul littéral a. Égalités des expressions littérales Des expressions sont littérales quand elles sont écrites avec des lettres. Elles sont égales quand elles

Plus en détail

Nouvelles fonctions de référence

Nouvelles fonctions de référence Nouvelles fonctions de référence I. Fonction valeur absolue Abs : x 1. Valeur absolue et distance Soit un axe (O ; ) et soient les points A et A d abscisses respectives 3 et 3 sur cet axe. Les distances

Plus en détail

Trinôme du second degré -

Trinôme du second degré - Trinôme du second degré - La calculatrice est autorisée. Correction 1S Khôlle n o 1 Corrigé de l exercice 1 Donner la forme canonique de chacun des trinômes du second degré ci-dessous : A(x) = 9x + 18x

Plus en détail

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H

1 S DEVOIR DE MATHEMATIQUES N 4 SUJET A 5/04/ H S DEVOIR DE MATHEMATIQUES N SUJET A 5/0/0 H Nom prénom Exercice : Soit q un réel différent de,prouver l égalité : points + q + q + q 3 +...q n = qn+ q Exercice :. Calculer la somme des 00 premiers multiples

Plus en détail

Leçon 6 Les fonctions numériques, généralités

Leçon 6 Les fonctions numériques, généralités Leçon 6 Les fonctions numériques, généralités Il faut revoir les fonctions de référence car ce cours prolonge évidemment ce qui a été vu en seconde. Il y a en premier lieu les fonctions affines par morceaux.

Plus en détail

0.2.3 Polynômes Monômes Opérations entre monômes... 4

0.2.3 Polynômes Monômes Opérations entre monômes... 4 Table des matières 0 Rappels sur les polynômes et fractions algébriques 1 0.1 Puissances............................................... 1 0.1.1 Puissance d un nombre réel.................................

Plus en détail

Fonctions de référence, classe de seconde

Fonctions de référence, classe de seconde Fonctions de référence, classe de seconde F.Gaudon 3 juillet 2009 Table des matières 1 fonctions anes 2 2 Fonctions carré 4 3 Fonction inverse 6 4 Équations 8 5 Fonctions polynômes du second degré 9 1

Plus en détail

FONCTONS USUELLES - INTRODUCTION

FONCTONS USUELLES - INTRODUCTION FONCTONS USUELLES - INTRODUCTION Ce document totalement gratuit (disponible parmi bien d'autres sur la page perso JGCUAZ.FR rubrique mathématiques) a été conçu pour aider les élèves de seconde générale

Plus en détail

Correction Composition de mathématiques n 1

Correction Composition de mathématiques n 1 Page1 Correction Composition de mathématiques n 1 Exercice 1 Soit la fonction f définie sur [ 10 ; 7] par f(x) = x² + 2x + 3 1. Trouver la forme factorisée de f(x). a = 1 ; b = 2 ; c = 3 = 2² 4 ( 1) 3

Plus en détail

Les polynômes. Chapitre Définitions et exemples. Définition. Un monôme de la variable x est une expression de la forme.

Les polynômes. Chapitre Définitions et exemples. Définition. Un monôme de la variable x est une expression de la forme. 1. Définitions et exemples Chapitre 6 Les polynômes Définition. Un monôme de la variable x est une expression de la forme a et n. a est appelé le coefficient et n est appelé le degré du monôme. Exemples

Plus en détail

Variations des fonctions associées

Variations des fonctions associées Variations des fonctions associées Année scolaire 2014/2015 Table des matières 1 Quelques rappels 3 1.1 Sens de variation d une fonction..................................... 3 1.2 Fonctions affines.............................................

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

Chapitre 3 Compléments sur les fonctions

Chapitre 3 Compléments sur les fonctions Chapitre 3 Compléments sur les fonctions A) Fonction valeur absolue f(x) = x 1) Définition La valeur absolue d un nombre réel est obtenue en retirant le signe s il est négatif. Autrement dit, x = x si

Plus en détail

Fonctions dérivées Applications

Fonctions dérivées Applications Fonctions dériées Applications Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Quelques rappels. Nombre dérié Tangente......................................... Notion de fonction dériée.........................................3

Plus en détail

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE

Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Concours externe pour le recrutement de contrôleurs stagiaires de l INSEE Exercice 1 Partie A Correction (non officielle) de l épreuve de Mathématiques et de Statistiques du 29/01/2013 Nicolas ZERR 1)

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Correction devoir de mathématiques n 3

Correction devoir de mathématiques n 3 Page1 Correction devoir de mathématiques n 3 Calculatrice autorisée. Le sujet contient 4 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour l attribution des points. Le barème

Plus en détail

Résoudre une équation quadratique veut dire qu on veut trouver les valeurs de x pour lesquelles y = 0. Il y a deux racines car le x est au carré.

Résoudre une équation quadratique veut dire qu on veut trouver les valeurs de x pour lesquelles y = 0. Il y a deux racines car le x est au carré. Module L algèbre (10 cours) 3. Exploiter les relations mathématiques pour analyser des situations diverses, faire des prédictions et prendre des décisions éclairées. RÉSULTATS D APPRENTISSAGE SPÉCIFIQUES

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

S - EQUATIONS DE DEGRE 3 ET 4 ; RACINES D UN POLYNOME MESURANT LES COTES D UN TRIANGLE

S - EQUATIONS DE DEGRE 3 ET 4 ; RACINES D UN POLYNOME MESURANT LES COTES D UN TRIANGLE S - EQUATIONS DE DEGRE 3 ET 4 ; RACINES D UN POLYNOME MESURANT LES COTES D UN TRIANGLE Equations de degré 3 Soit P X) = X 3 + bx 2 + cx + d un polynôme de degré 3 à coefficients réels. On peut écrire P

Plus en détail

Etude de fonctions polynômes, cours, terminale STMG

Etude de fonctions polynômes, cours, terminale STMG Etude de fonctions polynômes, cours, terminale STMG F.Gaudon 3 juillet 2015 Table des matières 1 Fonction dérivée 2 2 Opérations sur les fonctions dérivables 2 2.1 Somme..............................................

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

Équations - Inéquations

Équations - Inéquations Chapitre 5 Équations - Inéquations Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Expressions algébriques Transformations d expressions algébriques en vue d une résolution de problème.

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01 (voir réponses et correction) Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

CHAPITRE 1 EQUATIONS ET INEQUATIONS

CHAPITRE 1 EQUATIONS ET INEQUATIONS CHAPITRE 1 EQUATIONS ET INEQUATIONS 1- EQUATIONS DU PREMIER DEGRE A UNE INCONNUE La forme générale d'une équation du premier degré à une inconnue est Ax = B où A et B sont des constantes et x l'inconnue.

Plus en détail

Exercices supplémentaires : Etude de fonctions

Exercices supplémentaires : Etude de fonctions Exercices supplémentaires : Etude de fonctions Partie A : Avec les fonctions de référence Dans chacun des cas, comparer et sans utiliser la calculatrice ) =,40 et =,4 ) = 7 et = 4 ) = 0,5 et = 4) =,4 et

Plus en détail

2 Calculer la valeur d une expression littérale

2 Calculer la valeur d une expression littérale 1 Expressions littérales OBJECTIF 1 DÉFINITION Une expression littérale est un calcul contenant une ou plusieurs lettres qui désignent des nombres. Une expression littérale peut servir à décrire une méthode

Plus en détail

FONCTION LOGARITHME. ln = a.

FONCTION LOGARITHME. ln = a. FONCTION LOGARITHME I. DEFINITION DU LOGARITHME a) Définition Problème : Soit a un réel strictement positif. Démontrer que l équation e x = a admet une solution unique α dans IR. (théorème des valeurs

Plus en détail

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1

j a sa courbe y= f (a) (x a)+ f(a) f définie sur... f(x) f (x) f dérivable sur... Ê x n nx n 1 Ê pour n entier n 2 1 x 2 n x n+1 Ê pour n entier n 1 Lcée JNSON DE SILLY 5 septembre 06 DÉRIVTION, ÉTUDE DE FONCTIONS T le STID I TNGENTE À UNE COURBE Soit f une fonction définie sur un intervalle I, dérivable en a où a est un réel de I, et C f sa courbe

Plus en détail

FICHE METHODE sur les EQUATIONS de DEGRE DEUX I) A quoi sert une équation de degré 2?

FICHE METHODE sur les EQUATIONS de DEGRE DEUX I) A quoi sert une équation de degré 2? FICHE METHODE sur les EQUATIONS de DEGRE DEUX I) A quoi sert une équation de degré 2? Exemples : 1 Je veux une piscine carrée d aire égale à 40m²! Quelle doit-être la mesure du coté du carré? x² = 40 2

Plus en détail

CONTINUITE - EXERCICES CORRIGES

CONTINUITE - EXERCICES CORRIGES CONTINUITE - EXERCICES CORRIGES Exercice n. x si x Soit f la fonction numérique définie par : f( x) = 5 x si x > f est-elle continue sur son ensemble de définition? x pour x Mêmes questions avec : f (

Plus en détail

Généralités sur les fonctions numériques à variables réelles

Généralités sur les fonctions numériques à variables réelles «I» : Définitions 1/ Fonction Généralités sur les fonctions numériques à variables réelles Une fonction numérique à variable réelle f est une «machine mathématique» qui associe à chaque réel, soit un unique

Plus en détail

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée

I- DÉRIVÉE ET SENS DE VARIATION. 1) Du sens de variation au signe de la dérivée I- DÉRIVÉE ET SENS DE VARIATION 1) Du sens de variation au signe de la dérivée Théorème (admis) : soit f une fonction définie et dérivable sur un intervalle I. o Si f est une fonction croissante sur I,

Plus en détail

Bilan fin de seconde. 1. Statistiques

Bilan fin de seconde. 1. Statistiques Bilan fin de seconde Les questions concernant des notions pour une première particulière sont précisées (remarque : les programmes de mathématiques de TL et TID sont les mêmes) Pour chaque question, il

Plus en détail

Les fonctions affines

Les fonctions affines TABLE DES MATIÈRES 1 Les fonctions affines Paul Milan Professeurs des écoles le 29 septembre 2009 Table des matières 1 Définition et représentation d une fonction 2 1.1 Définition..................................

Plus en détail

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2

La fonction carré est la fonction définie pour tout réel x par f(x)=x 2 Lcée JANSON DE SAILLY I FONCTION CARRÉ DÉFINITION La fonction carré est la fonction définie pour tout réel par f)= 2 PROPRIÉTÉS Un carré est toujours positif ou nul. Pour tout réel, on a 2 0. Un nombre

Plus en détail

TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde Année scolaire : Passage en 1 re ES

TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES. Classe de Seconde Année scolaire : Passage en 1 re ES TRAVAIL D ÉTÉ OBLIGATOIRE EN MATHÉMATIQUES Classe de Seconde Année scolaire : 015-016 Passage en 1 re ES Exercice 1 Les quatre parties sont indépendantes I) Résoudre les inéquations suivantes: ( x 4)(

Plus en détail

Chapitre : FONCTIONS. Exercice 1

Chapitre : FONCTIONS. Exercice 1 Exercice 1 Dans un repère ( ; i ; j ) orthonormal, on considère les fonctions f et g définies par f(x) = (x )(x + 3) + 5 et g(x) = x + 3 sur l intervalle [ ; ]. 1) Tracer les courbes représentatives de

Plus en détail

CH V Le second degré :

CH V Le second degré : CH V Le second degré : I) Les fonctions polynômes (Rappels) : 1) Développer, factoriser : Rappels : Pour tout réels a, b et c a( b + c) = ab + ac On dit que l on lorsque l on passe de a( b + c) à ab +

Plus en détail

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014 Mise à niveau en mathématiques Licences de mathématiques et d informatique 25 août 2014 1 1 Calculs dans R 1.1 Fractions Eercice 1 Pour a = 4/9 et b = 5/12, calculer a + b, a b, ab et a/b. On donnera le

Plus en détail

La fonction carrée et la fonction inverse

La fonction carrée et la fonction inverse 5 février 205 La fonction carrée et la fonction inverse Fonction carrée EXERCICE f est la fonction carrée. Calculer les images par f des nombres suivants : a) 4 b) 00 c) 0 d) 3 4 e) 0, EXERCICE 2 f est

Plus en détail

Nombres complexes. Lycée du parc. Année

Nombres complexes. Lycée du parc. Année Nombres complexes Lycée du parc Année 2014-2015 Introduction historique Au début du XVI ème siècle en Italie, Scipione del Ferro, découvre une formule permettant de résoudre les équations du type x 3 +

Plus en détail

Fonction exponentielle 1

Fonction exponentielle 1 Fonction eponentielle 1 Unicité de la solution de l équation différentielle Conséquences 1. Si f est une solution de l équation différentielle y = y, y(0) = 1, alors, pour tout réel, f( )f() = 1 et f()

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

PROPORTIONS (3) CALCUL ALGEBRIQUE (1)

PROPORTIONS (3) CALCUL ALGEBRIQUE (1) PROPORTIONS (3) Représentation graphique Si on représente des suites de nombres par un graphique, on reconnaît des suites proportionnelles au fait que les points sont alignés avec l'origine. Ex x 4 5 8

Plus en détail

Solution du sujet. Décembre 2010

Solution du sujet. Décembre 2010 Université Aix-Marseille 3 Cours MA106 010-11 Nous avons Solution du sujet Décembre 010 f(x) = x 3x + 4 et g(x) = ln x 1. Les polynômes sont bien définis pour tout nombre réel. La fonction f est donc bien

Plus en détail

NOM : DERIVATION 1ère S

NOM : DERIVATION 1ère S Exercice Dériver les fonctions suivantes : f(x) = x g(x) = 3x x 3 + 5x h(x) = ( x ) x k(x) = x + 5 x + D. LE FUR /?? Exercice Dériver les fonctions suivantes : f(x) = x 3x + g(x) = (x + 3)(3x 7) h(x) =

Plus en détail

SECOND DEGRÉ 1 POURQUOI CE CHAPITRE? 2 FONCTION POLYNÔME DU SECOND DEGRÉ

SECOND DEGRÉ 1 POURQUOI CE CHAPITRE? 2 FONCTION POLYNÔME DU SECOND DEGRÉ Chapitre 1 SECOND DEGRÉ 1 POURQUOI CE CHAPITRE? Une motivation parmi tant d'autres : lorsqu'on lance un objet, sa trajectoire est parabolique ; elle a une équation de la forme y = a 2 + b + c On peut alors

Plus en détail

Equations et inéquations

Equations et inéquations 1. Equations polynomiales CHAPITRE Equations et inéquations Partie A : Equations Définition. Une équation polynomiale d'inconnue est une équation de la forme (ou équivalente à) p ( ) =, où p est un polynôme

Plus en détail

Chapitre VI : Complexes (1) Forme algébrique

Chapitre VI : Complexes (1) Forme algébrique Forme algébrique. Ensemble des nombres complexes. Notion de nombres complexes Théorème l existe un ensemble, noté, appelé ensemble de nombres complexes qui possède les propriétés suivantes : R l addition

Plus en détail

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés

Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Nombres complexes Ecriture algébrique d un complexe Exercices corrigés Sont abordés dans cette fiche : Exercice 1 : calculs dans l ensemble des nombres complexes (addition, soustraction, multiplication,

Plus en détail

Notions sur les équations de récurrence linéaire à coefficicents constants

Notions sur les équations de récurrence linéaire à coefficicents constants Notions sur les équations de récurrence linéaire à coefficicents constants Hervé Hocquard Université de Bordeaux, France 27 septembre 2013 Généralités Définition On appelle équation de récurrence linéaire

Plus en détail

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui

Remarque : une fonction continue sur un intervalle possède une représentation graphique qui Chapitre 6 : CONTINUITE - DERIVATION 1. CONTINUITE 1. 1 Continuité en un point Définition Soit f une fonction numérique définie sur un intervalle I de R, et a un élément de I (distinct des bornes de I)

Plus en détail

GENERALITES SUR LES FONCTIONS

GENERALITES SUR LES FONCTIONS GENERALITES SUR LES FONCTIONS I. Notion de fonction numérique : 1 1) Définition, notations et vocabulaire : Soit D une partie de l'ensemble des réels. Lorsqu'à un réel x de D on associe un réel y, on définit

Plus en détail

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1

Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com. e x. e x + 1 Fonction exponentielle : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Calculer avec la fonction exponentielle Simplifier les expressions suivantes où x est un réel quelconque : a) e1+x

Plus en détail