Inégalités. c a + b 3 2,

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Inégalités. c a + b 3 2,"

Transcription

1 DOMAINE : Géométrie AUTEUR : Margaret BILU NIVEAU : Avancé STAGE : Montpellier 03 CONTENU : Eercices Inégalités - Quelques inégalités secondaires, mais utiles - Proposition. (Inégalité de Nesbitt) Soient a, b, c > 0 des réels. Alors a b + c + b c + a + avec égalité si et seulement si a = b = c. c a + b 3, Démonstration. Appelons I le côté gauche de l inégalité, et J = a(b + c) + b(c + a)+c(a+b). Alors par Cauch-Schwar, IJ (a+b+c). On se ramène donc à montrer (a + b + c) (ab + bc + ca) 3, ce qui est équivalent à vrai car équivalent à (a + b + c ) (ab + bc + ca), (a b) + (b c) + (c a) 0. Cette dernière inégalité fait aussi apparaître clairement le cas d égalité. Proposition. (Inégalité de Schur) Soient,, des réels positifs et r un nombre réel. Alors r ( )( ) + r ( )( ) + r ( )( ), l égalité étant atteinte lorsque = =, ou bien lorsque deu réels parmi,, sont égau et le troisième est nul.

2 Démonstration. L inégalité étant smétrique en,,, on peut supposer. On peut réécrire le côté gauche sous la forme r ( ) + ( r r + r ) + r ( ). Le premier et le troisième terme sont positifs. En ce qui concerne le deuième, si r 0 alors r r et si r < 0 alors r r, donc il est positif aussi, ce qui conclut. Le cas r = est particulièrement important. Il s écrit après développement ( ) Il a d autres formes équivalentes, par eemple ( + )( + )( + ). () En posant + + = k, cela se réécrit (k )(k )(k ). D autre part, en remarquant que l inégalité correspond à la positivité d un polnôme smétrique en,,, on peut réécrire cela en terme des fonctions smétriques élémentaires : σ = + +, σ = + +, σ 3 =. Un calcul simple montre que = σ 3 3σ σ + 3σ 3 et = σ σ 3σ 3. Ainsi, l inégalité de Schur se réécrit c est-à-dire σ 3 4σ σ + 9σ 3 0, ( + + ) ( + + )( + + ). () Il est aussi utile d avoir en tête la reformulation suivante de Cauch-Schwar (parfois appelée inégalité des mauvais élèves, ou lemme de T), qui facilite l application de Cauch-Schwar dans certains cas. Proposition 3. Soient a,..., a n et,..., n des réels strictement positifs. Alors a a n n (a a n ) n, avec égalité lorsque les vecteurs (a,..., a n ) et (,..., n ) sont colinéaires.

3 Eercice (IMO 995) Soient a, b, c > 0 tels que abc =. Montrer que a 3 (b + c) + b 3 (c + a) + c 3 (a + b) 3. - Inégalités avec condition sur le produit des variables - De nombreuses inégalités olmpiques font intervenir des variables a,..., a n soumises à une condition du tpe a... a n =. Une méthode très utile pour aborder ce genre d inégalités consiste à se débarrasser de cette contrainte en opérant un changement de variables du tpe ( ) α ( ) α ( ) α 3 a =, a =,..., a n =, où α est un réel à choisir, souvent pris égal à. Eemple 4. Soient a, b, c des réels positifs tels que abc =. Montrer que a ab + + b bc + + c ca + 3. La substitution la plus simple a =, b =, c = (obtenue en prenant par eemple = = abc, = bc, = c) transforme le côté gauche en = + + On applique l inégalité de Nesbitt pour conclure. n Remarque 5. Puisque les substitutions de ce genre peuvent compliquer sensiblement l inégalité à prouver, on a tout intérêt, pour gagner en clarté, à effectuer la substitution la plus judicieuse possible. Par eemple, ici, même si dans ce cas cela ne changeait pas grand chose à la lisibilité de l inégalité, on aurait pu choisir la substitution de sorte à ce que a et ab soient automatiquement réduits au même dénominateur, à savoir a =, b =, c =, ce qui donnait l inégalité de Nesbitt directement. Eercice (Russie 004) Montrer que si n > 3 et,..., n sont des réels strictement positifs de produit, alors n + n >.

4 Eercice 3 Soient a, b, c > 0 avec abc =. Montrer que 3 + a b + b c + c a a + b + c + a + b + c. Eercice 4 Soient a, b, c, d > 0 avec abcd =. Montrer que a( + b) + b( + c) + c( + d) + d( + a). Eercice 5 Soit n 3 et soient,..., n > 0 tels que... n =. Montrer que n 3 n + n, lorsque n vaut 3 ou 4. - Autres inégalités - Les eercices suivants tournent autour de la transformation de Ravi, de l inégalité de Schur, de l inégalité de Cauch-Schwar, et de la manipulation de racines carrées. Eercice 6 (Olmpiades indiennes 989) Soient a, b, c les longueurs des côtés d un triangle. Prouver que a b + c + b c + a + c a + b <. Eercice 7 (APMO 996) Soient a, b, c les longueurs des côtés d un triangle. Démontrer que a + b c + b + c a + c + a b a + b + c. Eercice 8 Soient a, b, c > 0 tels que abc =. Montrer que + a b + ab + + b c + bc + + c a + ca 3. 4

5 Eercice 9 Soient a, b, c les longueurs des côtés d un triangle. Montrer que 3( ab + bc + ca) a + b c + b + c a + c + a b. Eercice 0 (APMO 004) Soient a, b, c > 0. Montrer que (a + )(b + )(c + ) 9(ab + bc + ca) - Solutions des eercices - Solution de l eercice On applique Cauch-Schwar de la manière suivante (en s aidant éventuellement de la proposition 3 ci-dessus). a a(b + c) + b b(c + a) + c c(a + b) En simplifiant et en utilisant abc =, le côté droit devient ( a + b + c) a(b + c) + b(c + a) + c(a + b). (ab + bc + ca) (ab + bc + ca) (ab + bc + ca) 3 (abc) 3 3 = où la dernière inégalité vient de l IAG. Solution de l eercice On utilise les substitutions = a a, = a 3 a,..., n = a a n (qui ont l avantage de mettre i et i i+ au même dénominateur pour tout i automatiquement). Alors on obtient : a a + a + a a n a n + a + a > n i= a i a a n =. Solution de l eercice 3 Ici, pour n avoir aucun carré au dénominateur, ce qui va faciliter la mise au même dénominateur ultérieure, on va prendre a =, b =, c =, ce qui donne

6 On multiplie par des deu côtés pour obtenir , qui est juste l inégalité de Schur. Solution de l eercice 4 De même, on essae de se débrouiller pour que a et ab soient au même dénominateur. La substitution qu on choisit est donc L inégalité devient donc a =, b =, c = t, d = t t + t + + Puis, on a applique Cauch-Schwar pour obtenir t + Il reste donc à prouver t + + t +. t + ( t) t + t + + t + t. ( t) ( t + t + + t + t), ce qui est équivalent à qui à son tour est équivalent à t ( + t), ( ) + ( t) 0. Solution de l eercice 5 Cette fois-ci, histoire d avoir le moins de carrés possible, et d avoir i et i i+ au même dénominateur, nous allons poser a a3 a =, =,..., n =. a a a n L inégalité devient alors a a + a a 3 + a a 3 + a a a n a + a n a n.

7 D après l IAG, on a a i a i+ a i+a i+, ce qui nous conduit à montrer a a + a + a 3 + a a 3 + a + a En appliquant Cauch-Schwar, cela revient à prouver a n a + a n + a n 4. (a a n ) a (a + a + a 3 ) + a (a + a 3 + a 4 ) a n (a n + a + a ) n 4. Distinguons maintenant suivant si n = 3 ou n = 4. Si n = 4, l inégalité se réécrit (a +a +a 3 +a 4 ) a +a a +a a 3 +a +a a 3 +a a 4 +a 3+a 3 a 4 +a 3 a +a 4+a 4 a +a 4 a, et on constate que c est en fait même une égalité. Si n = 3, on doit prouver 4(a + a + a 3 ) 3(a + a a + a a 3 + a + a a 3 + a a + a 3 + a 3 a + a 3 a ), ce qui est équivalent à qui est classique. a + a + a 3 a a + a a 3 + a 3 a, Solution de l eercice 6 On applique la transformation de Ravi : a = +, b = +, c = +, où,, > 0. On a donc < =. Solution de l eercice 7 Après avoir appliqué la transformation de Ravi, on obtient , et de même Par concavité de la fonction racine carrée, on a avec et, puis avec et. En sommant ces trois inégalités, on obtient inégalité cherchée. Solution de l eercice 8 En utilisant la condition sur abc, on peut réécrire l inégalité sous la forme a + b b + c c + a a + + b + + c + 3 7

8 En appliquant l IAG, on se ramène à (a + b)(b + c)(c + a) (a + )(b + )(c + ). Pour démontrer cette inégalité, deu méthodes. Première méthode : on fait la substitution a =, b =, c =, ce qui donne ( + )( + )( + ) ( + )( + )( + ). On applique Cauch-Schwar sous la forme ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ) ( + ). On a le résultat en multipliant les trois inégalités. Deuième méthode : on pose p = a + b + c, q = ab + bc + ca. On remarque que pq = (a + b + c)(ab + bc + ca) = (a + b)(b + c)(c + a) +, donc l inégalité cherchée revient à pq + p + q +, c est-à-dire pq p + q + 3. D autre part, l IAG donne p 3 et q 3, donc on a pq = pq + pq 3p + 3q p + q + p + q p + q + 3. Solution de l eercice 9 On effectue une transformation de Ravi et on met tout au carré. On obtient 3 ( + )( + )+3 ( + )( + )+3 ( + )( + ) (++)+4( + + ) Par Cauch-Schwar, ( + )( + ) ( + ), et de même pour les deu autres termes. On doit alors prouver 3( + + ) + 3( + + ) ( + + ) + 4( + + ), c est-à-dire

9 Or l IAG appliquée trois fois nous donne ce qui conclut , Solution de l eercice 0 Quand on développe tout, cela donne (abc) + (a b + b c + c a ) + 4(a + b + c ) + 8 9(ab + bc + ca). On va essaer de faire ressembler ça à la variante () de l inégalité de Schur, réécrite sous la forme ( + + ) ( + + ). En particulier, nous allons faire disparaître les termes en a b grâce à l inégalité (a b +b c +c a )+6 (a b +)+(b c +)+(c a +) 4(ab+bc+ca) obtenue à partir de l IAG. D autre part 3(a + b + c ) 3(ab + bc + ca), et il nous reste donc à prouver (abc) + (ab + bc + ca) (a + b + c ). Pour obtenir ça, on applique l IAG deu fois, puis la variante () de l inégalité de Schur telle qu elle est écrite ci-dessus : (abc) + = (abc) + + 3(abc) 3 abc 9 a + b + c 4(ab + bc + ca) (a + b + c) = (ab + bc + ca) (a + b + c ). 9

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

2.4 Représentation graphique, tableau de Karnaugh

2.4 Représentation graphique, tableau de Karnaugh 2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables

Plus en détail

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot

SOMMES ET PRODUITS. 1 Techniques de calcul. 1.1 Le symbole. 1.2 Règles de calcul. Laurent Garcin MPSI Lycée Jean-Baptiste Corot SOMMES ET PRODUITS 1 Techniques de calcul 1.1 Le symbole Notation 1.1 Soient m et n deux entiers naturels. Alors { a m + a m+1 + + a + a n si m n, a = 0 sinon. On peut aussi noter m n =m a ou encore m,n

Plus en détail

Introduction aux inégalités

Introduction aux inégalités Introduction aux inégalités -cours- Razvan Barbulescu ENS, 8 février 0 Inégalité des moyennes Faisons d abord la liste des propritétés simples des inégalités: a a et b b a + b a + b ; s 0 et a a sa sa

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

La médiatrice d un segment

La médiatrice d un segment EXTRT DE CURS DE THS DE 4E 1 La médiatrice d un segment, la bissectrice d un angle La médiatrice d un segment Définition : La médiatrice d un segment est l ae de smétrie de ce segment ; c'est-à-dire que

Plus en détail

Olympiades Suisses de Mathématiques. Inéquations. Thomas Huber. Actualisé: 25 juin 2014. Table des matières

Olympiades Suisses de Mathématiques. Inéquations. Thomas Huber. Actualisé: 25 juin 2014. Table des matières Olympiades Suisses de Mathématiques Inéquations Thomas Huber Actualisé: 5 juin 04 Table des matières Transformations algébriques. Il n eiste pas de carrés négatifs Nous allons commencer ce script par la

Plus en détail

un repère orthonormé de l espace.

un repère orthonormé de l espace. Terminale S GEOMETRIE Ch 13 DANS L ESPACE. Soit ( O ; i, j, k ) un repère orthonormé de l espace. I) Droites et plans dans l espace : Propriété 1 : Soient A et B deux points de l espace. AB est l ensemble

Plus en détail

Extrait de cours maths 3e. Multiples et diviseurs

Extrait de cours maths 3e. Multiples et diviseurs Extrait de cours maths 3e I) Multiples et diviseurs Multiples et diviseurs Un multiple d'un nombre est un produit dont un des facteurs est ce nombre. Un diviseur du produit est un facteur de ce produit.

Plus en détail

Le second degré. Table des matières

Le second degré. Table des matières Le second degré Table des matières 1 La forme canonique du trinôme 1.1 Le trinôme du second degré......................... 1. Quelques exemples de formes canoniques................. 1.3 Forme canonique

Plus en détail

Les graphes planaires

Les graphes planaires Les graphes planaires Complément au chapitre 2 «Les villas du Bellevue» Dans le chapitre «Les villas du Bellevue», Manori donne la définition suivante à Sébastien. Définition Un graphe est «planaire» si

Plus en détail

Solutions du Concours Fryer 2003

Solutions du Concours Fryer 2003 Concours canadien de mathématiques Une activité du Centre en mathématiques et en Université de Waterloo, Waterloo, Ontario Solutions du Concours Fryer 2003 (9 e année) (Secondaire III au Québec) pour les

Plus en détail

le triangle de Pascal - le binôme de Newton

le triangle de Pascal - le binôme de Newton 1 / 51 le triangle de Pascal - le binôme de Newton une introduction J-P SPRIET 2015 2 / 51 Plan Voici un exposé présentant le triangle de Pascal et une application au binôme de Newton. 1 2 3 / 51 Plan

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3

1.1 Définitions... 2 1.2 Opérations élémentaires... 2 1.3 Systèmes échelonnés et triangulaires... 3 Chapitre 5 Systèmes linéaires 1 Généralités sur les systèmes linéaires 2 11 Définitions 2 12 Opérations élémentaires 2 13 Systèmes échelonnés et triangulaires 3 2 Résolution des systèmes linéaires 3 21

Plus en détail

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE

OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE OLYMPIADES FRANÇAISES DE MATHÉMATIQUES ÉPREUVE DE SÉLECTION 2012 CORRIGÉ EXERCICES POUR LES ÉLÈVES DE COLLÈGE ET DE SECONDE Exercice 1. Fred et Sarah sont les aînés d une même et grande famille. Fred a

Plus en détail

Chapitre 1 : Évolution COURS

Chapitre 1 : Évolution COURS Chapitre 1 : Évolution COURS OBJECTIFS DU CHAPITRE Savoir déterminer le taux d évolution, le coefficient multiplicateur et l indice en base d une évolution. Connaître les liens entre ces notions et savoir

Plus en détail

Cours de mathématiques - Alternance Gea

Cours de mathématiques - Alternance Gea Cours de mathématiques - Alternance Gea Anne Fredet 11 décembre 005 1 Calcul matriciel Une matrice n m est un tableau de nombres à n lignes( et m colonnes. 1 0 Par exemple, avec n = et m =, on peut considérer

Plus en détail

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES

Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES Chapitre 06 : PROPORTIONNALITÉ ET FONCTIONS LINÉAIRES 6 cm I) Synthèse sur la proportionnalité : 1) Définition : Grandeurs proportionnelles : Dire que deux grandeurs sont proportionnelles revient à dire

Plus en détail

Factorisation Factoriser en utilisant un facteur commun Fiche méthode

Factorisation Factoriser en utilisant un facteur commun Fiche méthode Factorisation Factoriser en utilisant un facteur commun Fiche méthode Rappel : Distributivité simple Soient les nombres, et. On a : Factoriser, c est transformer une somme ou une différence de termes en

Plus en détail

Démontrer le caractère injectif / surjectif / bijectif d une application

Démontrer le caractère injectif / surjectif / bijectif d une application Démontrer le caractère injectif / surjectif / bijectif d une application Il s agit donc de montrer une propriété commençant par un symbole. La démonstration débute donc par : Soit (x 1, x 2 ) E 2. La propriété

Plus en détail

Fonctions homographiques

Fonctions homographiques Fonctions homographiques On donne ci-dessous deux définitions des fonctions homographiques, et on montre que ces deux définitions sont équivalentes. On décrit la courbe représentative d une fonction homographique.

Plus en détail

Cahier de vacances - Préparation à la Première S

Cahier de vacances - Préparation à la Première S Cahier de vacances - Préparation à la Première S Ce cahier est destiné à vous permettre d aborder le plus sereinement possible la classe de Première S. Je vous conseille de le travailler pendant les 0

Plus en détail

Intégration de polynômes Points de Gauss

Intégration de polynômes Points de Gauss Intégration de polynômes Points de Gauss Commençons par un exercice classique de premier cycle. Problème 1 Trouver trois réels α, β et γ tels que, pour tout polynôme P de degré au plus 2, on ait : ( )

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

CHAPITRE 7 Fonction carré et fonction inverse

CHAPITRE 7 Fonction carré et fonction inverse CHAPITRE 7 Fonction carré et fonction inverse A) La fonction "carré" : f() = ² ) Domaine de définition Elle est définie sur ℝ complet (on peut toujours multiplier deu nombres entre eu). 2) Sens de variation

Plus en détail

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009

Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 Diplôme National du Brevet Métropole - La Réunion - Mayotte - Session 2009 L usage de la calculatrice est autorisé, dans le cadre de la réglementation en vigueur. I - Activités numériques II - Activités

Plus en détail

Fiche PanaMaths Calculs avec les fonctions sous Xcas

Fiche PanaMaths Calculs avec les fonctions sous Xcas Fiche PanaMaths Calculs avec les fonctions sous Xcas Cette fiche destinée aux élèves des classes de Terminale requiert un premier niveau de connaissance du logiciel Xcas. Définition d une fonction Fonctions

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

Matrices et déterminants

Matrices et déterminants Matrices et déterminants Matrices Définition.. Une matrice réelle (ou complexe) M = (m i,j ) (m, n) à m lignes et n colonnes est un tableau à m lignes et n colonnes de réels (ou de complexes). Le coefficient

Plus en détail

Optimisation linéaire

Optimisation linéaire Optimisation linéaire Recherche opérationnelle GC-SIE Algorithme du simplexe Phase I 1 Introduction Algorithme du simplexe : Soit x 0 une solution de base admissible Comment déterminer x 0? Comment déterminer

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

Exercices Alternatifs. Une fonction continue mais dérivable nulle part

Exercices Alternatifs. Une fonction continue mais dérivable nulle part Eercices Alternatifs Une fonction continue mais dérivable nulle part c 22 Frédéric Le Rou (copyleft LDL : Licence pour Documents Libres). Sources et figures: applications-continues-non-derivables/. Version

Plus en détail

III- Raisonnement par récurrence

III- Raisonnement par récurrence III- Raisonnement par récurrence Les raisonnements en mathématiques se font en général par une suite de déductions, du style : si alors, ou mieux encore si c est possible, par une suite d équivalences,

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements

3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements 3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?

Plus en détail

Formules d inclusion-exclusion

Formules d inclusion-exclusion Université de Rouen L1 M.I.EEA 2011 2012 Mathématiques discrètes Formules d inclusion-exclusion Je présente ici une correction détaillée de l Exercice 5 de la Feuille d exercices 1, en reprenant le problème

Plus en détail

CHAPITRE 6 Les vecteurs

CHAPITRE 6 Les vecteurs A/ Vecteurs Cours de Mathématiques Classe de Seconde Chapitre 6 Les Vecteurs CHAPITRE 6 Les vecteurs 1) Définition et exemples a) Définition Soient deux points A et B. On appelle vecteur AB "la flèche"

Plus en détail

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. 1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le

Plus en détail

Université Paris-Est Val-de-Marne Créteil. Fiche 2 Résolution d équations

Université Paris-Est Val-de-Marne Créteil. Fiche 2 Résolution d équations Université Paris-Est Val-de-Marne Créteil DAEU-B Fiche 2 Résolution d équations 1 Une équation est une question Une équation correspond à une formulation mathématique de certaines questions. Elle se présente

Plus en détail

Introduction à l optimisation

Introduction à l optimisation Université du Québec à Montréal Introduction à l optimisation Donnée dans le cadre du cours Microéconomie II ECO2012 Baccalauréat en économique Par Dominique Duchesneau 21 janvier septembre 2008 Ce document

Plus en détail

Exercice 2. Exercice 3

Exercice 2. Exercice 3 Feuille d eercices n 10 Eercice 1 Une voiture parcours 150 km. Elle effectue une première partie du trajet à la vitesse moyenne de 80 km/h. On notera la longueur de cette partie, eprimée en km Suite à

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB

Savoir que AB= CD équivaut à ABDC est un parallélogramme, éventuellement aplati. Connaître les coordonnées (x B x A ; y B y A ) du vecteur AB Chapitre 3 La notion de vecteurs CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Vecteurs Définition de la translation qui transforme un point A du plan en un point B. Vecteur AB associé. Égalité de deux vecteurs

Plus en détail

Fonction polynôme du second degré : Forme canonique

Fonction polynôme du second degré : Forme canonique Fonction polynôme du second degré : Forme canonique I) Introduction. Soit g(x) = a(x - s)²+h. Toute fonction polynôme du second degré peut s écrire sous cette forme. Le passage de la forme développée à

Plus en détail

Chapitre IV Bases et dimension d un espace vectoriel

Chapitre IV Bases et dimension d un espace vectoriel Chapitre IV Bases et dimension d un espace vectoriel Objectif : Nous allons voir comment fabriquer des systèmes de coordonnées pour les vecteurs d un espace vectoriel général. Dans ce chapitre désigne

Plus en détail

Débuter en algorithmique

Débuter en algorithmique Isabelle Morel 1 1 Qu est-ce qu un algorithme? Débuter en algorithmique Définition Un alogorithme est une suite d opérations élémentaires, à appliquer dans un ordre déterminé à des données. Un algorithme

Plus en détail

Géométrie dans l Espace

Géométrie dans l Espace Géométrie dans l Espace Année scolaire 006/007 Table des matières 1 Vecteurs de l Espace 1.1 Extension de la notion de vecteur à l Espace............................. 1. Calcul vectoriel dans l Espace......................................

Plus en détail

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant

Le problème des multiplications matricielles enchaînées peut être énoncé comme suit : étant Licence informatique - L Année 0/0 Conception d algorithmes et applications (LI) COURS Résumé. Dans cette cinquième séance, nous continuons l exploration des algorithmes de type Programmation Dynamique.

Plus en détail

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre

1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre 1 Fiche méthodologique Passage d un mode de représentation d un sev à l autre BCPST Lycée Hoche $\ CC BY: Pelletier Sylvain Les deux modes de représentation des sous-espaces vectoriels Il existe deux modes

Plus en détail

Outils d analyse fonctionnelle Cours 5 Théorie spectrale

Outils d analyse fonctionnelle Cours 5 Théorie spectrale Outils d analyse fonctionnelle Cours 5 Théorie spectrale 22 septembre 2015 Généralités Dans tout ce qui suit V désigne un espace de Hilbert réel muni d un produit scalaire x, y. Définition Soit A une application

Plus en détail

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.

DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur

Plus en détail

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01

+ 1. Qu est ce que cela donne pour notre calcul de 1,01? On pose x = 1,01 donc f (x) 1 + 1 0,01 Eo7 Dérivée d une fonction Vidéo partie. Définition Vidéo partie. Calculs Vidéo partie 3. Etremum local, théorème de Rolle Vidéo partie 4. Théorème des accroissements finis Eercices Fonctions dérivables

Plus en détail

avec des nombres entiers

avec des nombres entiers Calculer avec des nombres entiers Effectuez les calculs suivants.. + 9 + 9. Calculez. 9 9 Calculez le quotient et le rest. : : : : 0 :. : : 9 : : 9 0 : 0. 9 9 0 9. Calculez. 9 0 9. : : 0 : 9 : :. : : 0

Plus en détail

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES

UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010. N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES UNIVERSITE D ORLEANS SL01MA11, Groupes 1 et 5 Département de Mathématiques 2009-2010 N. El Hage Hassan S EXPRIMER EN MATHÉMATIQUES 1 Les énoncés La plupart des phrases que l on rencontre dans un livre

Plus en détail

Exercices 4. Nombres réels...

Exercices 4. Nombres réels... Exercices 4 Nombres réels La maîtrise des inégalités et de la notion de borne supérieure est un préalable incontournable à l étude de l analyse réelle. 4 Nombres réels..........................................................................

Plus en détail

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006

CONCOURS D ADMISSION. Option économique MATHEMATIQUES III. Année 2006 ESSEC M B A CONCOURS D ADMISSION Option économique MATHEMATIQUES III Année 2006 La présentation, la lisibilité, l orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront

Plus en détail

La science des fusées 1

La science des fusées 1 Mth1101 - TD - Application 9 : optimisation avec contraintes, multiplicateurs de Lagrange La science des fusées 1 Introduction Une fusée comporte plusieurs étages composés d un moteur et de son carburant.

Plus en détail

Devoir surveillé n 1 : correction

Devoir surveillé n 1 : correction E1A-E1B 013-01 Devoir surveillé n 1 : correction Samedi 8 septembre Durée : 3 heures. La calculatrice est interdite. On attachera une grande importance à la qualité de la rédaction. Les questions du début

Plus en détail

Groupe seconde chance Feuille d exercices numéro 4

Groupe seconde chance Feuille d exercices numéro 4 Groupe seconde chance Feuille d exercices numéro 4 Exercice 1 Ecrire un programme de construction de la figure suivante. On utilisera seulement deux mesures : le rayon du cercle est 8 cm, la largeur d

Plus en détail

Suites numériques 3. 1 Convergence et limite d une suite

Suites numériques 3. 1 Convergence et limite d une suite Suites numériques 3 1 Convergence et limite d une suite Nous savons que les termes de certaines suites s approchent de plus en plus d une certaine valeur quand n augmente : par exemple, les nombres u n

Plus en détail

Invariants, Principe des tiroirs

Invariants, Principe des tiroirs DOMAINE : Combinatoire AUTEUR : Pierre BERTIN NIVEAU : Débutants STAGE : Montpellier 2013 CONTENU : Exercices Invariants, Principe des tiroirs - Principe des tiroirs - S il y a (n + 1) chaussettes à ranger

Plus en détail

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction

Bien lire l énoncé 2 fois avant de continuer - Méthodes et/ou Explications Réponses. Antécédents d un nombre par une fonction Antécédents d un nombre par une fonction 1) Par lecture graphique Méthode / Explications : Pour déterminer le ou les antécédents d un nombre a donné, on trace la droite (d) d équation. On lit les abscisses

Plus en détail

MULTIPLICATION RAPIDE : KARATSUBA ET FFT

MULTIPLICATION RAPIDE : KARATSUBA ET FFT MULTIPLICATION RAPIDE : KARATSUBA ET FFT 1. Introduction La multiplication est une opération élémentaire qu on utilise évidemment très souvent, et la rapidité des nombreux algorithmes qui l utilisent dépend

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51

Résolution de systèmes linéaires : Méthodes directes. Polytech Paris-UPMC. - p. 1/51 Résolution de systèmes linéaires : Méthodes directes Polytech Paris-UPMC - p. /5 Rappels mathématiques s Propriétés - p. 2/5 Rappels mathématiques Soit à résoudre le système linéaire Ax = b. Rappels mathématiques

Plus en détail

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre

5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 5. Options américaines Une option américaine peut être exercée à n importe quelle instant compris entre 0 et l échéance N. Définition 5.1. Une option américaine est définie par une suite (h n ) n=0..n,

Plus en détail

Développement décimal d un réel

Développement décimal d un réel 4 Développement décimal d un réel On rappelle que le corps R des nombres réels est archimédien, ce qui permet d y définir la fonction partie entière. En utilisant cette partie entière on verra dans ce

Plus en détail

Leçon N 2C Fonctions de calcul

Leçon N 2C Fonctions de calcul Leçon N 2C Fonctions de calcul Cette deuxième leçon concerne les fonctions de calcul dans les tableurs. 1 Structure des formules de calcul Que vous utilisiez EXCEL ou que vous utilisiez CALC, la méthode

Plus en détail

Dérivées d ordres supérieurs. Application à l étude d extrema.

Dérivées d ordres supérieurs. Application à l étude d extrema. Chapitre 5 Dérivées d ordres supérieurs. Application à l étude d extrema. On s intéresse dans ce chapitre aux dérivées d ordre ou plus d une fonction de plusieurs variables. Comme pour une fonction d une

Plus en détail

Primitives Cours maths Terminale S

Primitives Cours maths Terminale S Primitives Cours maths Terminale S Dans ce module est introduite la notion de primitive d une fonction sur un intervalle. On définit cette notion puis on montre qu une fonction admet une infinité de primitives

Plus en détail

OPERATIONS SUR LE SYSTEME BINAIRE

OPERATIONS SUR LE SYSTEME BINAIRE OPERATIONS SUR LE SYSTEME BINAIRE 1) Nombres signés Nous n avons, jusqu à présent tenu compte, que des nombre positifs. Pourtant, la plupart des dispositifs numériques traitent également les nombres négatifs,

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements

Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements Exo7 Logique et raisonnements Vidéo partie 1. Logique Vidéo partie 2. Raisonnements Exercices Logique, ensembles, raisonnements Quelques motivations Il est important d avoir un langage rigoureux. La langue

Plus en détail

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide

1. x 4 7x 2 + 12 = 0. 2. x 4 + 3x 2 + 2 = 0. 3. 4x 4 + 4x 2 3 = 0. 4. x 3 x 4 = 0. Aide 1 Équations du e degré Résoudre dans R les équations suivantes : 1 3 5 = 0 5 + = 0 3 + 6 = 0 4 6 + 9 = 0 5 ( 3) = ( 1) 6 ( )( + 3) = ( )(4 + 1) Équations avec changements de variable Résoudre dans R les

Plus en détail

Construction d un cercle tangent à deux cercles donnés.

Construction d un cercle tangent à deux cercles donnés. Préparation au CAPES Strasbourg, octobre 2008 Construction d un cercle tangent à deux cercles donnés. Le problème posé : On se donne deux cercles C et C de centres O et O distincts et de rayons R et R

Plus en détail

Théorie et codage de l information

Théorie et codage de l information Théorie et codage de l information Mesure quantitative de l information - Chapitre 2 - Information propre et mutuelle Quantité d information propre d un événement Soit A un événement de probabilité P (A)

Plus en détail

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques

UNIVERSITÉ DE CERGY Année 2012-2013 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques 1 UNIVERSITÉ DE CERGY Année 2012-201 U.F.R. Économie & Gestion Licence d Économie et Mathématiques MATH104 : Mathématiques Chapitre III : Polynômes 1 Fonctions polynômes & polynômes Définition 1. Soit

Plus en détail

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS

JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS JEUX AVEC LES CHIFFRES DES DÉVELOPPEMENTS DÉCIMAUX DE QUELQUES RATIONNELS Jean Luc Bovet, Auvernier Notre merveilleuse manière d écrire les nombres, due, dit-on, aux Indiens via les Arabes, présente en

Plus en détail

Cours de terminale S Suites numériques

Cours de terminale S Suites numériques Cours de terminale S Suites numériques V. B. et S. B. Lycée des EK 13 septembre 2014 Introduction Principe de récurrence Exemple En Mathématiques, un certain nombre de propriétés dépendent d un entier

Plus en détail

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2

ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 ADMISSION AU COLLEGE UNIVERSITAIRE Samedi 1 mars 2014 MATHEMATIQUES durée de l épreuve : 3h coefficient 2 Le sujet est numéroté de 1 à 5. L annexe 1 est à rendre avec la copie. L exercice Vrai-Faux est

Plus en détail

Produit scalaire dans l Espace

Produit scalaire dans l Espace Produit scalaire dans l Espace Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Produit scalaire du plan 1.1 Différentes expressions du produit scalaire............................... 1.

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

Les matrices. 1 Définitions. 1.1 Matrice

Les matrices. 1 Définitions. 1.1 Matrice Les matrices 2012-2013 1 Définitions 11 Matrice Définition 1 Une matrice m n est un tableau de nombres à m lignes et n colonnes Les nombres qui composent la matrice sont appelés les éléments de la matrice

Plus en détail

À propos des matrices échelonnées

À propos des matrices échelonnées À propos des matrices échelonnées Antoine Ducros appendice au cours de Géométrie affine et euclidienne dispensé à l Université Paris 6 Année universitaire 2011-2012 Introduction Soit k un corps, soit E

Plus en détail

Problèmes à propos des nombres entiers naturels

Problèmes à propos des nombres entiers naturels Problèmes à propos des nombres entiers naturels 1. On dispose d une grande feuille de papier, on la découpe en 4 morceaux, puis on déchire certains morceaux (au choix) en 4 et ainsi de suite. Peut-on obtenir

Plus en détail

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2

x 8 = 0 3x - 6 = 2x + 2 3x² 6 = 2x² + 2 Partie numérique : 16 points Exercice n 1 (4 points) : Pour chaque ligne du tableau ci-dessous, 3 réponses sont proposées, mais une seule est exacte. Aucune justification n'est demandée. Écrire le numéro

Plus en détail

Analyse Combinatoire

Analyse Combinatoire Analyse Combinatoire 1) Équipes On dispose d un groupe de cinq personnes. a) Combien d équipes de trois personnes peut-on former? b) Combien d équipes avec un chef, un sous-chef et un adjoint? c) Combien

Plus en détail

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n.

I) Deux propriétés importantes Propriété 1 Si A est multiple de B et B est un multiple de n, alors A est un multiple de n. Extrait de cours de maths de 5e Chapitre 1 : Arithmétique Définition 1. Multiples et diviseurs Si, dans une division de D par d, le reste est nul, alors on dit que D est un multiple de d, que d est un

Plus en détail

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le

Exemple. Il ne faudra pas confondre (101) 2 et (101) 10 Si a 0,a 1, a 2,, a n sont n+1 chiffres de 0 à 1, le Chapitre I - arithmé La base décimale Quand on représente un nombre entier, positif, on utilise généralement la base 10. Cela signifie que, de la droite vers la gauche, chaque nombre indiqué compte 10

Plus en détail

Date : 03.12.2013 La feuille de format A4 et ses cylindres présentation

Date : 03.12.2013 La feuille de format A4 et ses cylindres présentation Date : 03.1.013 a feuille de format A4 et ses cylindres présentation Titre : a feuille de format A4 et ses cylindres Numéro de la dernière page : 8 Degré : 11 ème S+C : première partie 11 ème S + 1 ère

Plus en détail

CHAPITRE 3 Repères, points et droites

CHAPITRE 3 Repères, points et droites CHAPITRE 3 Repères, points et droites A) Repères et coordonnées des points 1) Repères Pour représenter le plan en géométrie analytique, on a besoin de définir deux axes, qu'on appelle axe des abscisses

Plus en détail

Fonctions - Continuité Cours maths Terminale S

Fonctions - Continuité Cours maths Terminale S Fonctions - Continuité Cours maths Terminale S Dans ce module, introduction d une nouvelle notion qu est la continuité d une fonction en un point. En repartant de la définition et de l illustration graphique

Plus en détail

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL

Procédure. Exemple OPÉRATIONS DANS UN SYSTÈME POSITIONNEL Opérations dans un système positionnel OPÉRATIONS DANS UN SYSTÈME POSITIONNEL INTRODUCTION Dans tout système de numération positionnel, les symboles sont utilisés de façon cyclique et la longueur du correspond

Plus en détail

Cours 3: Inversion des matrices dans la pratique...

Cours 3: Inversion des matrices dans la pratique... Cours 3: Inversion des matrices dans la pratique... Laboratoire de Mathématiques de Toulouse Université Paul Sabatier-IUT GEA Ponsan Module complémentaire de maths, année 2012 1 Rappel de l épisode précédent

Plus en détail

Rapport Technique No. GIDE-01-2013. Soyons un peu logiques! par. Jean-Marc BERNARD GIDE <jeanmarc@gide.net> GIDE

Rapport Technique No. GIDE-01-2013. Soyons un peu logiques! par. Jean-Marc BERNARD GIDE <jeanmarc@gide.net> GIDE Rapport Technique No. -01-2013 Soyons un peu logiques! par Jean-Marc BERNARD 17 rue La Noue Bras de Fer 44200 Nantes, France 28 février 2014 Soyons un peu logiques! Jean-Marc BERNARD

Plus en détail

Cours de mathématiques : Equation du second degré

Cours de mathématiques : Equation du second degré Cours de mathématiques : Equation du second degré I ) Formes de l'équation du second degré. L'équation du deuxiéme degré à une inconnue est celle où l'inconnue est élévé à la puissance de 2, sans y etre

Plus en détail

ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1

ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ. Exercice 1 ANALYSE GÉNÉRALE - PROPOSITION DE CORRIGÉ OLIVIER COLLIER Exercice 1 Le calcul de la banque. 1 Au bout de deux ans, la banque aurait pu, en prêtant la somme S 1 au taux d intérêt r pendant un an, obtenir

Plus en détail

La notion de dualité

La notion de dualité La notion de dualité Dual d un PL sous forme standard Un programme linéaire est caractérisé par le tableau simplexe [ ] A b. c Par définition, le problème dual est obtenu en transposant ce tableau. [ A

Plus en détail