Chapitre 8 Produit scalaire.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Chapitre 8 Produit scalaire."

Transcription

1 Chapitre 8 Produit scalaire I - Définitions équivalentes Origine du produit scalaire (Physique) Le travail d une force : W AB ( = Calculer le travail de la force F 1 d intensité 3 et le travail de la force F 2 d intensité 2 Rappel : Soit un vecteur et soit A et B deux points tels que : La norme d un vecteur notée, est donnée par : = Dans un repère orthonormé, si a pour coordonnées, alors : Voir quelques propriétés p 350 A ) Définitions géométriques Définitions : Si et sont deux vecteurs non nuls, tels que et leur produit scalaire est le nombre réel, noté défini par : Ici, on parle de travail mécanique Si le travail est positif, le travail est dit moteurl angle est compris entre 0 et 90 Si le travail est négatif, le travail est dit résistant l angle est compris entre 90 et 180 On peut rappeller que sous certaines conditions, on a les variations d énergie cinétique suivantes E c (B)- E c (A) = AB( ext ) L énérgie cinétique est l énergie qui dépend du mouvement, de la vitesse et du poids Si et sont deux vecteurs nuls, Exemple : Calculer le produit scalaire D où = 5 3 Illustration : une balle tirée d un pistolet a plus d énergie cinétique que la même balle lancée à la main La balle est tirée sur une pomme et on considère qu il y a conservation d énergie mécanique, Si la balle est lancée à la main, la pomme va uniquement se déformer pour absorber la petite quantité d energie Si la balle est tirée au pistolet, la pomme va exploser pour absorber la grande quantité d energie

2 Propriété : B ) Produit scalaire et normes Propriété : Pour tous vecteurs et, on a : Où H est le projeté orthogonal du point C sur la droite (AB) Démonstration en exercice C ) Produit scalaire en repère orthonormé Si, on a : AH = AC cos * Si et π, on a : - AH = AC cos ** Propriété : Dans un repère orthonormé, soit et deux vecteurs alors : Démonstration en exercice Exemple : Dans chacun des cas suivants, choisir l expression la plus adaptée pour calculer le produit scalaire * cos ** cos (π - ) = Corollaire : où H est le projeté orthogonal du point C sur la droite (AB) Le produit scalaire du vecteur par lui-même est appelé carré scalaire de, noté On a puisque cos

3 II - Propriétés algébriques du produit scalaire III - Application au calcul de longueurs et d angles Propriétés : Pour tous vecteurs et du plan et pour tout réel k, on a : Symétrie : ; Théorème de la médiane : Soit A,B et M trois points du plan, et I le milieu du segment [AB] Alors : Linéarité : ; Identités remarquables : D où en développant, on obtient : = Voir livre p 352 pour une reformulation Symétrie : Or Et car Linéarité : On peut utiliser l expression du produit scalaire en repère orthonormé Si Et on obtient : Faire la deuxième alors Identités remarquables : Il suffit de "développer" Donc Ce théorème permet de calculer les longueurs des médianes d un triangle lorsqu on connait les longueurs des trois côtés Théorème d Al-Kashi (Pythagore généralisé) Soit ABC un triangle indication

4 Exemple : Déclic ABCD est un parallélogramme de centre I On sait que : AB = 7 cm, AD = 5cm et BD = 8cm 1) Déterminer la longueur de la diagonale [AC] 2) Déterminer les angles du parallélogramme à 1 près 3) En déduire l aire de ABCD 1) Les diagonales du parallélogramme ABCD se coupent en leur milieu donc AC = 2AI En appliquant le th de la médiane dans le triangle ABD, on a : D où et donc AI = 2) Le Théorème d Al-Kashi dans le triangle ABD donne : Soit d où Comme cette valeur du cosinus n est pas une valeur remarquable, on utilise la calculatrice mise sous mode degré ; d où est un angle supplémentaire de, donc : ; d où 3) En appelant H le projeté orthogonale de D sur (AB), l aire S de ABCD est donnée par : Comme, Dans le chapitre suivant, nous nous placerons dans un repère orthonormé (O ; ) soit parce qu il sera donné explicitement soit parce qu il sera induit implicitement par le calcul du cos expliqué dans le chapitre 5 (O ; I ; J) avec OIJ triangle isocèle rectangle en O et OI= 1 Les démonstrations pourront donc être réalisées à l aide des coordonnées On a vu dans les démonstrations des propriétés que le calcul du produit scalaire ne dépendait que de l unité de longueur choisie et non du repère IV - Orthogonalité A ) Vecteurs orthogonaux Définition : Deux vecteurs sont orthogonaux lorsque, c est-à-dire lorsque l angle ( est droit (de mesure ou modulo [2π] ou bien l un des vecteurs est nuls Remarque : Dans un repère orthonormé (O ; I ; J) les vecteurs sont orthogonaux Exemple : Soit A(2 ;1), B(1 ;4) et C(8 ;3) trois points du plan Montrer que le triangle ABC est rectangle en A Réponse : Coordonnées de et donc les vecteurs et sont orthogonaux donc les droites (AB) et (AC) sont perpendiculaires et donc le triangle ABC est rectangle en A et Et donc l aire cherchée est : S = 7 5 cm²

5 B ) Vecteur normal à une droite C ) Equation d un cercle de diamètre [AB] Propriété et définition : Soit un vecteur non nul et A un point du plan L ensemble des points M du plan tels que est une droite D, passant par A, et dirigée par un vecteur orthogonal à On dit que est un vecteur normal à la droite D Propriété : Dans un repère orthonormé (O ; deux points distincts L ensemble des points M du plan tels que diamètre [AB] Une équation cartésienne de C : ), on considère A et B est le cercle C de Remarquons que c est une équation de degré deux en x et y, donc A est un point de l ensemble de point cherché Dans un repère orthonormé (O ; ) : on a : A ; M et donc avec On reconnait l équation d une droite D de vecteur directeur Et comme, on a donc bien qui est orthogonal à ou le triangle AMB est rect en M M appartient au cercle de diamètre [AB] M C D ) Equation d un cercle défini par son centre et son rayon Propriété : Dans un repère orthonormé (O ; ), on considère un point A et un réel R strictement positif Le cercle C de centre A et de rayon R est l ensemble des points M du plan tels que :AM = R ou encore AM² = R ou encore = R Une équation cartésienne du cercle C est alors : Corollaire : Dans un repère orthonormé, le vecteur est normal à la droite D si et seulement si, D admet une équation cartésienne de la forme où c est un réel quelconque

6 E ) Résumé des connaissances pour obtenir une équation 1) sont colinéaires det = 0 2) = 0 3) M appartient au cercle de diamètre [AB] 4) Exemple : Dans un repère orthonormé (O ; A(1 ; 5) et B(3 ; 1) ) : on donne les points 1) a) Déterminer une équation du cercle C de diamètre [AB] b) Préciser parmi les points suivants ceux qui appartiennent à C D(3 ; 5) et E(7 ;3) 2) a)déterminer une équation de la droite (BE) b) Le point F de coordonnées (40 ;20) appartient-il à (BE)? 3) Notons (m) la médiatrice du segment [DE] a) Calculer les coordonnées du milieu I de [DE] b) Déterminer un vecteur normal de la droite (m) c) En déduire une équation de la droite (m) 4) Retrouver une équation de chacun des ensembles des parties 1), 2) et 3)

Ch.8 : Produit scalaire

Ch.8 : Produit scalaire 1 e - programme 011 - mathématiques ch8 - cours Page 1 sur 7 (D après Hachte - Déclic 011 ch9) 1 PRODUIT SCALAIRE DE DEUX VECTEURS 11 Deux définitions géométriques équivalentes DÉFINITION 1 Ch8 : Produit

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3

Produit scalaire. 1 Vecteurs Norme Angle orienté-angle géométrique Projection orthogonale... 3 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté-angle géométrique.................................. 1.3 Projection orthogonale........................................

Plus en détail

On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C

On note u = AB = AB. de (AB) tel que (CC ) est perpendiculaire à (AB). AB = u et AC = v et un point C I Pour bien commencer I.1 Norme d un vecteur Une unité de longueur étant choisie, la norme d un vecteur u = AB est la longueur AB. Si u = 1, le vecteur u est dit unitaire. On note u = AB = AB. Conséquences

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

I. Produit scalaire de deux vecteurs du plan

I. Produit scalaire de deux vecteurs du plan 1 ère S - Chapitre 12 : PRODUIT SCALAIRE I. Produit scalaire de deux vecteurs du plan 1. Vocabulaire Dans le plan muni d'un repère orthonormé, on considère les vecteurs u( x y) ( et v x ' y '). Le produit

Plus en détail

Leçon n 17 : Produit scalaire. Présentation : Célia Giraudeau Questions : Léon Habert

Leçon n 17 : Produit scalaire. Présentation : Célia Giraudeau Questions : Léon Habert Leçon n 17 : Produit scalaire Présentation : Célia Giraudeau Questions : Léon Habert Lundi 5 Mars 2018 Prérequis Géométrie plane et dans l espace Angles Vecteurs Repère orthonormé On note E un espace vectoriel

Plus en détail

PRODUIT SCALAIRE. Première S - Chapitre 7

PRODUIT SCALAIRE. Première S - Chapitre 7 PRODUIT SCALAIRE Première S - Chapitre 7 Table des matières I Expressions du produit scalaire I 1 Exercice de motivation....................................... I Norme d un vecteur........................................

Plus en détail

CHAPITRE 12 : Produit scalaire

CHAPITRE 12 : Produit scalaire CHAPITRE 12 : Produit scalaire 1 Définition avec la norme des vecteurs et la norme de leur somme... 2 2 Produit scalaire de vecteurs colinéaires de même sens ; Produit scalaire de vecteurs orthogonaux...

Plus en détail

Chapitre 13 Produit scalaire (2) Applications

Chapitre 13 Produit scalaire (2) Applications Chapitre 13 Produit scalaire (2) Applications Ex 1 Soit ABCD un losange de côté 5 avec AC=4. 1. Calculer la longueur BD. 2. Calculer les produits scalaires suivants : a. AB AC ; b. AB c. AB CD ; AD ; d.

Plus en détail

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB.

Produit scalaire. Définition. Définition. Théorème. Théorème. I. Définition et expressions. 1) Norme d'un vecteur. AB est la distance AB. Produit scalaire. I. et expressions. 1) Norme d'un vecteur Une unité de longueur étant choisie, la norme d un vecteur u u AB AB. AB est la distance AB. On note Conséquences : équivaut à Pour tout nombre

Plus en détail

CHAPITRE 9 : Produit scalaire

CHAPITRE 9 : Produit scalaire CHAPITRE 9 : Produit scalaire 1 Produit scalaire, propriétés de calcul et orthogonalité... 2 1.1 Notion de produit scalaire de deux vecteurs... 2 1.2 Un cas simple : les deux vecteurs sont colinéaires...

Plus en détail

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan

Produit scalaire de deux vecteurs de l espace. 1 Rappels sur le produit scalaire de deux vecteurs du plan Produit scalaire de deux vecteurs de l espace 1 Rappels sur le produit scalaire de deux vecteurs du plan 1.1 Définition Soit u et v deux vecteurs du plan. Si u = 0 ou v = 0, alors u v = 0 (Attention! On

Plus en détail

1. Définition du produit scalaire et orthogonalité

1. Définition du produit scalaire et orthogonalité Dans tout ce chapitre #» u, #» v et #» w désignent des vecteurs du plan. 1. Définition du produit scalaire et orthogonalité DÉFINITION Le produit scalaire de #» u et #» v,noté #» u #» v qui se lit «#»

Plus en détail

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire

Chapitre 7 : Produit scalaire. Module 1 : Découverte du produit scalaire Module 1 : Découverte du produit scalaire 1 ) Norme d un vecteur Définition : soit u un vecteur du plan et soient A et B deux points tels que : AB u La norme du vecteur u, notée u, est la distance AB Exemple

Plus en détail

PRODUIT SCALAIRE DANS V 2

PRODUIT SCALAIRE DANS V 2 I) RAPPELLE 1) Définition du produit scalaire. 1.1 Mesure algébrique : PRODUIT SCALAIRE DANS V Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs x M et x N

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE.

PRODUIT SCALAIRE DANS L ESPACE. PRODUIT SCALAIRE DANS L ESPACE. I. Produit scalaire dans l espace : 1) Repères orthonormés de l espace : Un repère (O ; I ; J ; K) de l espace est orthonormé lorsque les droites (OI), (OJ) et (OK) sont

Plus en détail

Corrigé. Exercice 67 D après la formule du cours, u v = 1 ( Exercice 68. Exercice 69. QCM d auto-évaluation sur le produit scalaire

Corrigé. Exercice 67 D après la formule du cours, u v = 1 ( Exercice 68. Exercice 69. QCM d auto-évaluation sur le produit scalaire Lycée Louise Michel Gisors) 1S Corrigé QCM d auto-évaluation sur le produit scalaire Exercice 67 D après la formule du cours, u v = 1 u + v u v ). On applique avec u = AB et v = BC. 1 On obtient : AB BC

Plus en détail

FICHE DE RÉVISION DU BAC

FICHE DE RÉVISION DU BAC Introduction Programme selon les sections : - formules de trigonométrie, produit scalaire dans le plan : toutes sections - produit scalaire dans l espace : ST2A, S - vecteur normal : S Pré-requis : Vecteurs

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Exercices sur le produit scalaire Exercice 1 : Sur les expressions du produit scalaire Pour les sept figures suivantes, calculer AB AC. Exercice : Sur les expressions du produit scalaire Sur la figure

Plus en détail

APPLICATIONS DU PRODUIT SCALAIRE. I et

APPLICATIONS DU PRODUIT SCALAIRE. I et APPLICATIONS DU PRODUIT SCALAIRE Cours Première S 1 Calculs de longueurs 1) Théorème de la médiane Théorème 1 : Soit I le milieu du segment [ BC ] Alors BC AB + AC = AI + Démonstration : On a : AB = AB

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Produit scalaire dans l espace.

Produit scalaire dans l espace. Terminale S, Espace Produit scalaire dans l espace. Produit scalaire: Définitions. Définitions du produit scalaire: Soit u et v deux vecteurs de l'espace. On appelle produit scalaire des vecteurs u et

Plus en détail

Chap 13 Application du produit scalaire.

Chap 13 Application du produit scalaire. Chap 13 Application du produit scalaire. Table des matières I. Projeté orthogonal d un vecteur sur un axe... 1 II. Equations cartésiennes dans un repère orthonormé... 1 1. Equation cartésienne d une droite...

Plus en détail

Repérage dans le plan Cours

Repérage dans le plan Cours Repérage dans le plan Cours Objectifs du chapitre Savoir repérer la position d un point à l aide de ses coordonnées dans un repère. Savoir calculer les coordonnées du milieu d un segment. Savoir calculer

Plus en détail

Produit scalaire. A) Définitions et propriétés.

Produit scalaire. A) Définitions et propriétés. Produit scalaire A) Définitions et propriétés Soient u et v sont deux vecteurs non nuls Les quatre définitions suivantes sont équivalentes, on pourrait donc choisir comme point de départ chacune d elle

Plus en détail

Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3

Le produit scalaire. II) Propriétés du produit scalaire 2 a) Symétrie et bilinéarité... 2 b) Orthogonalité... 3 Le produit scalaire Table des matières I) Définitions et propriétés 1 a) Norme d un vecteur............................................ 1 b) de deux vecteurs..................................... 1 c) Autres

Plus en détail

PRODUIT SCALAIRE DANS LE PLAN (1/4) : DÉFINITION ET PREMIÈRES

PRODUIT SCALAIRE DANS LE PLAN (1/4) : DÉFINITION ET PREMIÈRES PRODUIT SCALAIRE DANS LE PLAN (/4) : DÉFINITION ET PREMIÈRES PROPRIÉTÉS Définition : Le projeté orthogonal d un point B sur une droite (OA) est le point H de la droite (OA) tel que (BH) (OA). Définition

Plus en détail

Chapitre 10 : Le Produit Scalaire

Chapitre 10 : Le Produit Scalaire Chapitre 10 : Le Produit Scalaire A) Définitions et cas particuliers 1) Rappels a) Norme d'un vecteur La norme d'un vecteur est sa longueur. Par exemple, la norme du vecteur AB la longueur AB, ou encore

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf "planche + cerf-volant"

Produit scalaire. 1 Produit scalaire de deux vecteurs. 1.1 Produit scalaire et normes. Activité : Kitesurf planche + cerf-volant 1 Produit scalaire de deux vecteurs ctivité : Kitesurf "planche + cerf-volant" 1.1 Produit scalaire et normes Définition 1 (Norme). Produit scalaire Soit u un vecteur et et deux points du plan tels que

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2012 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 01 Enoncés On demandait de résoudre trois questions

Plus en détail

Chapitre 3 GEO 2. Produit scalaire

Chapitre 3 GEO 2. Produit scalaire Chapitre 3 GEO Produit scalaire À la fin de ce td, vous devez être capale de : Calculer le produit scalaire de deux vecteurs : à l aide des normes et d un angle ; à l aide d une projection orthogonale

Plus en détail

LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES. 1) La mesure algébrique. 2) Activités. 1.1 Définition et propriétés Définition :

LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES. 1) La mesure algébrique. 2) Activités. 1.1 Définition et propriétés Définition : LE PRODUIT SCALAIRE I) COMPLEMENT ET ACTIVITES 1) La mesure algébrique 1.1 Définition et propriétés Définition : Soit (D) (O,I) une droite graduée ; M et N deux points sur la droite (D) d abscisses respectifs

Plus en détail

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition

PRODUIT SCALAIRE. I)Produit scalaire de deux vecteurs. 1. Définition PRODUIT SCALAIRE I)Produit scalaire de deux vecteurs 1. Définition Définition : Si u et v sont deux vecteurs non nuls, on appelle produit scalaire de u par v, le réel noté u. v = u v cos( u, v) u. v défini

Plus en détail

Classe de première Du collège au lycée : Fiche de géométrie

Classe de première Du collège au lycée : Fiche de géométrie Classe de première Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition

Produit scalaire. Chapitre Définition et expressions du produit scalaire Définition Chapitre 10 Produit scalaire 10.1 Définition et expressions du produit scalaire 10.1.1 Définition Définition 18. u et v sont deux vecteurs du plan. Le produit scalaire de u par v, noté u. v est défini

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan ème année Maths Produit scalaire dans le plan Octobre 009 A LAATAOUI Exercice n 1 La figure ci-dessous représente un rectangle ABCD tel que : AB = 5 et BC = ; un triangle ABF équilatéral et un triangle

Plus en détail

Classe de terminale Du collège au lycée : Fiche de géométrie

Classe de terminale Du collège au lycée : Fiche de géométrie Classe de terminale Du collège au lycée : Fiche de géométrie Les outils collège : Tous les axiomes d Euclide, les résultats sur les angles ; les quadrilatères particuliers ; les triangles isocèles ; équilatéraux

Plus en détail

CHAPITRE G: Produit scalaire dans l'espace

CHAPITRE G: Produit scalaire dans l'espace CHAPITRE G: Produit scalaire dans l'espace plan I - Rappels de première sur le produit scalaire dans le A) Dénitions et propriété Définition 1: - Si u et v sont deux vecteurs non nuls tel que u = AC. On

Plus en détail

@ Dans l espace personne ne vous entend crier *

@ Dans l espace personne ne vous entend crier * @ Dans l espace personne ne vous entend crier * A/ Droites et plans de l espace : incidence et parallélisme. I/ Positions relatives de droites et de plans. 1/ Deux droites. d 1 et d 2 sont sécantes d 1

Plus en détail

1 ère S Le plan muni d un repère orthonormé

1 ère S Le plan muni d un repère orthonormé ère S Le plan muni d un repère orthonormé I. Expression analytique du produit scalaire ) Remarque préliminaire Dans tout le chapitre, O, i, est un repère orthonormé du plan P c est-à-dire vérifiant les

Plus en détail

Exercices proposés : semaine n o 7

Exercices proposés : semaine n o 7 Prépa ATS Exercices proposés : semaine n o 7 I. Géométrie dans le plan 1 Soit ABC un triangle rectangle en A et H le pied de la hauteur issue de A. Montrer que : 1. BA 2 = BH BC 2. CA 2 = CH CB 3. AH 2

Plus en détail

P R O D U I T S C A L A I R E.

P R O D U I T S C A L A I R E. ère S 00/005 Produit scalaire J TAUZIEDE P R O D U I T S C A L A I R E I- DEFINITION ET PREMIERES PROPRIETES ) Produit scalaire de deux vecteurs colinéaires Définition Soit u et v deux vecteurs colinéaires

Plus en détail

Produit scalaire de deux vecteurs

Produit scalaire de deux vecteurs Index Prérequis... 2 I- Présentation du produit scalaire... 2 I-1- Vocabulaire... 2 I-2- Quoi, pourquoi, comment?... 2 I-3- Quelques calculs :... 3 I-3-1- Travail d'une force... 3 1er cas : La force est

Plus en détail

Géométrie dans le plan et dans l espace

Géométrie dans le plan et dans l espace Chapitre 13 Géométrie dans le plan et dans l espace La géométrie est l étude des figures du plan et de l espace. Nous allons donc en voir quelques exemples : les vecteurs, les droites, les cercles et les

Plus en détail

Chapitre 8 Produit scalaire

Chapitre 8 Produit scalaire Chapitre 8 Produit scalaire I. Produit scalaire 1) Norme d'un vecteur Soit u un vecteur du plan, et soit A et B deux points du plan tels que u= AB. La norme du vecteur u, notée u, est la longueur du segment

Plus en détail

Repérage dans le plan. repérage du plan

Repérage dans le plan. repérage du plan Repérage dans le plan repérage du plan 1. Repérage du plan Définition : dans le plan, trois points non alignés O, I et J déterminent un repère (O, I, J)... O est appelé l origine du repère. La droite (OI)

Plus en détail

Produit scalaire. v =

Produit scalaire. v = Produit scalaire Le produit scalaire est un outils très puissant utilisé sur des vecteurs. Il permet notamment de montrer que deux vecteurs sont perpendiculaire. Il est très souvent utilisé en physique.

Plus en détail

1. Produit scalaire dans le plan

1. Produit scalaire dans le plan Produit scalaire 1. Produit scalaire dans le plan 1.1 Définition Soit u et v deux vecteurs non nuls du plan. Ce n est pas une multiplication Le produit scalaire de u par v noté u. v est le nombre défini

Plus en détail

Produit scalaire, cours, première S

Produit scalaire, cours, première S Produit scalaire, cours, première S F.Gaudon 2 mai 2016 Table des matières 1 Norme d'un vecteur 2 2 Produit scalaire 2 3 Orthogonalité de vecteurs 4 4 Produit scalaire et projection orthogonale 4 5 Propriétés

Plus en détail

PRODUIT SCALAIRE DANS L ESPACE

PRODUIT SCALAIRE DANS L ESPACE PRODUIT SCALAIRE DANS L ESPACE Géométrie - Chapitre 4 Table des matières I Norme d un vecteur de l espace 2 I 1 s.............................................. 2 I 2 Norme et distance.........................................

Plus en détail

Année Produit scalaire. l angle orienté délimité par les vecteurs AB. v le nombre réel défini par : 1 u. v = u + v 2. v 2 ).

Année Produit scalaire. l angle orienté délimité par les vecteurs AB. v le nombre réel défini par : 1 u. v = u + v 2. v 2 ). Chap 8 : Produit scalaire I. Définitions Rappels : Si u = AB alors u = AB. Si ; j est une base orthonormale et si u (x, y alors : On note AB ; AC l angle orienté délimité par les vecteurs AB u = x 2 +

Plus en détail

Produit scalaire dans le plan

Produit scalaire dans le plan CH 1 Géométrie : 3 ème Sciences Septembre 009 A LAATAOUI Produit scalaire dans le plan 1 ) PRODUIT SCALAIRE A) DEFINITION Ce n est pas une multiplication Soit u et v deux vecteurs non nuls du plan Le produit

Plus en détail

Devoir maison n 2 Géométrie plane à préparer pour le : 05 / 11 / 18

Devoir maison n 2 Géométrie plane à préparer pour le : 05 / 11 / 18 Nom : Classe : nde / nde 5 Devoir maison n Géométrie plane à préparer pour le : 05 / 11 / 18 Note : / 10 Avis de l élève Avis du professeur Je sais : Oui Non Oui Non Placer des points dans un repère. Justifier

Plus en détail

I Rappels sur les symétries :

I Rappels sur les symétries : I Rappels sur les symétries : I. 1 Symétrie axiale : On note I le milieu de [ AB ]. On appelle médiatrice du segment [ AB ] la droite perpendiculaire en I à ( AB ). Propriétés : La médiatrice de [ AB ]

Plus en détail

CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE

CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE Cité scolaire Claude Monet - 1S6 Année scolaire 016-017 Mathématiques CORRECTION DES EXERCICES SUR LE PRODUIT SCALAIRE Exercice 4 : Soit H le projeté orthogonal de O sur. La droite OH est alors une hauteur

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2017/2018 1 Définitions et propriétés Norme d un vecteur de deux vecteurs Autres expressions du produit scalaire 2 Symétrie

Plus en détail

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v )

1 Norme d un vecteur. 2 Produit scalaire. 2.1 Definition. #» u + #» v 2 #» u 2 #» v 2 ) = #» u #» v cos( #» u, #» v ) 1 Norme d un vecteur Définition 1. Soit #» u un vecteur, A et B deux points du plan tels que #» AB = #» u. On appelle norme du vecteur #» u, que l on note #» u, la longueur du segment [AB] : #» u = AB

Plus en détail

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4

Produit scalaire. 1 Vecteurs Norme Angle orienté de deux vecteurs Projection orthogonale... 4 Table des matières 1 Vecteurs 1.1 Norme................................................. 1. Angle orienté de deux vecteurs................................... 1.3 Projection orthogonale........................................

Plus en détail

BC = 3 4 AB ( BA 8

BC = 3 4 AB ( BA 8 1 e S - programme 011 mathématiques ch8 cahier élève Page 1 sur 6 Ch8 : Produit scalaire Exercice n A page 5 : Calcul vectoriel Reproduire la figure et compléter le texte On considère le triangle ABC donné

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

Le produit scalaire et ses applications

Le produit scalaire et ses applications Le produit scalaire et ses applications Lycée du golfe de Saint Tropez Année 2016/2017 Première S ( Lycée du golfe de Saint Tropez) Produit scalaire Année 2016/2017 1 / 1 Première S ( Lycée du golfe de

Plus en détail

Produit scalaire dans l espace

Produit scalaire dans l espace Vallon 2 février 2016 Vallon 2 février 2016 1 / 13 Table : 1 2 Produit scalaire et orthogonalité dans l espace 3 Equations cartésiennes d un plan 4 Positions relatives de droites et de plans Vallon 2 février

Plus en détail

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire DERNIÈRE IMPRESSION LE 1 février 016 à 1: Le produit scalaire Table des matières 1 Définition et propriétés 1.1 Définition par la norme.......................... 1. Définition analytique...........................

Plus en détail

CONFIGURATIONS PLANES. REPERAGE

CONFIGURATIONS PLANES. REPERAGE CONFIGURATIONS PLANES. REPERAGE Figures planes. Repérage- B.O. GEOMETRIE EUCLIDIENNE Un peu d histoire Les objets de base de la géométrie euclidienne Le point : Objet sans dimension, le point est, à la

Plus en détail

Chapitre 1 : Géométrie dans l espace

Chapitre 1 : Géométrie dans l espace Chapitre 1 : Géométrie dans l espace M. HARCHY T S 2 -Lycée Agora-2015/2016 1 Droites et plans de l espace 1.1 Règles d incidence (Rappels) Théorème 1 Par deux points distincts A et B de l espace passe

Plus en détail

CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE. Solution. Il suffit de montrer l implication : AB = A' B' AA' = BB'.

CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE. Solution. Il suffit de montrer l implication : AB = A' B' AA' = BB'. CHAPITRE II GÉOMÉTRIE EUCLIDIENNE PLANE 1.1. Exercices traités. 1. VECTEURS DU PLAN. EXERCICE 1. Soient A,B,A',B' quatre points du plan. Établir que : AB = A' B' AA' = BB'. Solution. Il suffit de montrer

Plus en détail

Produit scalaire : définitions et premières propriétés

Produit scalaire : définitions et premières propriétés hapitre 6 Produit scalaire : définitions et premières propriétés Sommaire 6.1 Activités......................................................... 53 6.2 Définitions........................................................

Plus en détail

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs.

v = 3 v = 3 4 cos( 6 ) = 12 2 = 6 Le produit scalaire, comme je vous l ai dit en introduction, permet de démontrer l orthogonalité de deux vecteurs. Produit scalaire dans l espace L année dernière, nous avions vu le produit scalaire dans un espace de deux dimensions. Nous allons généraliser cette notion dans l espace à trois dimension. Je vais d abord

Plus en détail

Première S2 DEVOIR SURVEILLE N 5 Mardi 25 mars 2008 Durée : 1h

Première S2 DEVOIR SURVEILLE N 5 Mardi 25 mars 2008 Durée : 1h Première S DEVOIR SURVEILLE N 5 Mardi 5 mars 008 Durée : 1h Exercice 1 : (1,5 pts) Associer à chaque figure le bon calcul du produit scalaire de a) AB b) -AB c) 0 d) AB e) - AB AC (on ne demande pas ici

Plus en détail

Chapitre I Configurations du plan et géométrie repérée

Chapitre I Configurations du plan et géométrie repérée I. Rappels sur les symétries 1. Symétries axiales Chapitre I Configurations du plan et géométrie repérée Méd iatric e de Définition : Médiatrice d un segment On note I le milieu de. On appelle médiatrice

Plus en détail

REPERAGE DANS LE PLAN

REPERAGE DANS LE PLAN 1 sur 5 REPERAGE DANS LE PLAN I. Coordonnées de points du plan a) Repère du plan Définition : un repère orthonormé d origine O est un triplet (O ;I,J) de points tels que le triangle OIJ est rectangle isocèle

Plus en détail

Propriétés de géométrie plane vues au collège

Propriétés de géométrie plane vues au collège Propriétés de géométrie plane vues au collège Théorème de Pythagore Théorème de Pythagore : Dans un triangle rectangle, le carré de la longueur de l hypoténuse est égal à la somme des carrés des longueurs

Plus en détail

5. Trigonométrie, produit scalaire, produit vectoriel, exercices

5. Trigonométrie, produit scalaire, produit vectoriel, exercices 5. Trigonométrie, produit scalaire, produit vectoriel, exercices 1. Soit un triangle ABC tel que AB =, BC = 4 et ÂBC = π 3. Déterminer AC.. Soit un triangle ABC tel que AB = 4, AC = 3. L angle BAC vaut

Plus en détail

Exercices sur le produit scalaire

Exercices sur le produit scalaire Correction 1 1. En remarquant l égalité suivante : AC AB + BC On obtient les coordonnées du vecteur : AC Ä x + x ; y + y ä. On a : AB» x + y BC» x + y AC» (x + x ) + (y + y ) 3. Le théorème de Pythagore

Plus en détail

On se place dans un repère orthonormé (O ; i, j ) du plan.

On se place dans un repère orthonormé (O ; i, j ) du plan. Première S Produit scalaire et applications Année scolaire 01/013 I) Produit scalaire et orthogonalité : On se place dans un repère orthonormé (O ; i, j ) du plan. 1) Définition analytique du produit scalaire

Plus en détail

COURS N 9 : GÉOMÉTRIE I- RAPPELS SUR LES VECTEURS. 1) Coordonnées. 2) Equation d une droite. 3) Norme d un vecteur.

COURS N 9 : GÉOMÉTRIE I- RAPPELS SUR LES VECTEURS. 1) Coordonnées. 2) Equation d une droite. 3) Norme d un vecteur. I- RAPPELS SUR LES VECTEURS ) Coordonnées ) Equation d une droite 3) Norme d un vecteur 4) Vecteurs colinéaires 5) Vecteurs orthogonaux 6) Angles de deux vecteurs Application : Activité page 94 II- VECTEURS

Plus en détail

CONTRÔLE N 2. Exercice 2 : (sur la copie double)

CONTRÔLE N 2. Exercice 2 : (sur la copie double) NOM : Prénom : Classe : 2nde CONTRÔLE N 2 Consignes : - l utilisation de la calculatrice est autorisée - sauf mention contraire, toutes les réponses devront être soigneusement justifiées. Le tableau suivant

Plus en détail

Droites, cercles et quadrilatères

Droites, cercles et quadrilatères Droites, cercles et quadrilatères «Des outils pour les démonstrations» I Droites et segments 1) Droites Propriété 1 : Par deux points distincts A et B, il passe une seule droite ; on peut la noter (AB).

Plus en détail

PRODUIT SCALAIRE. u. v = x x + y y. 2 et on notera parfois AB = AB . AB. est le projeté orthogonal de v sur la direction donnée par u.

PRODUIT SCALAIRE. u. v = x x + y y. 2 et on notera parfois AB = AB . AB. est le projeté orthogonal de v sur la direction donnée par u. PRODUIT SLIRE Exercice de motivation : est un triangle tel que = 4, = 3 et (, ) = 70. Problème : calculer. On ne peut pas utiliser le théorème de Pythagore car le triangle n'est pas rectangle. On 3 70

Plus en détail

Méthodes sur le produit scalaire

Méthodes sur le produit scalaire Méthodes sur le produit scalaire G. Petitjean Lycée de Toucy 10 juin 2007 G. Petitjean (Lycée de Toucy) Méthodes sur le produit scalaire 10 juin 2007 1 / 32 1 connaître les différentes façons de calculer

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

Cours Génie Civil : Géométrie 3D. IUT G.C de Meaux. Denis Augier. Années

Cours Génie Civil : Géométrie 3D. IUT G.C de Meaux. Denis Augier. Années Cours Génie Civil : Géométrie 3D IUT GC de Meaux Denis Augier Années 2014-2015 Sommaire I Savoir-faire : 2 II Produit scalaire 2 A Définition et propriétés 2 1 Définition 2 2 Propriétés 2 3 Règles de calcul

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de première session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de première session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

Correction de la composition de mathématiques

Correction de la composition de mathématiques Page1 Prénom :. Mercredi 11 mai 016 Correction de la composition de mathématiques Calculatrice autorisée. Le sujet contient 3 pages. Rendre le sujet avec la copie. Le détail des calculs doit figurer pour

Plus en détail

Géométrie vectorielle et analytique plane

Géométrie vectorielle et analytique plane Géométrie vectorielle et analytique plane 1 Chapitre 1 Produit scalaire 1.1 Définitions produit scalaire et norme Le produit scalaire est une notion importante en géométrie pour traiter des questions

Plus en détail

Chapitre 1. Produit scalaire. 1.1 Définitions produit scalaire et norme

Chapitre 1. Produit scalaire. 1.1 Définitions produit scalaire et norme Géométrie métrique plane 1 Chapitre 1 Produit scalaire 1.1 Définitions produit scalaire et norme Le produit scalaire est une notion importante en géométrie pour traiter des questions de longueurs, angles

Plus en détail

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2010

UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL. Enoncés et solutions de l examen de seconde session 2010 UNIVERSITE DE LIEGE EXAMEN D ADMISSION AUX ETUDES D INGENIEUR CIVIL Géométrie et géométrie analytique Enoncés et solutions de l examen de seconde session 010 Enoncés On demandait de résoudre trois questions

Plus en détail

On appelle H la projection orthogonale de A sur la droite (BC).

On appelle H la projection orthogonale de A sur la droite (BC). Première S 2010-2011 Exercices sur le produit scalaire, équations de droite et de cercles Exercice 1 : Distance d'un point à une droite. On se donne une droite ( ) dont l'équation cartésienne est de la

Plus en détail

Chapitre 1 - Repérage et configurations du plan

Chapitre 1 - Repérage et configurations du plan nde hapitre 1 - Repérage et configurations du plan 01-013 hapitre 1 - Repérage et configurations du plan ctivités d approche 1. (a) Deux points et ont pour abscisses 7 3 et. alculer la distance. et sur

Plus en détail

La géométrie dans l espace

La géométrie dans l espace Chapitre 2 terminale S La géométrie dans l espace 1 Vecteurs de l espace : La notion de vecteur du plan se généralise dans l espace. 1) Caractérisation : a) On donne deux points de l espace et, distincts.

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment Chapitre 6 Trigonométrie CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Utiliser le cercle trigonométrique, notamment

Plus en détail

Produit scalaire. 1. Introduction p1 2. Produit scalaire p6. Copyright meilleurenmaths.com. Tous droits réservés

Produit scalaire. 1. Introduction p1 2. Produit scalaire p6. Copyright meilleurenmaths.com. Tous droits réservés 1. Introduction p1 2. p6 Copyright meilleurenmaths.com. Tous droits réservés 1. Introduction Le plan est orienté, une unité de longueur est fixée, l'unité de mesure des angles est le radian. (O ; i, j)

Plus en détail

Première S chapitre 11 : Applications du produit scalaire

Première S chapitre 11 : Applications du produit scalaire SOMMAIRE XI. 1. VECTEUR NORMAL A UNE DROITE... THEOREME : VECTEUR DIRECTEUR... DEFINITION : VECTEUR NORMAL... THEOREME : DROITE ET VECTEUR NORMAL... EXERCICES :... 3 XI.. CARACTERISATION D UN CERCLE...

Plus en détail

Chapitre 7. Géométrie plane

Chapitre 7. Géométrie plane Chapitre 7 Géométrie plane Hauteurs Ce sont les perpendiculaires aux côtés, issues du sommet opposé. Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. Médianes

Plus en détail

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation )

PRODUIT SCALAIRE. I Produit scalaire : définition. Définition première expression du produit scalaire ( voir animation ) Remarques ( voir animation ) PRODUIT SCLIRE I Produit scalaire : définition Définition première expression du produit scalaire ( voir animation ) Soient et v deux vecteurs du plan. On considère trois points O, et tels que : O = u

Plus en détail

Exercice 1. Soit ABCD un tétraèdre régulier (c est-à-dire AB = AD = AC = BD = DC = BC). 1. Montrer que (AB) est orthogonale à (DC).

Exercice 1. Soit ABCD un tétraèdre régulier (c est-à-dire AB = AD = AC = BD = DC = BC). 1. Montrer que (AB) est orthogonale à (DC). Exercices Produit scalaire dans le plan et l espace Terminale S Exercice 1 Soit ABCD un tétraèdre régulier (c est-à-dire AB = AD = AC = BD = DC = BC). 1. Montrer que (AB) est orthogonale à (DC). 2. Soit

Plus en détail