2. GENERALITES SUR LES FONCTIONS

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "2. GENERALITES SUR LES FONCTIONS"

Transcription

1 . GENERALITES SUR LES FONCTIONS. Fonction d'une variable réelle à valeurs réelles.. Fonction et ensemble de déinition On appelle onction d'une variable réelle à valeurs réelles une application qui à tout élément d'une partie D de R associe un réel et un seul noté ( ) Le réel ( ) est appelé image de par La partie D est appelée ensemble de déinition de la onction Notation : D R a ( ) La onction identité a est déinie sur D = R La onction élévation au carré a est déinie sur D = R La onction inverse a est déinie sur D = R = R { 0 } La onction racine carrée a est déinie sur = R = [ 0; + [ D +

2 Il ne aut pas conondre l'être mathématique appelé onction (et désigné par ) avec l'être mathématique (désigné par ( ) ou par y) qui est le réel associé par à un élément donné de... Courbe représentative d'une onction Soit une onction déinie sur D La courbe représentative de dans un repère est l'ensemble des points M (, ( )) avec D On dit que y = ( ) est une équation de cette courbe dans le repère considéré.3. Restriction de Soit une onction déinie sur D, et A une partie de R telle que A R On appelle restriction de à A la onction g telle que A D R a g( ) telle que A, g( ) = ( ) Soit la onction ] ;0[ ] 0; [ R = + R a et g la onction déinie sur A = ] 0; [ + par g ( ) = Nous dirons que g est la restriction de à A = ] 0; + [

3 .4. Image et antécédent Soit une onction déinie sur D, et A une partie contenue dans D, alors ( A ) désigne l'ensemble des images des éléments de A. Si y = ( ), on dit que y est l'image de par, mais aussi que est un antécédent de y.. Opérations sur les onctions.. Egalité de deu onctions et g sont deu onctions déinies respectivement sur D et D g Les deu onctions et g sont égales D = Dg D, ( ) = g( ).. Somme de deu onctions et g sont deu onctions déinies respectivement sur D et On déinit sur D= D Dg la somme + g par D + g : a ( ) + g( ) D g On peut aussi écrire la somme de deu onctions D ( + g)( ) = ( ) + g( ) 3

4 .3. Produit d une onction par un réel une onction déinie sur D et pour tout réel k, le produit d'un réel k par la onction est noté : k et se déinit par k R k : a k( ) D On peut aussi écrire le produit k d'un réel k par une onction k R ( k )( ) = k ( ) D Dans le cours d algèbre, on dira que : Muni de ces deu lois, l'ensemble (E) des onctions numériques d'une variable réelle déinies sur une partie D de R possède une structure d'espace vectoriel sur R..4. Produit de deu onctions On déinit sur D= D Dg le produit g par D g: a ( ) g( ) On peut aussi écrire le produit de deu onctions D ( g)( ) = ( ) g( ) Toujours dans le cours d algèbre, on dira : L'ensemble (E) possède une structure d'anneau commutati unitaire (l'élément neutre étant la onction constante égale à sur D). 4

5 Attention (E) n'est pas un anneau d'intégrité ( c est-à-dire que le produit de deu onctions peut être nul sans qu aucune des deu onctions soit identiquement nulle) comme le montre l'eemple suivant : [ ] ] ;] 0 si 0 ; : a et si [ 0;] ] ] si g : a 0 si ; Le produit g a 0 si [ 0 ; ] est la onction nulle sur [ ] ne soit la onction nulle. 0; bien que ni ni g.5. Quotient de deu onctions On déinit sur D = D Dg le quotient g tel que pour tout de D tel que g ( ) 0 par ( ) : a g g ( ) On peut aussi écrire le quotient de deu onctions tel que pour tout de D tel que g ( ) 0 par ( ) = g ( ) g ( ) Soit : a et g : + a deu onctions déinies sur l'intervalle ] ;[ + + La somme + g : + = = + ( + )( ) Le produit g:. = + Le quotient : g a est déinie sur ] ;[ a est déini sur ] ;[ + = + a est déini sur ] ;[ 5

6 le quotient : a est même déini sur ; g + ] ] 3. Composition de deu onctions et g sont deu onctions déinies respectivement sur D et D g On appelle D l'ensemble des éléments de D tels que ( ) Dg La composée gο ("g rond ") est la onction d'ensemble de déinition D telle que [ ] ( g o )( ) = g ( ) Dans l écriture go la première application est et la seconde est g Soit : a et g : a On a = R = R 0 D = R et { } D g Pour tout R tel que 0 c'est-à-dire pour D= R { ;} la composée des deu applications et g dans cet ordre est ( go )( ) = g[ ( ) ] = g ( ) = go et donc { } : R, R a 6

7 Soit Calculer ] ] : ; R a + o = + + ] ; [ ( ) = ( ο )( ) = + + = = = et donc ] ] : ; R a Propriété La composition des applications est associative ( hog) o = ho ( go ) mais attention! elle n'est pas commutative go o g Soit : R g : R R et ar + 3 a alors [ ] R, ( go )( ) = g + 3 = (+ 3) = et R ( o g)( ) = = + 3 et donc g o : R R et ο g : a R R a + 3 par conséquent g o o g (même si les deu compositions eistent) Attention Il ne aut pas conondre le produit de deu onctions et la composition de ces deu onctions. 7

8 Considérons les deu onctions : a et g: a, ces deu onctions sont déinies + sur D = R La onction produit g est la onction g: a + La onction composée g Soit g o : R R a + ( g )( ) g ( ) g ( ) ( ) + o est la onction ο = [ ] = [ ] = 4. Les ormules de changement de repère (par translation) r r Le plan est muni d'un repère ( O; i ; j) et (C) est la courbe représentative de y=() dans ce r r repère. Soit Ω le point de coordonnées ( ab, ) dans le repère ( O; i ; j). alors O r r Ω = ai + b j Quelle est l'équation de la courbe (C) dans le nouveau repère ( Ω; i r ; r j )? r r Désignons par ( y, ) les (anciennes) coordonnées d'un point M du plan dans le repère ( O; i ; j ) r r Vectoriellement, on peut écrire OM = i + yj et par ( X, Y ) les (nouvelles) coordonnées du même point M dans le repère ( Ω; i r ; r j ) r r De même, vectoriellement Ω M = Xi + Y j La relation de Chasles OM = OΩ + Ω M donne par passage au coordonnées = X + a y = Y + b X = a ou encore Y = y b 8

9 qui sont les ormules de changement de repère (par translation) 5. Propriétés particulières de certaines onctions (réduction de l'intervalle d'étude) 5.. Imparité (Centre de symétrie) Une onction est dite impaire si : D D ( le domaine D doit être symétrique par rapport à l ' origine) ( ) = ( ) D La courbe représentative de admet l'origine comme centre de symétrie ) Pour étudier une onction impaire, il suit de l'étudier sur E = D [ 0; + [ Si ( Γ ) est la courbe représentative de la restriction de à E, la courbe ( C ) représentant les variations de la onction, s'obtient en complétant ( Γ ) par symétrie par rapport à l origine O. ) Si D = R, alors la condition D D est automatiquement vériiée Les onctions suivantes sont impaires : a (identité) 3 a (élévation au cube) a sur D= R (inverse) π a sin (sinus) a tan sur D= R + kπ, k Z (tangente) Plus généralement le point I ( a; b ) est centre de symétrie de la courbe représentative de si : 9

10 a + D a D ( le domaine D doit être symétrique par rapport à a) ( a+ ) + ( a ) = b D Pour étudier une onction admettant le point I( ab ; ) comme centre de symétrie, il suit de l'étudier sur E = D [ a; + [ Si ( Γ ) est la courbe représentative de la restriction de à E, la courbe ( C ) représentant les variations de la onction, s'obtient en complétant ( Γ ) par symétrie par rapport au point I( ab ; ) La onction point En eet + 5 : a est déinie sur D = R. Sa représentation graphique admet le I ( ; ) comme centre de symétrie ( + ) + ( ) ( + ) + ( ) = + = + = ( + ) 5 3( ) L étude de cette onction s eectue seulement sur l intervalle E 5 =, + 3 0

11 Représentation graphique de la onction : 5.. Parité (Ae de symétrie) Une onction est dite paire si : D D ( le domaine D doit être symétrique par rapport à l ' origine) ( ) = ( ) D En repère orthogonal,la courbe représentative de admet l'origine comme centre de symétrie Pour étudier une onction paire, il suit de l'étudier sur E = D [ 0; + [

12 Si ( Γ ) est la courbe représentative de la restriction de à E, la courbe ( C ) représentant les variations de la onction, s'obtient en complétant ( Γ ) par symétrie par rapport à l ae y Oy Les onctions suivantes sont paires : 4 a (élévation au carré) a (élévation à la puissace 4) si 0 a = (valeur absolue) a cos (cosinus) si < 0 Plus généralement, en repère orthogonal, la droite d'équation = a est ae de symétrie de la courbe représentative de si : a + D a D ( le domaine D doit être symétrique par rapport à a ) ( a+ ) = ( a ) D Pour étudier une onction admettant la droite d'équation courbe représentative de, il suit de l'étudier sur E = D [ a; + [ = a comme ae de symétrie de la Si ( Γ ) est la courbe représentative de la restriction de à E, la courbe ( C) représentant les variations de la onction, s'obtient en complétant ( Γ ) par symétrie par rapport à l ae = a. Pour un ae de symétrie, il est nécessaire que le repère soit orthogonal La onction : a 5+ est déinie sur D = R. Sa représentation graphique admet la droite d'équation En eet 5 = comme ae de symétrie ( + ) = ( + ) 5( + ) + = =

13 et ( ) = ( ) 5( ) + = = Puisque ( + ) = ( ), R, la droite d équation = est bien ae de symétrie de la courbe représentative de, et l étude de cette onction s eectue seulement sur l intervalle E 5 =, + 4 Représentation graphique de la onction : Attention La plupart des onctions ne sont ni paires, ni impaires et donc n admettent ni ae de symétrie, ni centre de symétrie. 3

14 Une calculette graphique permet de visualiser la représentation de la onction : a déinie sur R {,3} qui n admet ni ae de symétrie, ni centre de 4+ 3 symétrie. Toute onction déinie sur une partie E de R admettant le point 0 pour centre de symétrie est la somme d'une onction paire et d'une onction impaire et cette décomposition est unique. En eet : si = g+ h où g est paire et h est impaire, on a ( ) = g( ) + h( ) et ( ) = g( ) h( ) d'où g( ) = [ ( ) + ( ) ] et h( ) = [ ( ) ( ) ] Réciproquement, les onctions g et h ainsi déterminées à partir de sont respectivement paire et impaire et vériient = g+ h 3 La onction : a est déinie sur D = R Cette onction est la somme de la onction g paire g a + : 5 et de la onction h impaire a 3 h : 5.3. Périodicité Une onction est dite périodique de période T ( ou T-périodique) s'il eiste un nombre T positi tel que : D + T D ( + T) = ( ) D 4

15 Si T est une période pour, tout multiple de T non nul (c est à dire T, 3T,4T...) est aussi une période pour. Dans les cas usuels, l'une des périodes positives est plus petite que toutes les autres; c'est ce nombre qui est appelé plus précisément période de la onction et sera noté T (et par conséquent T doit être le plus petit possible) Il aut connaître la période des onctions trigonométriques suivantes : Si ω 0 la onction a cos( ω +ϕ) admet pour périodet la onction a sin( ω +ϕ) admet pour période T π = ω π = ω la onction a tan( ω +ϕ) admet pour période T π = ω La onction : sin(3 π ) π a + admet pour période T = 5 3 Pour déterminer la période de la onction : a cos, il est nécessaire de linéariser cette + cos epression trigonométrique, puisque cos =, la onction admet pour période T =π De même la onction : cos( ) 3 a admet pour période T = 6π 3 E = D α; α+ T Pour étudier une onction de période T, il suit de l'envisager sur [ [ avec α réel quelconque. Si ( Γ ) est la courbe représentative de la restriction de à E, la courbe ( C ) représentant les variations de la onction, s'obtient en complétant ( Γ ) par les arcs de courbe qui s'en déduisent par les translations de vecteur kv r r avec k R et V ( T; 0) 5

16 6. Propriétés globales d'une onction Toutes les onctions considérées dans ce paragraphe sont déinies sur D Soit I un intervalle contenu dans D 6.. Fonction croissante est croissante si I (, ') ' ( ) ( ') si 0 < : a si < si 3 6

17 Cette onction est croissante sur [ 0,3 ] mais elle est discontinue en 0 = 6.. Fonction décroissante est décroissante si I (, ') ' ( ) ( ') 6.3. Fonction strictement croissante est strictement croissante si (, ') I < ' ( ) < ( ') 7

18 si 0 < : a ( ) + si < si 3 Cette onction est strictement croissante et continue sur [ 0,3 ] 6.4. Fonction strictement décroissante est strictement décroissante si (, ') I < ' ( ) > ( ') 8

19 6.5. Fonction monotone est monotone si est croissante ou décroissante 6.6. Fonction strictement monotone est strictement monotone si est strictement croissante ou strictement décroissante Sur un intervalle donné, une onction peut être ni croissante ni décroissante La onction : + sur [ 5 ; 3] a n est ni croissante, ni décroissante 9

Dérivation : Résumé de cours et méthodes

Dérivation : Résumé de cours et méthodes Dérivation : Résumé de cours et métodes Nombre dérivé - Fonction dérivée : DÉFINITION (a + ) (a) Etant donné est une onction déinie sur un intervalle I contenant le réel a, est dérivable en a si tend vers

Plus en détail

Développements limités, équivalents et calculs de limites

Développements limités, équivalents et calculs de limites Développements ités, équivalents et calculs de ites Eercice. Déterminer le développement ité en 0 à l ordre n des fonctions suivantes :. f() e (+) 3 n. g() sin() +ln(+) n 3 3. h() e sh() n 4. i() sin(

Plus en détail

Angles orientés et fonctions circulaires ( En première S )

Angles orientés et fonctions circulaires ( En première S ) Angles orientés et fonctions circulaires ( En première S ) Dernière mise à jour : Jeudi 01 Septembre 010 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble (Année 006-007) Lycée Stendhal, Grenoble

Plus en détail

Continuité et dérivabilité d une fonction

Continuité et dérivabilité d une fonction DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité

Plus en détail

LIMITES EXERCICES CORRIGES

LIMITES EXERCICES CORRIGES ours et eercices de mathématiques LIMITES EXERIES ORRIGES M UAZ, http://mathscyrreer Eercice n Déterminer la ite éventuelle en de chacune des onctions suivantes : ) ) ) 4 ( ) Déterminer la ite éventuelle

Plus en détail

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque

FONCTIONS. I Généralités sur les fonctions. Définitions. Remarque. Exercice 01. Remarque FNCTINS I Généralités sur les fonctions Définitions Soit D une partie de l'ensemble IR. n définit une fonction f de D dans IR, en associant à chaque réel de D, un réel et un seul noté f() et que l'on appelle

Plus en détail

Développements limités. Notion de développement limité

Développements limités. Notion de développement limité MT12 - ch2 Page 1/8 Développements limités Dans tout ce chapitre, I désigne un intervalle de R non vide et non réduit à un point. I Notion de développement limité Dans tout ce paragraphe, a désigne un

Plus en détail

- Module M2 - Fondamentaux d analyse

- Module M2 - Fondamentaux d analyse - Module M - Fondamentau d analyse Cléo BARAS, cleo.baras@ujf-grenoble.fr IUT - Grenoble Département Réseau et Télécommunications DUT - ère année Année universitaire 9- Web : http ://iut-tice.ujf-grenoble.fr/gtr/mathm/inde.asp

Plus en détail

Chapitre 6. Fonction réelle d une variable réelle

Chapitre 6. Fonction réelle d une variable réelle Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette

Plus en détail

Dérivation : cours. Dérivation dans R

Dérivation : cours. Dérivation dans R TS Dérivation dans R Dans tout le capitre, f désigne une fonction définie sur un intervalle I de R (non vide et non réduit à un élément) et à valeurs dans R. Petits rappels de première Téorème-définition

Plus en détail

Limites finies en un point

Limites finies en un point 8 Limites finies en un point Pour ce chapitre, sauf précision contraire, I désigne une partie non vide de R et f une fonction définie sur I et à valeurs réelles ou complees. Là encore, les fonctions usuelles,

Plus en détail

I. Ensemble de définition d'une fonction

I. Ensemble de définition d'une fonction Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux

Plus en détail

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.

1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R. Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur

Plus en détail

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation )

DÉRIVÉES. I Nombre dérivé - Tangente. Exercice 01 (voir réponses et correction) ( voir animation ) DÉRIVÉES I Nombre dérivé - Tangente Eercice 0 ( voir animation ) On considère la fonction f définie par f() = - 2 + 6 pour [-4 ; 4]. ) Tracer la représentation graphique (C) de f dans un repère d'unité

Plus en détail

Comparaison de fonctions Développements limités. Chapitre 10

Comparaison de fonctions Développements limités. Chapitre 10 PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?

Plus en détail

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme

Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet

Plus en détail

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs

Exo7. Limites de fonctions. 1 Théorie. 2 Calculs Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication

Plus en détail

Mesure d angles et trigonométrie

Mesure d angles et trigonométrie Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi

Plus en détail

Second degré : Résumé de cours et méthodes

Second degré : Résumé de cours et méthodes Second degré : Résumé de cours et méthodes 1 Définitions : DÉFINITIN n appelle trinôme du second degré toute fonction f définie sur R par f () = a + b + c (a,b et c réels avec a 0). Remarque : Par abus

Plus en détail

1 Notion d espace vectoriel

1 Notion d espace vectoriel Arnaud de Saint Julien - MPSI Lycée La Merci 2014-2015 1 Résumé de cours sur les espaces vectoriels et les applications linéaires Les vecteurs du plan, les nombres réels, et les polynômes à coefficients

Plus en détail

Fonctions homographiques

Fonctions homographiques Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie

Plus en détail

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %

Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 % 23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une

Plus en détail

5. Étude de fonctions

5. Étude de fonctions ÉTUDE DE FONCTIONS 33 5. Étude de fonctions 5.1. Asymptotes Asymptote verticale La droite = a est dite asymptote verticale (A. V.) de la fonction f si l'une au moins des conditions suivantes est vérifiée

Plus en détail

L2 MIEE 2012-2013 VAR Université de Rennes 1

L2 MIEE 2012-2013 VAR Université de Rennes 1 . Sous-ensembles de R n et fonctions (suite) 1 Nappes paramétrées Si f une fonction de deux variables, son graphe est une surface incluse dans R 3 : {(x, y, f(x, y)) / (x, y) R 2 }. Une telle surface s

Plus en détail

L usage de la calculatrice n est pas autorisé.

L usage de la calculatrice n est pas autorisé. e3a Concours ENSAM - ESTP - EUCLIDE - ARCHIMÈDE Épreuve de Mathématiques A durée 4 heures MP L usage de la calculatrice n est pas autorisé. Si, au cours de l épreuve, un candidat repère ce qui lui semble

Plus en détail

Université Joseph Fourier MAT231 2008-2009

Université Joseph Fourier MAT231 2008-2009 Université Joseph Fourier MAT231 2008-2009 mat231-exo-03.tex (29 septembre 2008) Feuille d exercices n o 3 Exercice 3.1 Soit K un corps commutatif et soit {P 0, P 1,... P n } une famille de polynômes de

Plus en détail

I. Polynômes de Tchebychev

I. Polynômes de Tchebychev Première épreuve CCP filière MP I. Polynômes de Tchebychev ( ) 1.a) Tout réel θ vérifie cos(nθ) = Re ((cos θ + i sin θ) n ) = Re Cn k (cos θ) n k i k (sin θ) k Or i k est réel quand k est pair et imaginaire

Plus en détail

Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges

Mathématiques. Résumé du cours en fiches. MPsi MP. Daniel Fredon. Ancien maître de conférences à l université de Limoges Mathématiques Résumé du cours en fiches MPsi MP Daniel Fredon Ancien maître de conférences à l université de Limoges Dunod, Paris, 2010. ISBN 978-2-10-055590-1 Table des matières Partie 1 Analyse dans

Plus en détail

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1

Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Chafa Azzedine - Faculté de Physique U.S.T.H.B 1 Définition: La cinématique est une branche de la mécanique qui étudie les mouements des corps dans l espace en fonction du temps indépendamment des causes

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Planche n o 22. Fonctions de plusieurs variables. Corrigé

Planche n o 22. Fonctions de plusieurs variables. Corrigé Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette

Plus en détail

COURS DE MATHÉMATIQUES

COURS DE MATHÉMATIQUES COURS DE MATHÉMATIQUES Première S Valère BONNET valere.bonnet@gmail.com 0 juin 009 Lycée PONTUS DE TYARD 3 rue des Gaillardons 700 CHALON SUR SAÔNE Tél. : 33 03 85 46 85 40 Fax : 33 03 85 46 85 59 FRANCE

Plus en détail

Chapitre 11. Premières Notions sur les fonctions

Chapitre 11. Premières Notions sur les fonctions Chapitre 11 Premières Notions sur les fonctions 1. Exemples Exemple 1 La distance parcourue par une automobile en un temps donné varie en fonction de sa vitesse. Faire deux phrases utilisant les mots suivants.

Plus en détail

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES

I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours Exo7 Continuité (étude globale). Diverses fonctions Exercices de Jean-Louis Rouget. Retrouver aussi cette fiche sur www.maths-france.fr * très facile ** facile *** difficulté moyenne **** difficile *****

Plus en détail

Chapitre 0 Introduction à la cinématique

Chapitre 0 Introduction à la cinématique Chapitre 0 Introduction à la cinématique Plan Vitesse, accélération Coordonnées polaires Exercices corrigés Vitesse, Accélération La cinématique est l étude du mouvement Elle suppose donc l existence à

Plus en détail

Représentation géométrique d un nombre complexe

Représentation géométrique d un nombre complexe CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres

Plus en détail

CALCULATRICE AUTORISEE

CALCULATRICE AUTORISEE Lycée F. MISTRAL AVIGNON BAC BLANC 2012 Epreuve de MATHEMATIQUES Série S CALCULATRICE AUTORISEE DUREE : 4 heures Dès que le sujet vous est remis, assurez-vous qu il est complet Ce sujet comporte 3 pages

Plus en détail

5½ À partir de 1475$ /MOIS

5½ À partir de 1475$ /MOIS 5½ 1475$ TYPE A : 1500 pi 2 TYPE B : 1250 pi 2 4½ 1350$ TYPE C : 1230 pi 2 4½ 1350$ TYPE D : 1200 pi 2 4½ 1350$ TYPE E : 1500 pi 2 5½ 1475$ 3½ 1100$ TYPE F : 800 pi 2 3½ 1100$ TYPE G : 850 pi 2 TYPE H

Plus en détail

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications

Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Module et argument d un nombre complexe. Interprétation géométrique, lignes de niveau associées. Applications Introduction : Cette leçon s inscrit dans la continuité de la précédente. On supposera connu

Plus en détail

Cours de Mécanique du point matériel

Cours de Mécanique du point matériel Cours de Mécanique du point matériel SMPC1 Module 1 : Mécanique 1 Session : Automne 2014 Prof. M. EL BAZ Cours de Mécanique du Point matériel Chapitre 1 : Complément Mathématique SMPC1 Chapitre 1: Rappels

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours. Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I

Plus en détail

Synthèse d'image avancée

Synthèse d'image avancée Plan Snthèse d'image avancée Cours 2: Transformations, perspective et caméras Motivation Rappels d algèbre linéaire Transformations Caméra sténopé, projection Sources: Xavier Granier, Nicolas Holzschuch

Plus en détail

Le corps R des nombres réels

Le corps R des nombres réels Le corps R des nombres réels. Construction de R à l aide des suites de Cauchy de nombres rationnels On explique brièvement dans ce paragraphe comment construire le corps R des nombres réels à partir du

Plus en détail

Programme de mathématiques TSI1

Programme de mathématiques TSI1 Programme de mathématiques TSI1 1. PROGRAMME DE DÉBUT D ANNÉE I. Nombres complexes et géométrie élémentaire 1. Nombres complexes 1 2. Géométrie élémentaire du plan 3 3. Géométrie élémentaire de l espace

Plus en détail

Chp. 4. Minimisation d une fonction d une variable

Chp. 4. Minimisation d une fonction d une variable Chp. 4. Minimisation d une fonction d une variable Avertissement! Dans tout ce chapître, I désigne un intervalle de IR. 4.1 Fonctions convexes d une variable Définition 9 Une fonction ϕ, partout définie

Plus en détail

Angles orientés et trigonométrie

Angles orientés et trigonométrie Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.

Plus en détail

Mathématiques en Terminale ES. David ROBERT

Mathématiques en Terminale ES. David ROBERT Mathématiques en Terminale ES David ROBERT 0 0 Sommaire Suites. Activités........................................................... Suites géométriques Rappels..............................................

Plus en détail

Fonctions de plusieurs variables

Fonctions de plusieurs variables Module : Analyse 03 Chapitre 00 : Fonctions de plusieurs variables Généralités et Rappels des notions topologiques dans : Qu est- ce que?: Mathématiquement, n étant un entier non nul, on définit comme

Plus en détail

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4)

FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) FONCTIONS DE PLUSIEURS VARIABLES (Outils Mathématiques 4) Bernard Le Stum Université de Rennes 1 Version du 13 mars 2009 Table des matières 1 Fonctions partielles, courbes de niveau 1 2 Limites et continuité

Plus en détail

MATHS Rappels Suites, Fonctions, Développements limités

MATHS Rappels Suites, Fonctions, Développements limités INSTITUT NATIONAL POLYTECHNIQUE DE TOULOUSE MATHS Rappels Suites, Fonctions, Développements limités Pascal Floquet Xuân Meyer Première Année à Distance Septembre 006 Jean-Claude Satge Table des matières

Plus en détail

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases

SINE QUA NON. Découverte et Prise en main du logiciel Utilisation de bases SINE QUA NON Découverte et Prise en main du logiciel Utilisation de bases Sine qua non est un logiciel «traceur de courbes planes» mais il possède aussi bien d autres fonctionnalités que nous verrons tout

Plus en détail

Chapitre 1 Cinématique du point matériel

Chapitre 1 Cinématique du point matériel Chapitre 1 Cinématique du point matériel 7 1.1. Introduction 1.1.1. Domaine d étude Le programme de mécanique de math sup se limite à l étude de la mécanique classique. Sont exclus : la relativité et la

Plus en détail

Cours de mathématiques

Cours de mathématiques DEUG MIAS premier niveau Cours de mathématiques année 2003/2004 Guillaume Legendre (version révisée du 3 avril 2015) Table des matières 1 Éléments de logique 1 1.1 Assertions...............................................

Plus en détail

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4

SOMMAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3. 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Produit ou comoment de deux torseurs 4 SOAIRE 1 INTRODUCTION 3 2 NOTION DE TORSEUR 3 2.1 Définition 3 2.1.1 Propriétés liées aux torseurs 4 2.1.2 Prouit ou comoment e eux torseurs 4 2.2 Torseurs élémentaires 4 2.2.1 Torseur couple 4 2.2.2 Torseur

Plus en détail

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples

Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples 45 Fonctions de plusieurs variables : dérivés partielles, diérentielle. Fonctions composées. Fonctions de classe C 1. Exemples Les espaces vectoriels considérés sont réels, non réduits au vecteur nul et

Plus en détail

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)

Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre

Plus en détail

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines

FctsAffines.nb 1. Mathématiques, 1-ère année Edition 2007-2008. Fonctions affines FctsAffines.nb 1 Mathématiques, 1-ère année Edition 2007-2008 Fonctions affines Supports de cours de mathématiques de degré secondaire II, lien hpertete vers la page mère http://www.deleze.name/marcel/sec2/inde.html

Plus en détail

Image d un intervalle par une fonction continue

Image d un intervalle par une fonction continue DOCUMENT 27 Image d un intervalle par une fonction continue La continuité d une fonction en un point est une propriété locale : une fonction est continue en un point x 0 si et seulement si sa restriction

Plus en détail

Structures algébriques

Structures algébriques Structures algébriques 1. Lois de composition s Soit E un ensemble. Une loi de composition interne sur E est une application de E E dans E. Soient E et F deux ensembles. Une loi de composition externe

Plus en détail

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES

Dérivation CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Capitre 4 Dérivation Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Dérivation Nombre dérivé d une fonction en un point. Tangente à la courbe représentative d une fonction dérivable

Plus en détail

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles

Chapitre. Chapitre 12. Fonctions de plusieurs variables. 1. Fonctions à valeurs réelles. 1.1 Définition. 1.2 Calcul de dérivées partielles 1 Chapitre Chapitre 1. Fonctions e plusieurs variables La TI-Nspire CAS permet e manipuler très simplement les onctions e plusieurs variables. Nous allons voir ans ce chapitre comment procéer, et éinir

Plus en détail

F411 - Courbes Paramétrées, Polaires

F411 - Courbes Paramétrées, Polaires 1/43 Courbes Paramétrées Courbes polaires Longueur d un arc, Courbure F411 - Courbes Paramétrées, Polaires Michel Fournié michel.fournie@iut-tlse3.fr http://www.math.univ-toulouse.fr/ fournie/ Année 2012/2013

Plus en détail

2. MATRICES ET APPLICATIONS LINÉAIRES

2. MATRICES ET APPLICATIONS LINÉAIRES 2. MATRICES ET APPLICATIONS LINÉAIRES 2.1 Définition Une matrice n m est un tableau rectangulaire de nombres (réels en général) à n lignes et m colonnes ; n et m sont les dimensions de la matrice. Notation.

Plus en détail

T ES DEVOIR N 1 SEPTEMBRE 2013

T ES DEVOIR N 1 SEPTEMBRE 2013 T ES DEVOIR N 1 SEPTEMBRE 2013 Durée : 2h NOM : Prénom : Calculatrice autorisée «Le candidat est invité à faire figurer sur la copie toute trace de recherche, même incomplète ou non fructueuse, qu il aura

Plus en détail

Problème 1 : applications du plan affine

Problème 1 : applications du plan affine Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées

Plus en détail

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie

133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie 133: endomorphismes remarquables d'un espace vectoriel euclidien de dimension nie Pierre Lissy March 8, 2010 On considère un espace vectoriel euclidien de dimension nie n, le produit scalaire sera noté

Plus en détail

Courbes paramétrées. 1 ère étude

Courbes paramétrées. 1 ère étude Courbes paramétrées. ère étude Dans le programme de maths sup, l étude des courbes paramétrées est prévue en début d année à un moment où l on manque d outils en analyse. Le présent chapitre se place dans

Plus en détail

Calcul intégral élémentaire en plusieurs variables

Calcul intégral élémentaire en plusieurs variables Calcul intégral élémentaire en plusieurs variables PC*2 2 septembre 2009 Avant-propos À part le théorème de Fubini qui sera démontré dans le cours sur les intégrales à paramètres et qui ne semble pas explicitement

Plus en détail

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées.

Calcul Matriciel. Chapitre 10. 10.1 Qu est-ce qu une matrice? 10.2 Indexation des coefficients. 10.3 Exemples de matrices carrées. Chapitre 10 Calcul Matriciel 101 Qu est-ce qu une matrice? Définition : Soit K un ensemble de nombres exemples, K = N, Z, Q, R, C, n, p N On appelle matrice à n lignes et p colonnes la données de np nombres

Plus en détail

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités

PC* Devoir 6: Corrigé 2011 2012. Partie I : Généralités PC* Devoir 6: Corrigé 20 202 Partie I : Généralités I.A - Questions préliminaires a b c I.A.) M S M = b l m avec (a, b, c, l, m, t) R 6. c m t Les éléments de S sont les matrices de la forme : M = ae +

Plus en détail

PETIT MEMENTO SCILAB

PETIT MEMENTO SCILAB PETIT MEMENTO SCILAB FRANÇOIS DUCROT 1. manipulation de vecteurs et matrices 1.1. Création de matrices. D abord quelques briques élémentaires utiles pour construire des choses plus compliquées. 1:4.5 nombres

Plus en détail

Communication graphique

Communication graphique Introduction générale Partie I. La projection parallèle 1. Le dessin multivue 2. La méthode de Monge 3. L axonométrie 4. Courbes de Bézier 5. La projection cotée (topographie) Projection cotée Méthode

Plus en détail

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016

LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 2015-2016 LIVRET DE MATHEMATIQUES ENTREE EN PREMIERE S Institut Notre-Dame (Saint Germain en Laye) Année 015-016 Pourquoi ce livret? Afin de mieux préparer cette rentrée, ce livret reprend un ensemble de notions

Plus en détail

Corrigé du baccalauréat S Polynésie juin 2004

Corrigé du baccalauréat S Polynésie juin 2004 Durée : 4 heures Corrigé du baccalauréat S Polynésie juin 4 EXERCICE Commun à tous les candidats 4 points. X suit la loi de durée de vie sans vieillissement ou encore loi eponentielle de paramètre λ ;

Plus en détail

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.

Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2. Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3

Plus en détail

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE

STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE ÉCOLE D'INGÉNIEURS DE FRIBOURG (E.I.F.) SECTION DE MÉCANIQUE G.R. Nicolet, revu en 2006 STATIQUE GRAPHIQUE ET STATIQUE ANALYTIQUE Eléments de calcul vectoriel Opérations avec les forces Equilibre du point

Plus en détail

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI

PROGRAMME DE I. NOMBRES COMPLEXES ET GÉOMÉTRIE ÉLÉMENTAIRE CLASSE DE PREMIÈRE ANNÉE MPSI CLASSE DE PREMIÈRE ANNÉE MPSI Le programme de première année MPSI est organisé en trois parties. Dans une première partie figurent les notions et les objets qui doivent être étudiés dès le début de l année

Plus en détail

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5

Université de Nantes Année 2009-2010 Faculté des Sciences et des Techniques Département de Mathématiques. Topologie et calculs différentiel Liste n 5 Université de Nantes Année 009-010 Faculté des Sciences et des Techniques Département de Mathématiques Topologie et calculs différentiel Liste n 5 Applications Différentiables Exercice 1. Soit f : R n

Plus en détail

Fonction inverse Fonctions homographiques

Fonction inverse Fonctions homographiques Fonction inverse Fonctions homographiques Année scolaire 203/204 Table des matières Fonction inverse 2. Définition Parité............................................ 2.2 Variations Courbe représentative...................................

Plus en détail

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries

Chapitre 4. Adjoints Opérateurs auto-adjoints et isométries Chapitre 4 Adjoints Opérateurs auto-adjoints et isométries I. Adjoint : Cas général d une forme { bilinéaire symétrique sesquilinéaire hermitienne On suppose dans tout I que E est un espace vectoriel de

Plus en détail

2 Nombres complexes. et trigonométrie CHAPITRE

2 Nombres complexes. et trigonométrie CHAPITRE CHAPITRE Nombres complexes et trigonométrie A Les nombres complexes 66 B Représentation géométrique Affixe Module Argument 67 1 Image d un complexe Affixe d un point, d un vecteur 67 Module 68 3 Nombres

Plus en détail

Chapitre 7 Proportionnalité.

Chapitre 7 Proportionnalité. Chapitre 7 Proportionnalité. Voir 5 ème, chapitres 5 et 7 ; 4 ème, chapitres 4, 5 et 12. I) Pourcentages, indices A) Augmentation (ou diminution) Eemple : Le pri d un objet est passé de à 14. Calculer

Plus en détail

La fonction exponentielle

La fonction exponentielle La fonction exponentielle L expression «croissance exponentielle» est passée dans le langage courant et désigne sans distinction toute variation «hyper rapide» d un phénomène. Ce vocabulaire est cependant

Plus en détail

OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES

OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES CLASSE PRÉPARATOIRE ATS OBJECTIFS DE FORMATION ET PROGRAMME DE MATHÉMATIQUES I. OBJECTIFS DE FORMATION 1- Mission de la filière et acquis des étudiants Les classes préparatoires ATS sont destinées aux

Plus en détail

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2

BTS Mécanique et Automatismes Industriels. Équations différentielles d ordre 2 BTS Mécanique et Automatismes Industriels Équations différentielles d ordre, Année scolaire 005 006 . Définition Notation Dans tout ce paragraphe, y désigne une fonction de la variable réelle x. On suppose

Plus en détail

Chapitre 2 Le problème de l unicité des solutions

Chapitre 2 Le problème de l unicité des solutions Université Joseph Fourier UE MAT 127 Mathématiques année 2011-2012 Chapitre 2 Le problème de l unicité des solutions Ce que nous verrons dans ce chapitre : un exemple d équation différentielle y = f(y)

Plus en détail

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07

Thierry JOFFREDO. Mémo DNB. Première partie : calcul, fonctions. Année 2006-07 Thierry JFFRED ØØÔ»»ÛÛÛºÑØÓÒÙØ ºÖ Mémo DN Première partie : calcul, fonctions nnée 006-07 CLCUL SUR LES FRCTINS Fractions égales n obtient une fraction égale en multipliant (ou en divisant) numérateur

Plus en détail

CCP PSI - 2010 Mathématiques 1 : un corrigé

CCP PSI - 2010 Mathématiques 1 : un corrigé CCP PSI - 00 Mathématiques : un corrigé Première partie. Définition d une structure euclidienne sur R n [X]... B est clairement symétrique et linéaire par rapport à sa seconde variable. De plus B(P, P

Plus en détail

C) Fiche : Espaces vectoriels.

C) Fiche : Espaces vectoriels. C) Fiche : Espaces vectoriels. 1) Définition d'un espace vectoriel. K= I ou est le corps des scalaires. E est un K-espace I vectoriel si et seulement si : C'est un ensemble non vide muni de deux opérations,

Plus en détail

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie

Rappels et compléments, première partie : Nombres complexes et applications à la géométrie Rappels et compléments, première partie : Nombres complexes et applications à la géométrie 1 Définition des nombres complexes On définit sur les couples de réels une loi d addition comme suit : (x; y)

Plus en détail

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique

ELECTROSTATIQUE - 2. 1. Rappels. 2. Outils mathématiques. 3. Distribution de charges. 4. Exemples de calculs de champ électrique ELECTROTATIQUE - 2 1. Rappels 2. Outils mathématiques 2.1. ystèmes classiques de coordonnées 2.2. Volume élémentaire dans chaque système de coordonnées 2.3. Intégrales des fonctions de points 2.4. Circulation

Plus en détail

La fonction exponentielle

La fonction exponentielle DERNIÈRE IMPRESSION LE 2 novembre 204 à :07 La fonction exponentielle Table des matières La fonction exponentielle 2. Définition et théorèmes.......................... 2.2 Approche graphique de la fonction

Plus en détail

Actions de groupes. Exemples et applications

Actions de groupes. Exemples et applications 4 Actions de groupes. Exemples et applications G, ) est un groupe multiplicatif et on note ou G si nécessaire) l élément neutre. E est un ensemble non vide et S E) est le groupe des permutations de E.

Plus en détail

Géométrie dans l espace Produit scalaire et équations

Géométrie dans l espace Produit scalaire et équations Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire

Plus en détail

212 année 2013/2014 DM de synthèse 2

212 année 2013/2014 DM de synthèse 2 22 année 20/204 DM de synthèse 2 Exercice Soit f la fonction représentée cicontre.. Donner l'ensemble de définition de la fonction f. 2. Donner l'image de 4 par f.. a. Donner un nombre qui n'a qu'un seul

Plus en détail

Exercices - Polynômes : corrigé. Opérations sur les polynômes

Exercices - Polynômes : corrigé. Opérations sur les polynômes Opérations sur les polynômes Exercice 1 - Carré - L1/Math Sup - Si P = Q est le carré d un polynôme, alors Q est nécessairement de degré, et son coefficient dominant est égal à 1. On peut donc écrire Q(X)

Plus en détail

Mais comment on fait pour...

Mais comment on fait pour... Mais comment on fait pour... Toutes les méthodes fondamentales en Maths Term.S Édition Salutπaths Table des matières 1) GÉNÉRALITÉS SUR LES FONCTIONS...13 1.Comment déterminer l'ensemble de définition

Plus en détail

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13

Suites réelles. 4 Relations de comparaison des suites 9 4.1 Encore du vocabulaire... 9. 5.2 Quelques propriétés... 13 Maths PCSI Cours Table des matières Suites réelles 1 Généralités 2 2 Limite d une suite 2 2.1 Convergence d une suite....................... 2 2.2 Deux premiers résultats....................... 3 2.3 Opérations

Plus en détail

TABLE DES MATIERES #! #! # $ #!!

TABLE DES MATIERES #! #! # $ #!! MECANIQUE 1 2 TABLE DES MATIERES! "!! $!! 3 ! $!!!!! "! 4 $% % & ' % % %! $ %!! 5 $ ' $ $ %! % $!!! " ( "! ( $ ) " 6 $ $* $ $ " " % 7 8 UTILISATION DU COURS Il est conseillé aux utilisateurs de ce cours

Plus en détail