Partie Mathématiques : (10 points)
|
|
|
- Maxime Lortie
- il y a 9 ans
- Total affichages :
Transcription
1 Partie Mathématiques : (10 oints) Une entrerise de nettoyage est sécialisée dans l entretien de locau industriels. Son activité nécessite l utilisation de véhicules. Eercice N 1 : (3 oints) L entrerise connaît une ériode d eansion. Le directeur de l entrerise effectue une étude statistique ortant sur la distance arcourue de chaque véhicule au cours de l année 010. Les résultats, en kilomètres, sont donnés dans le tableau ci-dessous. Distance arcourue (en kilomètres) ar chaque véhicule en Le directeur envisage de recruter du ersonnel et d acheter de nouveau véhicules si la distance moyenne arcourue au cours de l année ar les véhicules est suérieure à km. 1.1) Calculer, en kilomètres, la distance moyenne arcourue. Arrondir à l unité. Le directeur devra-t-il embaucher du ersonnel et acheter de nouveau véhicules? Justifier la réonse. /1 1.) Comléter le tableau statistique. /1 Distance arcourue (en km) [0 000 ; [ [ ; [ [ ; [ Nombre de Véhicules Angle (en ) 1.3) Rerésenter cette série statistique sous le forme d un diagramme à secteurs circulaire. /1 Sujet_sanso_Lille_juin_011 Page 1 / 7
2 Eercice N : (3 oints) L entrerise de nettoyage a relevé les aires des surfaces nettoyées au cours de l année dans le tableau ci-dessous. Trimestre Trimestre 1 Trimestre Trimestre 3 Trimestre 4 Aires des surfaces nettoyées (en m ).1) Les nombres , et sont les remiers termes d une suite géométrique. Préciser la raison et justifier la réonse. /1.) Calculer l aire de la surface nettoyée au cours du quatrième trimestre. /1.3) On ose u 1 l aire de la surface nettoyée au cours du remier trimestre, u l aire de la surface nettoyée au cours du deuième trimestre, u 3 l aire de la surface nettoyée au cours du troisième trimestre. Calculer u 15. Arrondir au centième. /1 Eercice N 3 : (4 oints) La directrice d une maison de retraite souhaite bénéficier des services d une entrerise de nettoyage. L entrerise VAPEUR roose un tarif de 1,10 ar m de surface à nettoyer et ne facture aucun frais de délacement. L entrerise DECAP facture 40 de délacement et 0,80 ar m de surface à nettoyer. 3.1) Le ri facturé ar l entrerise VAPEUR est modélisé ar la fonction f définie ar f() = 1,1 rerésente la valeur de la surface à nettoyer en m et f() rerésente le ri à ayer, en euro, our aartenant à l intervalle [0 ; 400]. En utilisant le reère de la age suivante, tracer la rerésentation grahique de la fonction f. /0,5 3.) Le ri facturé ar l entrerise DECAP est modélisé ar la fonction g définie ar g() = 0, rerésente la valeur de la surface à nettoyer en m et g() rerésente le ri à ayer, en euro, our aartenant à l intervalle [0 ; 400]. 3..1) Comléter le tableau de valeurs ci-dessous. / g() = 0, Sujet_sanso_Lille_juin_011 Page / 7
3 3..) En utilisant le reère suivant, tracer la rerésentation grahique de la fonction g. /0,5 y ) La surface à nettoyer de la maison de retraite est de 350 m ) A l aide du grahique récédent, indiquer l entrerise la lus avantageuse. Laisser aarents les traits utiles à la lecture. /0,5 3.3.) Parmi les inéquations suivantes, relever celle qui traduit la situation récédente. 1,1 < 0, ; 1,1 > 0, ; 0,8 < 1, ; 0,8 > 1, /0, ) Résoudre cette inéquation dans l intervalle [0 ; 400]. Comarer le résultat obtenu avec celui de la question /1 Sujet_sanso_Lille_juin_011 Page 3 / 7
4 Partie Sciences Physiques : (10 oints) Eercice N 4 : (4 oints) Pour rocéder au nettoyage de bâtiments industriels, l entrerise VAPEUR utilise couramment de l eau de Javel et de l acide chlorhydrique. 4.1) L eau de Javel est réarée à artir de l hyochlorite de sodium de formule NaClO. Nommer chaque élément chimique résent dans l hyochlorite de sodium. /0,75 4.) Calculer, en g/mol, la masse molaire de l hyochlorite de sodium. /0,75 4.3) A la suite d une erreur de maniulation, le contenu d un berlingot d eau de Javel a été mélangé avec de l acide chlorhydrique. Ce mélange roduit une réaction chimique aboutissant à la formation d un gaz toique, le dichlore, ouvant causer de graves brûlures au oumons. 0,54 moles de dichlore sont roduites au cours de cette erreur de maniulation. Calculer, en litre, le volume de dichlore roduit. /1 4.4) L eau de Javel concentrée vendue en berlingot est un roduit chimique dangereu qui rovoque des brûlures lors du contact avec la eau ) Indique le numéro du ictogramme qui doit figurer sur l emballage. /0,5 n 1 n n ) Citer deu récautions à rendre our maniuler l eau de Javel. /1 Données : M(O) = 16 g/mol ; M(Cl) = 35,5 g/mol ; M(Na) = 3 g/mol Volume molaire : 4 L/mol. Sujet_sanso_Lille_juin_011 Page 4 / 7
5 Eercice N 5 : (4 oints) Sur la laque signalétique d un nettoyeur à vaeur, on a relevé les indications suivantes : Modèle : DEKAPE 30 V 50 Hz W 8 A 5.1) Comléter le tableau des grandeurs hysiques. /1,5 Indication Nom de la grandeur hysique Unité en toutes lettres 8 A intensité 30 V W 50 Hz hertz 5.) Le nettoyeur vaeur fonctionne endant h 15 min. 5..1) Calculer, en Wh, l énergie consommée ar l aareil endant cette durée. Erimer le résultat en kilowattheure. /1,5 5..) Le ri du kilowattheure est de 0,115. Calculer, en euro, le ri à ayer ar l entrerise our l énergie consommée ar l aareil. /1 Formulaire : E = P t Sujet_sanso_Lille_juin_011 Page 5 / 7
6 Eercice N 6 : ( oints) Le nettoyeur vaeur utilisé our le nettoyage des sols a un réservoir de volume égal à,8 L. Sa uissance électrique est de W. Pour obtenir la vaeur nécessaire au nettoyage des sols, l eau contenue dans le réservoir doit être chauffée à une temérature de 160 C. 6.1) La temérature initiale de l eau contenue dans le réservoir est égale à 15 C. Calculer, en joule, la quantité de chaleur nécessaire au chauffage de l eau. /1 6.) Calculer, en seconde, la durée nécessaire au chauffage de l eau du réservoir du nettoyeur vaeur. Arrondir le résultat à l unité. /1 Formulaire : Q = m c ( Θ f Θ i ) E = P t Données : 1 L d eau a une masse de 1 kg. c = J/(kg. C) Sujet_sanso_Lille_juin_011 Page 6 / 7
7 Formulaire BEP SANITAIRE ET SOCIAL Identités remarquables ( a + b) = a + ab + b (a b) = a ab + b (a + b)(a b) = a b Puissances d un nombre (ab) m = a m b m a m+n = a m a n (a m ) n = a mn Racines carrées ab = a b a = b a b Suites arithmétiques Terme de rang 1 : U 1 ; raison : r Terme de rang n : U n = U n-1 + r U n = U 1 + (n 1)r Suites géométriques Terme de rang 1 : U 1 ; raison : q Terme de rang n : U n = U n 1 q U n = U 1 q n-1 Statistiques n1 1 + n n Moyenne = N Ecart tye σ n ( - ) n ( - )... n ( σ = N n1 1 + n n = - N Relation métrique dans le triangle rectangle AB + AC = BC AH.BC = AB.AC A - ) Énoncé de Thalès (relatif au triangle) Si (BC) // (B C ) AB AC Alors = AB' AC' Position relative de deu droites Les droites d équations y = a + b et y = a + b sont : - arallèles si et seulement si a = a - orthogonales si et seulement si aa = - 1 B B A Calculs vectoriels dans le lan v r ' ; v r ' ' ; v r + + v' r ; y y' y + y' v r = + y C λ λv r ; λ y Calculs d intérêts C : Caital ; t tau ériodique ; n nombre de ériodes ; A : Valeur acquise arès n ériodes Intérêts simles I = Ctn A = C + I Calcul d aires dans le lan π. D Aire A d un disque : A = 4 D = diamètre du disque Intérêts comosés A = C(1 + t) n Aire A d un triangle A = 1 B h B = base du triangle h = hauteur du triangle C AC AB AC sin Bˆ = ; cos Bˆ = ; tan Bˆ = BC BC AB B H C Sujet_sanso_Lille_juin_011 Page 7 / 7
Module : réponse d un système linéaire
BSEL - Physique aliquée Module : réonse d un système linéaire Diaoramas () : diagrammes de Bode, réonse Résumé de cours - Caractérisation d un système hysique - Calcul de la réonse our une entrée donnée
NFE107 Urbanisation et architecture des systèmes d information. Juin 2009. «La virtualisation» CNAM Lille. Auditeur BAULE.L 1
Juin 2009 NFE107 Urbanisation et architecture des systèmes d information CNAM Lille «La virtualisation» Auditeur BAULE.L 1 Plan INTRODUCTION I. PRINCIPES DE LA VIRTUALISATION II. DIFFÉRENTES TECHNIQUES
EXAMEN : CAP ADAL SESSION 2011 N du sujet : 02.11 SPECIALITE : CEB - GEPER SUJET SECTEUR : FOLIO : 1/6 EPREUVE : EG2 (MATH-SCIENCES)
EXAMEN : CAP ADAL SESSION 20 N du sujet : 02. FOLIO : /6 Rédiger les réponses sur ce document qui sera intégralement remis à la fin de l épreuve. L usage de la calculatrice est autorisé. Exercice : (7
Bois. P.21 Bois-béton à Paris. Carrefour du Bois. Saturateurs. Usinage fenêtres. Bardages P.25 P.34 P.31 P.37. La revue de l activité Bois en France
CMP Bois n 19-12 avril - mai 2010 P.25 Carrefour du Bois P.34 cm La revue de l activité Bois en France Bois Saturateurs P.31 Usinage fenêtres P.37 Bardages Tout our l usinage du bois massif. Tout d un
Découvrez les bâtiments* modulaires démontables
Découvrez les bâtiments* modulaires démontables w Industrie w Distribution * le terme «bâtiment» est utilisé our la bonne comréhension de l activité de Locabri. Il s agit de structures modulaires démontables
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Un modèle de composition automatique et distribuée de services web par planification
Un modèle de comosition automatique et distribuée de services web ar lanification Damien Pellier * Humbert Fiorino ** * Centre de Recherche en Informatique de Paris 5 Université Paris Descartes 45, rue
prix par consommateur identiques différents prix par identiques classique 3 unité différents 2 1
3- LE MONOOLE DISCRIMINANT Le monoole eut vendre ertaines unités de roduit à des rix différents. On arle de disrimination ar les rix. Selon une terminologie due à igou (The Eonomis of Welfare, 1920), on
LA CERTIFICATION DES ARMATURES
LA CERTIFICATION DES ARMATURES NF - Aciers our béton armé NF - Armatures AFCAB - Disositifs de raboutage ou d ancrage des armatures du béton AFCAB - Pose des armatures du béton LE CYCLE DES ARMATURES :
dénombrement, loi binomiale
dénombrement, loi binomiale Table des matières I) Introduction au dénombrement 1 1. Problème ouvert....................................... 2 2. Jeux et dénombrements...................................
S2I 1. quartz circuit de commande. Figure 1. Engrenage
TSI 4 heures Calculatrices autorisées 214 S2I 1 L essor de l électronique nomade s accomagne d un besoin accru de sources d énergies miniaturisées. Les contraintes imosées à ces objets nomades sont multiles
Exprimer ce coefficient de proportionnalité sous forme de pourcentage : 3,5 %
23 CALCUL DE L INTÉRÊT Tau d intérêt Paul et Rémi ont reçu pour Noël, respectivement, 20 et 80. Ils placent cet argent dans une banque, au même tau. Au bout d une année, ce placement leur rapportera une
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
Accès optiques : la nouvelle montée en débit
Internet FTR&D Dossier du mois d'octobre 2005 Accès otiques : la nouvelle montée en débit Dans le domaine du haut débit, les accès en France sont our le moment très majoritairement basés sur les technologies
DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS
Ecole Nationale des Ponts et Chaussées Laboratoire Paris-Jourdan Sciences Economiques DIVERSIFICATION DES ACTIVITES ET PRIVATISATION DES ENTREPRISES DE CHEMIN DE FER : ENSEIGNEMENTS DES EXEMPLES JAPONAIS
TP : Outils de simulation. March 13, 2015
TP : Outils de simulation March 13, 2015 Chater 1 Initialisation Scilab Calculatrice matricielle Exercice 1. Système Unix Créer sous Unix un réertoire de travail outil_simulation dans votre home réertoire.
Logistique, Transports
Baccalauréat Professionnel Logistique, Transports 1. France, juin 2006 1 2. Transport, France, juin 2005 2 3. Transport, France, juin 2004 4 4. Transport eploitation, France, juin 2003 6 5. Transport,
Santé et hygiène bucco-dentaire des salariés de la RATP
Santé et hygiène bucco-dentaire des salariés de la RATP Percetion des salariés et examen clinique du raticien Période 2006-2009 14 juin 2012 Dominique MANE-VALETTE, Docteur en Chirurgie dentaire [email protected]
Manuel de l'utilisateur
0 Manuel de l'utilisateur Mise en route... 4 Votre Rider 0... 4 Réinitialiser le Rider 0... 5 Accessoires... 5 Icônes d'état... 5 Connexion, synchro et chargement... 6 Allumer/éteindre le Rider 0... 6
L information sera transmise selon des signaux de nature et de fréquences différentes (sons, ultrasons, électromagnétiques, électriques).
CHAINE DE TRANSMISSION Nous avons une information que nous voulons transmettre (signal, images, sons ). Nous avons besoin d une chaîne de transmission comosée de trois éléments rinciaux : 1. L émetteur
Catalogue 3 Chaine sur Mesure
Catalogue 3 Chaine sur Mesure SUBAKI Les Chaines 2009 CAALGUE 3 Classification chaine sur mesure sériés de chaîne ye de chaîne subaki Caractéristiques RUNNER BS Performance suérieure Général Chaînes à
Chambre Régionale de Métiers et de l Artisanat. Région Auvergne. Région Auvergne
Chambre Régionale de Métiers et de l Artisanat L Artisanat en Auvergne, l Energie du Déveloement Région Auvergne Région Auvergne Edito Edito Valoriser la formation des jeunes et des actifs : un enjeu
Exercices sur le thème II : Les savons
Fiche d'exercices Elève pour la classe de Terminale SMS page 1 Exercices sur le thème : Les savons EXERCICE 1. 1. L oléine, composé le plus important de l huile d olive, est le triglycéride de l acide
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Guide d utilisation (Version canadienne) Téléphone sans fil DECT 6.0/ avec répondeur et afficheur/ afficheur de l appel en attente CL83101/CL83201/
Guide d utilisation (Version canadienne) Téléhone sans fil DECT 6.0/ avec réondeur et afficheur/ afficheur de l ael en attente CL83101/CL83201/ CL83301/CL83351/ CL83401/CL83451 Félicitations our votre
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
En vue de l'obtention du. Présentée et soutenue par Philippe NERISSON Le 5 février 2009
THÈSE En vue de l'obtention du DOCTORAT DE L UNIVERSITÉ DE TOULOUSE Délivré ar l Institut National Polytechnique de Toulouse Disciline ou sécialité : Dynamique des Fluides Présentée et soutenue ar Philie
CONSTRUCTION DES COMPETENCES DU SOCLE COMMUN CONTRIBUTION DES SCIENCES PHYSIQUES
CONSTRUCTION DES COMPETENCES DU SOCLE COMMUN CONTRIBUTION DES SCIENCES PHYSIQUES Compétence du socle : Compétence 6 : Les compétences sociales et civiques. Contribution attendue : Utiliser un produit chimique
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Sous le feu des questions
ARTICLE PRINCIPAL Assureurs Protection juridique Sous le feu des questions Comment les assureurs Protection juridique vont-ils désormais romouvoir leurs roduits? Seraient-ils artisans d une assurance Protection
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
EVALUATIONS FIN CM1. Mathématiques. Livret élève
Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
FORD C-MAX + FORD GRAND C-MAX CMAX_Main_Cover_2013_V3.indd 1-3 22/08/2012 15:12
1 2 3 4 5 6 7 8 9 10 12,999,976 km 9,136,765 km 1,276,765 km 499,892 km 245,066 km 112,907 km 36,765 km 24,159 km 7899 km 2408 km 76 km 12 14 16 1 12 7 3 1 6 2 5 4 3 11 9 10 8 18 20 21 22 23 24 26 28 30
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES
SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... SOMMAIRE... LES MESURES MES 1 Les mesures de longueurs MES 2 Lecture de l heure MES 3 Les mesures de masse MES 4 Comparer des longueurs, périmètres.
Intérêts. Administration Économique et Sociale. Mathématiques XA100M
Intérêts Administration Économique et Sociale Mathématiques XA100M 1. LA NOTION D INTÉRÊT 1.1. Définition. Définition 1. L intérêt est la rémunération d un prêt d argent effectué par un agent économique
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Programme de calcul et résolution d équation
Programme de calcul et résolution d équation On appelle «programme de calcul» tout procédé mathématique qui permet de passer d un nombre à un autre suivant une suite d opérations déterminée. Un programme
Vous êtes un prestataire touristique dans les Monts de Guéret? L Office de Tourisme du Grand Guéret peut vous accompagner!
Le guide 2015 e u q i t s i r u o t e r i du artena Vous êtes un restataire touristique dans les Monts de Guéret? L Office de Tourisme du Grand Guéret eut vous accomagner! Qui sommes nous? 2 Edito Nouveau
Des familles de deux enfants
Des familles de deux enfants Claudine Schwartz, IREM de Grenoble Professeur, Université Joseh Fourier Les questions et sont osées dans le dernier numéro de «Pour la Science» (n 336, octobre 2005, article
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
VOIP. Pr MOUGHIT Mohamed [email protected]. Cours VOIP Pr MOUGHIT Mohamed 1
VOIP Pr MOUGHIT Mohamed [email protected] Cours VOIP Pr MOUGHIT Mohamed 1 Connexion fixe, rédictible Connexion établie avant la numérotation user Centre de commutation La Radio est le suort imrédictible
SP. 3. Concentration molaire exercices. Savoir son cours. Concentrations : Classement. Concentration encore. Dilution :
SP. 3 Concentration molaire exercices Savoir son cours Concentrations : Calculer les concentrations molaires en soluté apporté des solutions désinfectantes suivantes : a) Une solution de 2,0 L contenant
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
1 Définition. 2 Systèmes matériels et solides. 3 Les actions mécaniques. Le système matériel : Il peut être un ensemble.un sous-ensemble..
1 Définition GÉNÉRALITÉS Statique 1 2 Systèmes matériels et solides Le système matériel : Il peut être un ensemble.un sous-ensemble..une pièce mais aussi un liquide ou un gaz Le solide : Il est supposé
Exercices - Nombres complexes : corrigé. Formes algébriques et trigonométriques, module et argument
Formes algébriques et trigonométriques, module et argument Exercice - - L/Math Sup - On multiplie le dénominateur par sa quantité conjuguée, et on obtient : Z = 4 i 3 + i 3 i 3 = 4 i 3 + 3 = + i 3. Pour
Commande prédictive des systèmes non linéaires dynamiques
Rébliqe Algérienne Démocratiqe et olaire Ministère de l Enseignement Sérier et de la Recherche Scientifiqe Université Molod Mammeri de Tizi-Ozo Faclté de Génie Electriqe et Informatiqe Déartement Atomatiqe
CR 15, CRI 15, CRN 15, CRE 15, CRIE 15, CRNE 15
Lenntech [email protected] www.lenntech.com GRUNDFOS LIVRET TECNIQUE CR 15, CRI 15, CRN 15, CRE 15, CRIE 15, CRNE 15 Pomes centrifuges multicellulaires verticales 5 z 1 CR, CRI, CRN, CRE, CRIE, CRNE Caractéristiques
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
EQUATIONS ET INEQUATIONS Exercices 1/8
EQUATIONS ET INEQUATIONS Exercices 1/8 01 Résoudre les équation suivantes : x + 7 = 0 x 1 = 0 x + 4 = 0 3x 9 = 0 9x + 1 = 0 - x + 4 = 0-6x + = 0-5x 15 = 0-1 + 8x = 0-4 - 3x = 0-5x 3 + 7x = 0 + 6x 4 = 0
Les fonction affines
Les fonction affines EXERCICE 1 : Voir le cours EXERCICE 2 : Optimisation 1) Traduire, pour une semaine de location, chaque formule par une écriture de la forme (où x désigne le nombre de kilomètres parcourus
DOCM 2013 http://docm.math.ca/ Solutions officielles. 1 2 10 + 1 2 9 + 1 2 8 = n 2 10.
A1 Trouvez l entier positif n qui satisfait l équation suivante: Solution 1 2 10 + 1 2 9 + 1 2 8 = n 2 10. En additionnant les termes du côté gauche de l équation en les mettant sur le même dénominateur
Comparaison de fonctions Développements limités. Chapitre 10
PCSI - 4/5 www.ericreynaud.fr Chapitre Points importants 3 Questions de cours 6 Eercices corrigés Plan du cours 4 Eercices types 7 Devoir maison 5 Eercices Chap Et s il ne fallait retenir que si points?
EXERCICES DE REVISIONS MATHEMATIQUES CM2
EXERCICES DE REVISIONS MATHEMATIQUES CM2 NOMBRES ET CALCUL Exercices FRACTIONS Nommer les fractions simples et décimales en utilisant le vocabulaire : 3 R1 demi, tiers, quart, dixième, centième. Utiliser
PROBLEME(12) Première partie : Peinture des murs et du plafond.
PROBLEME(12) Une entreprise doit rénover un local. Ce local a la forme d'un parallélépipède rectangle. La longueur est 6,40m, la largeur est 5,20m et la hauteur est 2,80m. Il comporte une porte de 2m de
Continuité et dérivabilité d une fonction
DERNIÈRE IMPRESSIN LE 7 novembre 014 à 10:3 Continuité et dérivabilité d une fonction Table des matières 1 Continuité d une fonction 1.1 Limite finie en un point.......................... 1. Continuité
Mécanique du point : forces Newtoniennes (PCSI)
écanique du oint : foces Newtoniennes (PCSI Question de cous On admet que, losqu'il est soumis à une foce Newtonienne F K u, la tajectoie d'un cos est lane et décite a mc K +e cosθ où C θ est une constante
La production énergétique à partir de la biomasse forestière : le devenir des nutriments et du carbone
La production énergétique à partir de la biomasse forestière : le devenir des nutriments et du carbone Jessica François, Mathieu Fortin et Anthony Dufour Journées CAQI les 8 et 9 avril 2014, Gembloux,
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures)
Bac Blanc Terminale ES - Février 2011 Épreuve de Mathématiques (durée 3 heures) Eercice 1 (5 points) pour les candidats n ayant pas choisi la spécialité MATH Le tableau suivant donne l évolution du chiffre
document proposé sur le site «Sciences Physiques en BTS» : http://nicole.cortial.net BTS AVA 2015
BT V 2015 (envoyé par Frédéric COTTI - Professeur d Electrotechnique au Lycée Régional La Floride Marseille) Document 1 - Etiquette énergie Partie 1 : Voiture à faible consommation - Une étiquette pour
TSTI 2D CH X : Exemples de lois à densité 1
TSTI 2D CH X : Exemples de lois à densité I Loi uniforme sur ab ; ) Introduction Dans cette activité, on s intéresse à la modélisation du tirage au hasard d un nombre réel de l intervalle [0 ;], chacun
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
FICHE 1 Fiche à destination des enseignants
FICHE 1 Fiche à destination des enseignants 1S 8 (b) Un entretien d embauche autour de l eau de Dakin Type d'activité Activité expérimentale avec démarche d investigation Dans cette version, l élève est
Prénom : MATHÉMATIQUES. 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable
Admission en 8 VSG 8 VSB cocher la voie visée MATHÉMATIQUES Durée Matériel à disposition 120 minutes Compas, règle métrique, rapporteur, équerre, calculatrice non programmable Rappel des objectifs fondamentaux
Seconde Généralités sur les fonctions Exercices. Notion de fonction.
Seconde Généralités sur les fonctions Exercices Notion de fonction. Exercice. Une fonction définie par une formule. On considère la fonction f définie sur R par = x + x. a) Calculer les images de, 0 et
Items étudiés dans le CHAPITRE N5. 7 et 9 p 129 D14 Déterminer par le calcul l'antécédent d'un nombre par une fonction linéaire
CHAPITRE N5 FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION FONCTIONS LINEAIRES NOTION DE FONCTION Code item D0 D2 N30[S] Items étudiés dans le CHAPITRE N5 Déterminer l'image
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
Soit la fonction affine qui, pour représentant le nombre de mois écoulés, renvoie la somme économisée.
ANALYSE 5 points Exercice 1 : Léonie souhaite acheter un lecteur MP3. Le prix affiché (49 ) dépasse largement la somme dont elle dispose. Elle décide donc d économiser régulièrement. Elle a relevé qu elle
CONCOURS GÉNÉRAL DES LYCÉES Session 2014. Durée 5 heures. Corrigé. Poséidon au secours d Éole pour produire l énergie électrique
CONCOURS GÉNÉRAL DES LYCÉES Session 2014 Durée 5 heures Corrigé Poséidon au secours d Éole pour produire l énergie électrique Partie 1 - analyse du besoin Q 1. À l aide du diagramme FAST du document technique
Exo7. Limites de fonctions. 1 Théorie. 2 Calculs
Eo7 Limites de fonctions Théorie Eercice Montrer que toute fonction périodique et non constante n admet pas de ite en + Montrer que toute fonction croissante et majorée admet une ite finie en + Indication
Les emprunts indivis. Administration Économique et Sociale. Mathématiques XA100M
Les emprunts indivis Administration Économique et Sociale Mathématiques XA100M Les emprunts indivis sont les emprunts faits auprès d un seul prêteur. On va étudier le cas où le prêteur met à disposition
Noël des enfants qui n'ont plus de maisons
Chur SS Piano CLAUDE DEBUSSY Noël des enants qui n'ont lus de maisons (1915) Charton Mathias 2014 Publication Usage Pédagogique maitrisedeseinemaritimecom Yvetot France 2 Note de rogramme : Le Noël des
EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points)
BAC S 2011 LIBAN http://labolycee.org EXERCICE 2 : SUIVI CINETIQUE D UNE TRANSFORMATION PAR SPECTROPHOTOMETRIE (6 points) Les parties A et B sont indépendantes. A : Étude du fonctionnement d un spectrophotomètre
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
Compression scalable d'images vidéo par ondelettes 2D+t
Comression scalable d'images vidéo ar ondelettes 2D+t Madji Samia, Serir Amina et Ouanane Abdelhak Université des Sciences et de la Technologie Houari Boumediene, Laboratoire de traitement d images et
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
DURÉE DU JOUR EN FONCTION DE LA DATE ET DE LA LATITUDE
DURÉE DU JUR E FCTI DE LA DATE ET DE LA LATITUDE ous allons nous intéresser à la durée du jour, prise ici dans le sens de période d éclairement par le Soleil dans une journée de 4 h, en un lieu donné de
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Proposition de programmes de calculs en mise en train
Proposition de programmes de calculs en mise en train Programme 1 : Je choisis un nombre, je lui ajoute 1, je calcule le carré du résultat, je retranche le carré du nombre de départ. Essai-conjecture-preuve.
Section «Maturité fédérale» EXAMENS D'ADMISSION Session de février 2014 RÉCAPITULATIFS DES MATIÈRES EXAMINÉES. Formation visée
EXAMENS D'ADMISSION Admission RÉCAPITULATIFS DES MATIÈRES EXAMINÉES MATIÈRES Préparation en 3 ou 4 semestres Formation visée Préparation complète en 1 an 2 ème partiel (semestriel) Niveau Durée de l examen
SECTEUR 4 - Métiers de la santé et de l hygiène
SECTEUR 4 - Métiers de la santé et de l hygiène A lire attentivement par les candidats Sujet à traiter par tous les candidats inscrit au BEP Les candidats répondront sur la copie. Les annexes éventuelles
Procès - Verbal du Conseil Municipal Du lundi 15 décembre 2014
Procès - Verbal du Conseil Municial Du lundi 15 décembre 2014 Nombre de membres comosant le Conseil Municial : 15 Nombre de membres en exercice : 15 Nombre de Conseillers résents : 14 Nombre de Conseillers
BTS BAT 1 Notions élémentaires de chimie 1
BTS BAT 1 Notions élémentaires de chimie 1 I. L ATOME NOTIONS EÉLEÉMENTAIRES DE CIMIE Les atomes sont des «petits grains de matière» qui constituent la matière. L atome est un système complexe que l on
Conditions Générales PACK Conseil Informatique Média. «Responsabilité civile professionnelle des prestataires de services»
Conditions Générales ACK Conseil Informatique Média «Responsabilité civile professionnelle des prestataires de services» Référencées «CG ACK CIM 1009» RÉAMBULE Le présent contrat est établi sur la base
5 ème Chapitre 4 Triangles
5 ème Chapitre 4 Triangles 1) Médiatrices Définition : la médiatrice d'un segment est l'ensemble des points équidistants des extrémités du segment (cours de 6 ème ). Si M appartient à la médiatrice du
Retrouvez-nous sur esg.fr. Diplôme Bac+5 visé par l État / Grade Master Membre de la Conférence des Grandes Écoles
Retrouvez-nous sur esg.fr Savoir être our agir avec sens Dilôme Bac+5 visé ar l État / Grade Master Membre de la Conférence des Grandes Écoles SOMMAIRE Avec 5 500 élèves, 27 500 dilômés et 5 camus au cœur
Durée de L épreuve : 2 heures. Barème : Exercice n 4 : 1 ) 1 point 2 ) 2 points 3 ) 1 point
03 Mai 2013 Collège Oasis Durée de L épreuve : 2 heures. apple Le sujet comporte 4 pages et est présenté en livret ; apple La calculatrice est autorisée ; apple 4 points sont attribués à la qualité de
«INVESTIR SUR LE MARCHE INERNATIONAL DES ACTIONS A-T-IL PLUS D EFFET SUR LA PERSISTANCE DE LA PERFORMANCE DES FONDS? ILLUSTRATION BRITANNIQUE»
Manuscrit auteur, ublié dans "«COMPTABILITE ET ENVIRONNEMENT», France (007)" «INVESTIR SUR LE MARCHE INERNATIONAL DES ACTIONS A-T-IL PLUS D EFFET SUR LA PERSISTANCE DE LA PERFORMANCE DES FONDS? ILLUSTRATION
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Seconde MESURER LA TERRE Page 1 MESURER LA TERRE
Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une
ANALYSE SPECTRALE. monochromateur
ht ANALYSE SPECTRALE Une espèce chimique est susceptible d interagir avec un rayonnement électromagnétique. L étude de l intensité du rayonnement (absorbé ou réémis) en fonction des longueurs d ode s appelle
Chapitre 11 Bilans thermiques
DERNIÈRE IMPRESSION LE 30 août 2013 à 15:40 Chapitre 11 Bilans thermiques Table des matières 1 L état macroscopique et microcospique de la matière 2 2 Énergie interne d un système 2 2.1 Définition.................................
