1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "1 ( 8 points ) Sur le graphique de l annexe 1, on a tracé, dans le plan muni d un repère orthonormé"

Transcription

1 TS. Contrôle 4 -Correction 8 points ) Sur le graphique de l annee, on a tracé, dans le plan muni d un repère orthonormé la courbe représentative C d une fonction f définie et dérivable sur l intervalle ] ; + [. On dispose des informations suivantes : les points A, B, C ont pour coordonnées respectives ; ), ; ), ; ) ; la courbe C passe par le point B et la droite BC) est tangente à C en B ; il eiste deu réels positifs a et b tels que pour tout réel strictement positif, f ) = a + b ln.. a. En utilisant le graphique, donner les valeurs de f ) et f ). On lit f ) = y B = O, ı, ) j, et pour f ), on lit le coefficient directeur de la tangente à la courbe C au point d abscisse, c est à dire le coefficient directeur de la droite CB), qui est horizontale, donc f ) = b. Vérifier que pour tout réel strictement positif, f ) = La fonction f = u v b a) b ln. est dérivable sur ] ; + [, en tant que quotient de fonctions dérivables sur cet intervalle le dénominateur ne s annulant pas sur cet intervalle). On a : f = u v uv v + b ) a + b ln ) f b a + b ln ) ) = = Soit effectivement : f b a) b ln ) = c. En déduire les réels a et b. On en déduit : f ) = a + b ln) = a + = a, or d après le. a., f ) =, donc a = Du coup, on a f b ) b ln) ) = = b, or d après le. a., f ) =, donc b =. a. Justifier que pour tout réel appartenant à l intervalle ] ; + [, f ) a le même signe que ln. On reprend la forme de f obtenue précédemment, en remplaçant a et b par, et on a : f ) = ln = ln ). Puisque pour tout élément de ] ; + [, est un nombre strictement positif, on en déduit que la dérivée de f a bien le même signe que ln pour tout élément de ] ; + [. b. Déterminer les limites de f en et en +. On pourra remarquer que pour tout réel strictement positif, f ) = + ln. Quand tend vers : lim ln = donc, par limite d un produit et d une somme : lim + ln =. Comme par ailleurs lim = +, alors, par limite d un quotient, on a lim f = Quand tend vers +, on va utiliser la forme de f présentée dans la question : lim =, et + lim ln =, d après la propriété des croissances comparées, et donc par limite d une + somme, puis par produit par : lim f = + c. En déduire le tableau de variations de la fonction f. On peut donc dresser le tableau des variations de f : ln α + + f ) 3. a. Démontrer que l équation f ) = admet une unique solution α sur l intervalle ],]. La fonction f est continue et strictement croissante sur l intervalle ] ; ] et est une valeur strictement comprise entre lim f et f ), donc l application du corollaire au théorème des valeurs intermédiaires garantit l eistence d une unique solution à l équation f ) = sur l intervalle ] ; ], qui sera notée α.

2 b. Par un raisonnement analogue, on démontre qu il eiste un unique réel β de l intervalle ],+ [ tel que f β) =. Déterminer l entier n tel que n < β < n +. Par balayage à la calculatrice, on obtient f 5) > et f 6) <, donc comme la fonction f est continue sur [5 ; 6], le théorème des valeurs intermédiaires garantit l eistence d au moins une solution à l équation f ) = sur l intervalle [5 ; 6], et puisque l on avait admis qu il n y avait qu une seule solution β à cette équation sur ] ; + [, cette solution est donc entre 5 et 6. Enfin, puisque ni 5 ni 6 n ont une image eactement égale à, on peut dire que β est strictement entre 5 et 6. Le nombre entier n cherché est donc 5 4. a. Faire tourner l algorithme de l annee en complétant le tableau donné. On obtient : voir la page TS_Controle4_4_dichotomie_alpha.htm étape étape étape 3 étape 4 étape 5 a,5,375,4375 b,5,5,5,5 b a,5,5,5,65 m,5,5,375,4375 f m),3 3,9,,79 Le tableau a été complété par la ligne «f m)» pour montrer les affectations à a ou à b. Le tableau précédent sera probablement considéré comme correct, mais si on interprète la question très rigoureusement, d un point de vue algorithmique, on doit supposer que l étape est l initialisation, et les étapes de à 5 correspondant au itérations de à 4. Dans ce cas, l étape n a pas de valeur m, et la valeur b a va servir à savoir si l itération suivante va être utile ou non. Dans ce cas, on va écrire dans la colonne les valeurs en mémoire à la fin de l itération de la boucle «Tant que», ce qui donne le tableau de l annee. b. Que représentent les valeurs affichées par cet algorithme? Cet algorithme renvoie les deu bornes obtenues pour encadrer le nombre α par dichotomie, avec une amplitude au plus égale à,. c. Modifier cet algorithme pour qu il affiche les deu bornes d un encadrement de β d amplitude. voir la page TS_Controle4_4_dichotomie_beta.htm Pour que l algorithme donne un encadrement de β avec la même précision, il faut modifier l initialisation, en mettant : AFFECTER À a LA VALEUR 5. AFFECTER À b LA VALEUR 6. Puis, dans le traitement, modifier le test «Si» pour qu il soit : "Si f m) > ", afin de prendre en compte la décroissance de f sur l intervalle [5 ; 6]. Variables : a,b et m sont des nombres réels Initialisation : AFFECTER À a LA VALEUR 5 AFFECTER À b LA VALEUR 6 Traitement : TANT QUE b a >, Sortie : AFFECTER À m LA VALEUR a + b) SI f m) > ALORS AFFECTER À a LA VALEUR m SINON AFFECTER À b LA VALEUR m FIN SI FIN TANT QUE AFFICHER a AFFICHER b Une autre possibilité serait d affecter 6 à a et 5 à b, et de modifier le «tant que» pour avoir «tant que a b >,» et alors a serait la borne haute de l encadrement, et b la borne basse).

3 7 points ) Pour tout réel k strictement positif, on désigne par f k la fonction définie et dérivable sur l ensemble des nombres réels R telle que : f k ) = ke k. On note C k sa courbe représentative dans le plan muni d un repère orthogonal O, ı, ) j. Partie A : Étude du cas k = On considère donc la fonction f définie sur R par f ) = e.. Déterminer les limites de la fonction f en et en +. En déduire que la courbe C admet une asymptote que l on précisera. Comme lim e = +, on a par produit f ) =. Par croissances comparées, on a e lim lim f ) = f ) = lim + + e = Ce résultat montre l ae des abscisses est asymptote horizontale à C au voisinage de +.. Étudier les variations de f sur R puis dresser son tableau de variation sur R. f produit de fonctions dérivables sur R est dérivable et sur cet intervalle : f ) = e e = e ). Comme e > sur R, le signe de f ) est celui de. Donc f ) > si < et f ) < si >. D où le tableau de variations : f ) + + f ) e 3. Démontrer que la fonction g définie et dérivable sur R telle que : g ) = + )e est une primitive de la fonction f sur R. g étant dérivable, on a pour tout réel, Donc g est bien une primitive de la fonction f sur R. 4. Étudier le signe de f ) suivant les valeurs du nombre réel. Comme pour tout réel, e >, f ) = =. g ) = e [ + )e ] = e + + )e = e = f ). Le tableau de variations ci-dessus montre donc que f ) < sur ] ; [ et f ) > sur ] ; + [. f ) + +

4 Partie B : Propriétés graphiques On a représenté sur le graphique de l annee les courbes C, C a et C b où a et b sont des réels strictement positifs fiés et T la tangente à C b au point O origine du repère.. Montrer que pour tout réel k strictement positif, les courbes C k passent par un même point. De façon évidente f k ) = k e =, donc les courbes C k passent par l origine.. a. Montrer que pour tout réel k strictement positif et tout réel on a f k ) = k k)e k. Produit de fonctions dérivables sur R, f k l est aussi et : f k ) = ke k k ke k = ke k k) b. Justifier que, pour tout réel k strictement positif, f k admet un maimum et calculer ce maimum. k strictement positif, et e k >, pour tout réel, donc le signe de la dérivée f ) est celui de k. Or : k k < k < ; k > k > ; k = k =. Il en résulte que la fonction f k est : croissante sur ] ; [ k ; décroissante sur ] k ; + [ ; admet donc un maimum en k : f ) k k = k k e k k = e = e,368. Conclusion : toutes les fonctions ont le même maimum e pour = k c. En observant le graphique de l annee, comparer a et. Epliquer la démarche. Le maimum pourk = est obtenu pour = =,5, donc le maimum pour f a est obtenue pour une valeur inférieure à,5 donc pour a >. a Note en fait on peut penser que l abscisse du minimum est à peu près égale à,, ce qui correspond à a = d. Écrire une équation de la tangente à C k au point O origine du repère. Une équation de cette tangente est : y f k) = f k ) ) y = k )e y = k e. En déduire à l aide du graphique une valeur approchée de b. Le coefficient directeur de la droite T) est égal à,6, = 3. Donc la courbe C b correspond à la valeur b = points ) Cet eercice est un questionnaire à choi multiples. Aucune justification n est demandée. Pour chacune des questions, une seule des propositions est eacte. Chaque réponse correcte rapporte point. Une réponse erronée ou une absence de réponse n ôte pas de point. Le candidat indiquera sur la copie le numéro de la question et la réponse choisie. Le plan est muni d un repère orthonormé direct O, u, v ).. Soit z = 6e i π 4 et z = e i π 3. La forme eponentielle de i z z est : a. 3e i 9π b. e i π c. 3e i 7π d. 3e i 3π i z = i z z z = 6 = 3 et arg. L équation z = z, d inconnue complee z, admet : a. une solution b. deu solutions i z ) = argi) + argz ) argz ) = π z + π 4 + π 3 = 3π c. une infinité de solutions dont les points images dans le plan complee sont situés sur une droite. z = z z + z = Rez) = Rez) = z ir d. une infinité de solutions dont les points images dans le plan complee sont situés sur un cercle. Pour s en convaincre, écrire les formes algébriques... z = z a ib = a ib a = a a = [π].

5 3. Soit E l ensemble des points M d affie z vérifiant z + i = z i. a. E est l ae des abscisses. Soit E l ensemble des points M d affie z vérifiant z + i = z i. Si on considère A d affie i) et A d affie i, alors E l ensemble des points M tels que AM = A M est donc la médiatrice de [AA ], c est l ae des. b. E est l ae des ordonnées. c. E est le cercle ayant pour centre O et pour rayon. 4. On désigne par B et C deu points du plan dont les affies respectives b et c vérifient l égalité c b = e i π 4. a. Le triangle OBC est isocèle en O. b. Les points O,B,C sont alignés. c. Le triangle OBC est isocèle et rectangle en B. En considérant les vecteurs OB et OC et en utilisant module et argument de z C z O = π e i 4, vu que e ıπ 4 z B z O est écrit sous forme eponentielle module :, argument : π 4 ) on en déduit que : z C z O z B z O = et OB ; OC ) = π 4 Donc OC = OB et OB ; OC ) = π 4 On peut tracer le dessin du triangle OBC, il suffit de choisir B autre que O) v 5i 4i 3i i i π 4 B O u C B Le triangle OBC semble isocèle et rectangle en B, prouvons le en calculant b et c b puis arg z O z B z C z B, donc on va calculer z O z B c est-à-dire z C z B z O z B b = z C z B b e i π 4 b = e i π 4 = + i) car e i ) π 4 = + i et = z O z B = = i car ) = i) z C z B i et i est de module et d argument π, donc BO = BC et BO BC 5. On considère les points D, E, F, G et H d affies respectives : d = + i, e = 3 + i, f = + i 3, g = + a. les points D,E et F sont alignés. On a DE 3 i ) et DF + i 3 )). D où ) DF = 3 DE. Les vecteurs sont colinéaires donc les points D, E et F sont alignés. b. les points E, F et G appartiennent à un même cercle de centre H. 3 i et h = + + ) 3 i. c. les affies des points E et F sont les solutions d une même équation du second degré à coefficients réels.

6 TS. Contrôle 4 -Correction À restituer avec votre copie y Annee - E. C B j C O ı A Variables : a,b et m sont des nombres réels Initialisation : AFFECTER À a LA VALEUR AFFECTER À b LA VALEUR Traitement : TANT QUE b a >, Sortie : AFFECTER À m LA VALEUR a + b) SI f m) < ALORS AFFECTER À a LA VALEUR m SINON AFFECTER À b LA VALEUR m FIN SI FIN TANT QUE AFFICHER a AFFICHER b étape étape étape 3 étape 4 étape 5 a,5,375,4375 b,5,5,5,5 b a,5,5,5,65 m,5,5,375 y Annee - E.,6 T,4 e C, C a C b,,,4,6,8,,4,

Exercice 1 Problème 10 points

Exercice 1 Problème 10 points On révise... Eercice 1 Problème 10 points Partie A Soit g la fonction définie sur l intervalle ]0 ; [ par : g ()= 2 2 2ln() 1. Déterminer la fonction dérivée g de la fonction g et montrer que cette dérivée

Plus en détail

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats

Exercice 1 sur 5 points Cet exercice est commun à tous les candidats Eercice sur 5 points Cet eercice est commun à tous les candidats Soit f une fonction définie sur ]0 ; + [. On note C f sa courbe représentative dans un repère orthonormal représentée en annee. - La courbe

Plus en détail

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011

Corrigé du baccalauréat S Métropole La Réunion 16 septembre 2011 Corrigé du baccalauréat S Métropole La Réunion 16 septembre 11 EXERCICE 1 Partie A 1 La loi suivie par la variable aléatoire X prenant pour valeur le nombre de moteurs tombant en panne est une loi binomiale

Plus en détail

Bac Blanc GE épreuve de mathématiques Année 2005/2006

Bac Blanc GE épreuve de mathématiques Année 2005/2006 Bac Blanc GE épreuve de mathématiques Année 005/00 L usage de la calculatrice est autorisée. Le prêt de calculatrice entre les candidats n est pas autorisé. La qualité de la rédaction et de la présentation,

Plus en détail

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3

LOGARITHME. Ph DEPRESLE. 29 juin Fonction logarithme népérien Définition Conséquences Propriétés algébriques 3 LOGARITHME Ph DEPRESLE 9 juin 5 Table des matières Fonction logarithme népérien. Définition............................................... Conséquences............................................ 3 Propriétés

Plus en détail

Fonction exponentielle Bac Série S

Fonction exponentielle Bac Série S Fonction exponentielle Bac Série S - 3 EXERCICE N Pondichéry 6 avril Partie On s intéresse à l évolution de la hauteur d un plant de maïs en fonction du temps. Le graphique ci-après représente cette évolution.,,8,6,4,,,8,6,4,

Plus en détail

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com

Intégrale d une fonction : Exercices Corrigés en vidéo avec le cours sur jaicompris.com Intégrale et aire On considère la fonction affine f dont la courbe ci-contre passe par les points A et B. ) Déterminer l epression de f(). ) En déduire une primitive F de f. ) a) Déterminer l intégrale

Plus en détail

4 e série Exercices sur les études de fonctions

4 e série Exercices sur les études de fonctions e série Eercices sur les études de fonctions Pour les courbes, on vérifiera sur calculatrice graphique On rappelle également que les tableau de variations (tableau récapitulatifs) doivent comporter les

Plus en détail

Baccalauréat S Métropole La Réunion 21 juin 2012

Baccalauréat S Métropole La Réunion 21 juin 2012 Baccalauréat S Métropole La Réunion juin 0 EXERCICE Commun à tous les candidats 4 points. Sur l intervalle [ 3, ], tous les points de la courbe ont une ordonnée négative. VRAIE. Sur l intervalle ] ; [,

Plus en détail

Terminale S Bac Blanc Février 2013 Corrigé

Terminale S Bac Blanc Février 2013 Corrigé Terminale S Bac Blanc Février 2013 Corrigé Métropole Juin 2006 (6 points) 1) Soit la fonction définie sur par. On désigne par sa courbe représentative dans un repère orthonormé d unité graphique 2cm. a)

Plus en détail

Sujets de bac : Intégration

Sujets de bac : Intégration Sujets de bac : Intégration Sujet n 1 : Liban juin 2006 Partie A : étude d une fonction Soit la fonction définie sur l intervalle 0; par ln 1 Sa courbe représentative dans un repère orthogonal ; ; est

Plus en détail

Nouvelle-Calédonie mars 2012

Nouvelle-Calédonie mars 2012 Nouvelle-Calédonie mars EXERCICE 5 points Commun à tous les candidats Partie A : On considère le polynôme P défini sur C par P() = ( + i ) + ( + i ) i.. Montrer que le nombre complee = i est solution de

Plus en détail

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité

Chapitre 2. Compléments sur les fonctions : limites, continuité, dérivabilité Chapitre. Compléments sur les fonctions : ites, continuité, dérivabilité I. Rappels de cours. Limites d une fonction Soit l R. (i) Limites en + et en On dit que f() tend vers l lorsque tend vers + quand

Plus en détail

TS Limites de fonctions Cours

TS Limites de fonctions Cours TS Limites de fonctions Cours I. Limites à l infini. Limite infinie en + ( 3 ) Définition Une fonction f a pour limite + en + si pour toute valeur réelle A, on a f() > A pour assez grand c est à dire pour

Plus en détail

Chapitre II : Limites de fonctions et continuité

Chapitre II : Limites de fonctions et continuité Chapitre II : Limites de fonctions et continuité Cité Scolaire Gambetta Année scolaire 0-03 I Limite à l infini : ) Limite finie en Définition : Dire qu une fonction f a pour limite le réel l en signifie

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses.

Classe : TES1 Le 19/12/2003. MATHEMATIQUES Devoir N 3 ;0, 3 ;0. les tangentes à la courbe (C) aux points D et E sont parallèles à l axe des abscisses. Classe : TES1 Le 19/12/200 MATHEMATIQUES Devoir N Calculatrice autorisée Durée : h Eercice 1:,5 points) Le plan est rapporté à un repère orthonormal. Sur le graphique ci-contre, la courbe C) représente

Plus en détail

Corrigé du baccalauréat S Centres étrangers 12 juin 2014

Corrigé du baccalauréat S Centres étrangers 12 juin 2014 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers juin 4 A. P. M. E. P. Exercice 4 points Commun à tous les candidats Question Dans un hypermarché, 75 % des clients sont des femmes. Une femme

Plus en détail

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011

Sujet A. Exercice 1. Dans cette partie, les réponses seront justifiées sur la copie. 1S Devoir surveillé n 7 : lundi 4 avril 2011 S Devoir surveillé n 7 : lundi avril 0 Sujet A Eercice Pour les parties A et B, indiquer pour chaque affirmation si elle est e ou fausse. Chaque réponse eacte rapporte un demi-point et chaque réponse fausse

Plus en détail

Exercices sur la fonction logarithme népérien - Corrigé

Exercices sur la fonction logarithme népérien - Corrigé Lycée Secondaire El Ksour Année Scolaire 213-214 Exercices sur la fonction logarithme népérien - Corrigé ExerciceN 1 Soient et les fonctions définies sur l intervalle par et On note C et C les courbes

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options

BAC BLANC 2013 MATHÉMATIQUES STI2D. Toutes options BACCALAURÉAT TECHNOLOGIQUE CORRIGÉ BAC BLANC 03 MATHÉMATIQUES STID Toutes options Durée de l épreuve : heures Coefficient : Ce sujet comporte pages numérotées (celle-ci comprise) L usage de la calculatrice

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

Annales Logarithme népérien

Annales Logarithme népérien Annales Logarithme népérien Antilles Guyane Juin 2012 (5 points) Commun à tous les candidats Soit la suite définie pour tout entier naturel non nul par 1) Calculer et. 2) a) Démontrer que, pour tout entier

Plus en détail

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité )

Session avril 2015 BACCALAUREAT BLANC. Série : S. Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) BACCALAUREAT BLANC Session avril 2015 Série : S Épreuve : Mathématiques ( candidats n ayant pas suivi l enseignement de spécialité ) Durée de l'épreuve : 4 heures coefficient : 7 MATERIEL AUTORISE OU NON

Plus en détail

Corrigé du baccalauréat S Centres étrangers 15 juin 2009

Corrigé du baccalauréat S Centres étrangers 15 juin 2009 Durée : 4 heures Corrigé du baccalauréat S Centres étrangers 5 juin 9 EXERCICE 5 points Restitution organisée de connaissances : ) a Démontrer que pb)=pb A)+ p B A b Démontrer que, si les évènements A

Plus en détail

Fonction logarithme népérien

Fonction logarithme népérien Fonction logarithme népérien Introduction La fonction eponentielle est continue strictement croissante de R à valeurs dans ]0; + [. Le théorème des valeurs intermédiaires permet donc d affirmer que : Pour

Plus en détail

Annales Calcul intégral

Annales Calcul intégral Annales Calcul intégral Polynésie - Juin 2012 (5 points) Commun à tous les candidats Le plan est rapporté à un repère orthonormal On considère les points et et la droite d équation. On note la fonction

Plus en détail

LPP ALBERT DE MUN B TRUCHETET 1/8

LPP ALBERT DE MUN B TRUCHETET 1/8 1/8 Limites de fonctions ln Dans les eercices suivants calculer les limites proposées Eercice 1 lim (ln 1) + Eercice lim (ln + ) + Eercice 3 lim ( ln ) + Eercice 4 4ln+ 3 lim ( ) + ln Eercice 5 lim (ln

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où :

DST 3 Corrigé. b) B : «les 2e et 3e sondages sont négatifs». et d après l énoncé ; D où : DST 3 Corrigé Exercice 1 (4 points) Avant le début des travaux de construction d une autoroute, une équipe d archéologie préventive procède à des sondages successifs en des points régulièrement espacés

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE

BACCALAURÉAT GÉNÉRAL SESSION 2013 OBLIGATOIRE MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 ENSEIGNEMENT OBLIGATOIRE Les calculatrices électroniques de poche sont autorisées, conformément à la

Plus en détail

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ;

Sujets de bac : Ln. Partie C Dans le plan rapporté à un repère orthonormé ; ;, on note : Γ la courbe représentative de la fonction ; Sujets de bac : Ln Sujet n 1 : extrait de Liban juin 2004 Partie A Soit la fonction définie sur 0; par 2 ln. 1) Etudier les variations de sur 0; et préciser ses ites en 0 et en. a. Montrer que l équation

Plus en détail

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7

BACCALAURÉAT GÉNÉRAL OBLIGATOIRE. Semaine du 4 mars 2013 MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 7 BACCALAURÉAT GÉNÉRAL Semaine du 4 mars 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 7 Ce sujet comporte 6 pages (y compris celle-ci) numérotées de 1 à 6 OBLIGATOIRE L emploi des

Plus en détail

Exercices supplémentaires Dérivation

Exercices supplémentaires Dérivation Exercices supplémentaires Dérivation Partie A : Lecture graphique et tracé de tangente Exercice Lire graphiquement le coefficient directeur s il existe de chacune des droites représentées ci-dessous. -

Plus en détail

EXERCICES SUR LES EXPONENTIELLES

EXERCICES SUR LES EXPONENTIELLES EXERCICES SUR LES EXPONENTIELLES EXERCICE 1 : Domaine de définition Déterminer le domaine de définition des fonctions eponentielles suivantes : a) f() = e - b) f() = e - c) f() = e (1/) c) f() = ep( 1

Plus en détail

Correction du baccalauréat S La Réunion juin 2007

Correction du baccalauréat S La Réunion juin 2007 Durée : 4 heures Correction du baccalauréat S La Réunion juin 007 EXERCICE Commun à tous les candidats y ln a. a. Aa ; ln a.mx ; y A T x a = a y = x ln a. a b. P0 ; y T y = ln a. P0 ; ln a. Longueur PQ

Plus en détail

,=LESfCOMPLEXESfAUfBACf2013e

,=LESfCOMPLEXESfAUfBACf2013e ,=LESfCOMPLEXESfAUfBACf0e Antilles-Guyane septembre 0 5 points Le plan complexe est rapporté à un repère orthonormal direct (O; u, v) On considère les points A, B et C d affixes respectives A i ; B i ;

Plus en détail

L espace est rapporté à un repère et l on considère les droites D1 et D2 qui admettent pour représentations paramétriques respectives

L espace est rapporté à un repère et l on considère les droites D1 et D2 qui admettent pour représentations paramétriques respectives NOM : TS- AC DS6 lundi 6 février 07 La présentation, la rédaction et la rigueur des résultats entreront pour une part significative dans l évaluation de la copie. Le sujet est composé de 5 eercices indépendants.

Plus en détail

FONCTION EXPONENTIELLE

FONCTION EXPONENTIELLE FONCTION EXPONENTIELLE Ph DEPRESLE 29 juin 205 Table des matières Propriétés algébriques 2 2 Nouvelle notation 2 3 Étude de la fonction exponentielle 2 3. Variations et ites........................................

Plus en détail

BAC BLANC DE MATHEMATIQUES Durée : 4 heures

BAC BLANC DE MATHEMATIQUES Durée : 4 heures Terminale S Jeudi 1 avril 2010 BAC BLANC DE MATHEMATIQUES Durée : 4 heures L usage de la calculatrice est autorisé. Le sujet comporte pages. Exercice 1 (6 points) : Pour les candidats n ayant pas suivi

Plus en détail

2 : LIMITE ET CONTINUITE

2 : LIMITE ET CONTINUITE : LIMITE ET CONTINUITE LISTE DES COMPTENCES CODE L0 L0 L0 L04 L05 L06 L07 L08 L09 L0 DENOMINATION Savoir calculer la ite en un point d un monôme Savoir calculer la ite en l infini d un monôme Savoir calculer

Plus en détail

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n,

Correction DC1. Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : Pour tout entier naturel n, Correction DC1 Exercice 1: (5 points) 1. Conservation du volume total d eau du circuit : 00. Pour tout entier naturel n, 10 100 15 100 90 100 15 100 00 3 4 330 3 4 330 3. L algorithme ci-dessous permet

Plus en détail

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014

Mise à niveau en mathématiques Licences de mathématiques et d informatique. 25 août 2014 Mise à niveau en mathématiques Licences de mathématiques et d informatique 25 août 2014 1 1 Calculs dans R 1.1 Fractions Eercice 1 Pour a = 4/9 et b = 5/12, calculer a + b, a b, ab et a/b. On donnera le

Plus en détail

Fonction exponentielle TD Année

Fonction exponentielle TD Année Fonction exponentielle TD Année 009-010 Exercice 1 Sans l aide de la calculatrice, simplifier les nombres suivants : 1. ln(e 5 ) 3. ln( 5. eln+ln3. e ln7 4. e ln4 1 ) e 3 Exercice En utilisant notamment

Plus en détail

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α.

TS4 DS5 19/01/11. Démontrer que l équation g (x) = 0 admet sur [1 ; + [ une unique solution notée α. Eercice 1: (7 points) Nouvelle-Calédonie novembre 2010 TS4 DS5 19/01/11 Soit la fonction définie sur l intervalle [1 ; + [ par ϕ() = 1+ 2 2 2 ln(). 1. a. Étudier le sens de variation de la fonction ϕ sur

Plus en détail

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n =

Exercice 1 - Enseignement de spécialité - 5pts. u 0 = 7 et u n+1 = 2u n v n = u n 2. u n = La maison Ecole d ' Devoir de type bac n o 4 Classe de terminale ES Variations, limites, continuité, asymptotes, fonction logarithme, suites... Copyright c 2004 J.- M. Boucart GNU Free Documentation Licence

Plus en détail

BACCALAUREAT GENERAL MATHEMATIQUES

BACCALAUREAT GENERAL MATHEMATIQUES GAN AMI Session Janvier 2014 BACCALAUREAT GENERAL MATHEMATIQUES Série S Enseignement Obligatoire et spécialité Durée de l épreuve : 4 heures Coefficient : 7 ou 9 Ce sujet comporte 4 pages. L utilisation

Plus en détail

Corrigé du bac blanc du 19 mars 2013

Corrigé du bac blanc du 19 mars 2013 Corrigé du bac blanc du 9 mars 203 Eercice (4 points) Pour chaque question, deu propositions sont énoncées. Il s agit de dire, sans le justifier, si chacune d elles est vraie ou fausse. Le candidat indiquera

Plus en détail

Devoir surveillé n 5 19 janvier 2011

Devoir surveillé n 5 19 janvier 2011 Devoir surveillé n 5 19 janvier 2011 Term ES Eercice 1 : (4 points) Soit f une fonction définie et dérivable sur R. On a tracé ci-contre sa courbe représentative C dans un repère orthonormal. On note f

Plus en détail

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans

DST n 4 - Corrigé. Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans DST n 4 - Corrigé Centre étranger Juin 2007 (6 point) Le but de l'exercice est de démontrer que l'équation :, admet une unique solution dans l'ensemble des nombres réels, et de construire une suite qui

Plus en détail

EXERCICE I ( 6 points ) Correction: centres étrangers 2007 modifié

EXERCICE I ( 6 points ) Correction: centres étrangers 2007 modifié Lycée de la Plaine de l Ain - Ambérieu en Bugey. Année scolaire 0 / 03. TERMINALES SCIENTIFIQUES BAC BLANC - mathématiques - CORRIGé EXERCICE I ( 6 points ) Correction: centres étrangers 007 modifié Le

Plus en détail

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points)

DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1. Exercice n 1 (sur 9,5 points) 5 ème /6 ème année décembre 2015 durée : 4 x 60 mn DEVOIR SURVEILLÉ DE MATHÉMATIQUES CONTRÔLE COMMUN N 1 Exercice n 1 (sur 9,5 points) Partie A. On considère la fonction définie sur l intervalle par (

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli

Chapitre 3 : Limites de fonctions Terminale ES 2, , Y. Angeli Chapitre 3 : Limites de fonctions -28-09-- Terminale ES 2, 20-202, Y. Angeli. Notion de ite : les différentes situations. Le plan est muni d un repère orthogonal (; ı, j). Dans ces illustrations, a et

Plus en détail

Continuité d une fonction

Continuité d une fonction Continuité d une fonction Sur un intervalle Pour démontrer qu une fonction est continue sur un intervalle, il suffit de dire qu elle est composée de fonctions continues sur cet intervalle. Les fonctions

Plus en détail

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan.

Polynésie juin 2005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. Polynésie juin 005 On considère la fonction définie sur ] 0; + [ par =+. On nomme sa courbe représentative dans un repère orthogonal ; ; du plan. 1 a) Déterminer les limites de la fonction aux bornes de

Plus en détail

Sujets de bac : Géométrie dans l espace 1

Sujets de bac : Géométrie dans l espace 1 Sujets de bac : Géométrie dans l espace Sujet n : La Réunion juin 23 On considère un cube d arête. Le nombre désigne un réel strictement positif. On considère le point de la demi-droite défini par. ) Déterminer

Plus en détail

Nombres Complexes Exercice 1. [5 pts] Équations

Nombres Complexes Exercice 1. [5 pts] Équations Nombres Complexes Exercice 1. [5 pts] Équations On se propose d étudier les solutions de l équation (E) z + 1 = 0 1. Vérifier que pour tout nombre complexe z, on a : z + 1 = (z + 1)(z z + 1). En déduire

Plus en détail

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako

EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako EXERCICES SUR LES ÉQUATIONS DIFFÉRENTELLES Site MathsTICE de Adama Traoré Lycée Technique Bamako Eercice 1 : Intégrer les équations différentielles suivantes y 1) y 5y = 0 ; y = ; 3y + 5y = 0 ; 9y =(y

Plus en détail

M A T H E M A T I Q U E S

M A T H E M A T I Q U E S UNIVERSITE CHEIKH ANTA DIOP DE DAKAR 1/2 11 G 26 A 01 Durée : 4 heures OFFICE DU BACCALAUREAT Coef. 5 Téléfa (221) 33 824 65 81 - Tél. : 33 824 95 92-33 824 65 81 M A T H E M A T I Q U E S Les calculatrices

Plus en détail

Terminale S DS 5 mardi 11 janvier 2012

Terminale S DS 5 mardi 11 janvier 2012 NOM : Terminale S S 5 mardi 11 janvier 01 Eercice 1 : sur 7.5 points Le plan complee est muni d un repère ortonormal direct (O, u, v ). v O u 1. a) Résoudre dans l équation : ² +=0 b) Ecrire les solutions

Plus en détail

Corrigé du baccalauréat S Amérique du Sud novembre 2008

Corrigé du baccalauréat S Amérique du Sud novembre 2008 Durée : heures Corrigé du baccalauréat S Amérique du Sud novembre 008 EXERCICE 1 1. AB = b a = +i = +1=5 ; AC = c a = 1+i = 1+=5. AB = AC AB=AC ABC est isocèle en A. 5 points. Z I = 1 + i 7. z z ( I z

Plus en détail

Classe : Terminale SG Matière : Mathématiques Année scolaire :

Classe : Terminale SG Matière : Mathématiques Année scolaire : Classe : Terminale SG Matière : Mathématiques Année scolaire : 010-011 Eercice 1 (16 pts) Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque

Plus en détail

THEOREME DES VALEURS INTERMEDIAIRES EXERCICES CORRIGES

THEOREME DES VALEURS INTERMEDIAIRES EXERCICES CORRIGES TVI - eercices corrigés THEOREME DES VALEURS INTERMEDIAIRES EXERCICES CORRIGES Ce document totalement gratuit (disponible parmi bien d'autres sur la page JGCUAZ.FR rubrique mathématiques) a été conçu pour

Plus en détail

ln(u) et exp(u) Chapitre ln(u) 8.2 exp(u) Sommaire

ln(u) et exp(u) Chapitre ln(u) 8.2 exp(u) Sommaire Chapitre 8 ln(u) et ep(u) Sommaire 8. ln(u)............................................................ 8. ep(u)........................................................... 8. Eercices.........................................................

Plus en détail

Intégration et primitives

Intégration et primitives Eercices mars 6 Intégration et primitives Notion d intégrale Eercice Pour chaque fonction affine définie par morceau f, représentée ci-dessous, calculer, en utilisant les aires, l intégrale I de f sur

Plus en détail

Corrigé du Baccalauréat S Antilles-Guyane 18 juin 2010

Corrigé du Baccalauréat S Antilles-Guyane 18 juin 2010 Corrigé du Baccalauréat S Antilles-Guane 8 juin EXERCICE Commun à tous les candidats points Les justifications n étaient pas demandées, elles sont données ici à titre purement pédagogique.. On tire au

Plus en détail

TRIGONOMÉTRIE REPÉRAGE POLAIRE

TRIGONOMÉTRIE REPÉRAGE POLAIRE TRIGNMÉTRIE REPÉRAGE PLAIRE I Angles orientés Remarque n considère le cercle de centre et de rayon, que l'on appelle cercle trigonométrique. Le périmètre de ce cercle est. n considère la droite graduée

Plus en détail

Exercices : Étude de fonctions

Exercices : Étude de fonctions Eercices : Étude de fonctions Eercice : Calculer les limites suivantes : (. lim 3 2 +(ln) 3 ) 0 + 2. lim 3. lim ln(e +) ln 3 2 + 4. lim 5. lim 6. lim 7. lim e 2 3 2 e 3+ (ln) (e 4 3 ) + e2 ln+ ln+e 8.

Plus en détail

BACCALAURÉAT GÉNÉRAL SESSION 2013 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ

BACCALAURÉAT GÉNÉRAL SESSION 2013 SPÉCIALITÉ MATHÉMATIQUES. Série S. Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ BACCALAURÉAT GÉNÉRAL SESSION 2013 MATHÉMATIQUES Série S Durée de l épreuve : 4 heures Coefficient : 9 ENSEIGNEMENT DE SPÉCIALITÉ Les calculatrices électroniques de poche sont autorisées, conformément à

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 Baccalauréat S Pondichéry 13 avril 2011 Le sujet est composé de 3 exercices indépendants. Le candidat doit traiter tous les exercices. EXERCICE 1 Commun à tous les candidats 10 points Partie I Sur le graphique

Plus en détail

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires

TD 11 : Fonctions Continues et le Théorème des Valeurs Intermédiaires Université Paris Est Créteil DAEU TD : Fonctions Continues et le Théorème des Valeurs Intermédiaires Dans cette fiche on définie une propriété très importante qui est vérifiée par un très grand nombre

Plus en détail

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines

FONCTIONS. Fonctions usuelles. I.1 Fonctions affines BTS Fonctions 0-0 FONCTIONS I Fonctions usuelles I. Fonctions affines Définition a et b sont deu réels donnés. La fonction définie sur R par f() = a + b est appelée fonction affine. Sa représentation graphique

Plus en détail

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques

Recueil d annales en Mathématiques. Terminale S Enseignement obligatoire. Suites numériques Recueil d annales en Mathématiques Terminale S Enseignement obligatoire Frédéric Demoulin Dernière révision : 9 avril 008 Document diffusé via le site wwwbacamathsnet de Gilles Costantini fredericdemoulin

Plus en détail

Polynésie 7 Juin Corrigé

Polynésie 7 Juin Corrigé Polynésie 7 Juin 2013 - Corrigé Exercice 1 (6 points) On considère la fonction définie sur R par. On note la courbe représentative de la fonction dans un repère orthogonal. 1) Étude de la fonction a) Déterminer

Plus en détail

Montrer que le vecteur n

Montrer que le vecteur n Polynésie juin 4 EXERCICE (5 points) Dans un repère orthonormé de l espace, on considère les points A (5 ; 5 ; ), B ( ; ; ), C ( ; ; ) et D (6 ; 6 ; ).. Déterminer la nature du triangle BCD et calculer

Plus en détail

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2

On notera α cette solution. b. A l aide de la calculatrice, déterminer un encadrement d amplitude 10 2 Liban Juin 010 Série S Exercice Partie A Soit u la fonction définie sur 0; + par : ux ( ) = x + lnx 1 Etudier les variations de u sur 0; + et préciser ses limites en 0 et en + a Montrer que l équation

Plus en détail

Baccalauréat S Pondichéry 13 avril 2011

Baccalauréat S Pondichéry 13 avril 2011 EXERCICE 0 points Commun à tous les candidats Partie I Sur le graphique ci-dessous, on a représenté dans un repère orthonormal, les courbes c et c 2 représentatives de deux fonctions f et f 2 définies

Plus en détail

TS - Maths - Révisions Nombres complexes

TS - Maths - Révisions Nombres complexes TS - Maths - Révisions Nombres complexes Exercice 1 LIBAN 01 On considère la suite de nombres complexes z n définie par z 0 = i et pour tout entier naturel n : z n+1 = 1 + iz n. Les parties A et B peuvent

Plus en détail

Devoir non surveillé Équation différentielle, fonction définie par une intégrale

Devoir non surveillé Équation différentielle, fonction définie par une intégrale Devoir non surveillé Équation différentielle, fonction définie par une intégrale Pelletier Sylvain, BCPST Lycée Hoche $\ CC BY: pour le 0 juin Eercice Résoudre l équation différentielle : E y y + 5y cos

Plus en détail

Novembre 2008 Nouvelle Calédonie

Novembre 2008 Nouvelle Calédonie Novembre 2 Nouvelle Calédonie Pondichéry Avril 2 Centres étrangers Juin 2 Amérique du nord juin 2 Inde Pondichéry avril 2ds vos annales p 6) Sujets : Novembre 2 Nouvelle Calédonie PARTIE A On considère

Plus en détail

Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques. Etude de Fonctions, Feuille 1

Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques. Etude de Fonctions, Feuille 1 Université de Rennes 1, Licence 1 Biologie Parcours Accompagné Soutien Mathématiques Etude de Fonctions, Feuille 1 Calcul de dérivées. Dériver les fonctions suivantes. f 1 () = e f () = ln() f 3 () = log

Plus en détail

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités

Sujet Asie 2013 EXERCICE 1. [5 pts] Probabilités Sujet Asie 203 EXERCICE. [5 pts] Probabilités Dans cet exercice, les probabilités seront arrondies au centième. Partie A Une grossiste achète des boîtes de thé chez deux fournisseurs. Il achète 80% de

Plus en détail

Correction du Baccalauréat S Amérique du Nord mai 2007

Correction du Baccalauréat S Amérique du Nord mai 2007 Correction du Baccalauréat S Amérique du Nord mai 007 EXERCICE Commun à tous les candidats points. Le plan (P) a une pour équation cartésienne : x+y z+ = 0. Les coordonnées de H vérifient cette équation

Plus en détail

4. Etablir le tableau de variations et le tableau de signes du sinus sur l intervalle ;

4. Etablir le tableau de variations et le tableau de signes du sinus sur l intervalle ; Vdouine Terminale S Chapitre Fonctions, limites, continuité, dérivabilité La fonction cosinus Tracer la courbe représentative du cosinus Etablir le tableau de variations et le tableau de signes du cosinus

Plus en détail

BAC BLANC TS ELEVES NE SUIVANT PAS L ENSEIGNEMENT DE SPECIALITE MATHS

BAC BLANC TS ELEVES NE SUIVANT PAS L ENSEIGNEMENT DE SPECIALITE MATHS AC LANC TS ELEVES NE SUIVANT PAS L ENSEIGNEMENT DE SPECIALITE MATHS La qualité de la rédaction, la clarté et la précision des raisonnements seront pris en compte dans l appréciation des copies Eercice

Plus en détail

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches.

F 3 Reproduire cet arbre et placer les probabilités F 2 sur les branches. Sujet Centres Étrangers 203 EXERCICE. [6 pts] Lois continues Un industriel fabrique des vannes électroniques destinées à des circuits hydrauliques. Les quatre parties A, B, C, D sont indépendantes. Partie

Plus en détail

DÉRIVÉES FONCTIONS CONVEXES

DÉRIVÉES FONCTIONS CONVEXES DÉRIVÉES FONCTIONS CONVEXES I Dérivées - Rappels Définition ( voir animation ) Soit f une fonction définie sur un intervalle I, soit a I et soit h non nul tel que a + h I. On appelle tau d'accroissement

Plus en détail

Annales : fonctions

Annales : fonctions Annales -5 : fonctions Annales -5. : fonctions Annee E. correction Antilles 7 6 C. Soit f la fonction définie sur [ ; + [ par 5 4 f () = e. 3 (a) Déterminer la limite de la fonction f en + et étudier le

Plus en détail

EXERCICE 1 (4 points)

EXERCICE 1 (4 points) EXERCICE 1 4 points) Pour chaque question de cet exercice, plusieurs réponses sont proposées. Parmi elles, une seule est exacte. Le candidat devra choisir l une des réponses et justifier son choix. 1.

Plus en détail

Chapitre 9. Logarithmes. Exercices. Définition de la fonction ln et conséquences

Chapitre 9. Logarithmes. Exercices. Définition de la fonction ln et conséquences Chapitre 9 Logarithmes I Eercices Définition de la fonction ln et conséquences 9.1 Le logarithme népérien d un nombre réel est le nombre y tel que e y, autrement dit : lnpq y ðñ e y 1. Faisons un premier

Plus en détail

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2

NOMBRES COMPLEXES. Ph DEPRESLE. 11 janvier Les nombres complexes-forme algébrique d un nombre complexe 2 NOMBRES COMPLEXES Ph DEPRESLE janvier 06 Table des matières Les nombres complexes-forme algébrique d un nombre complexe Opérations dans l ensemble C. Addition dans C...........................................

Plus en détail

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005

Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S. Mars 2005 Lycée de la Plaine de l Ain Bac. blanc Mathématiques Terminale S Mars 2005 1 Exercice 1 (4 points). A ne traiter que par les élèves ne suivant pas l enseignement de spécialité. 1. Résoudre dans C l équation

Plus en détail

Baccalauréat S Antilles-Guyane ჼ septembre 2011

Baccalauréat S Antilles-Guyane ჼ septembre 2011 Baccalauréat S Antilles-Guyane ჼ septembre 011 EXERCICE 1 Commun à tous les candidats ( point) On considère la fonction f définie ]0 ; + [ par : f (x) = x ln x 1. Partie A : Étude d une fonction 1. a.

Plus en détail

ELEMENTS DE CORRECTION DE L EPREUVE DE MATHEMATIQUES (SERIE S) ( T) P T = P T P(V) + P (T) P V = 0,99 0,02 + (1 0,97) (1 0,02) = 0,0492.

ELEMENTS DE CORRECTION DE L EPREUVE DE MATHEMATIQUES (SERIE S) ( T) P T = P T P(V) + P (T) P V = 0,99 0,02 + (1 0,97) (1 0,02) = 0,0492. Eercice : ELEMENTS DE CORRECTION DE L EPREUVE DE MATHEMATIQUES (SERIE S). a) Les données de l énoncé permettent de donner directement : P(V) =,2 ; P V (T) =,99 ; PV ( T) =,97. b) P( V T) = P V (T) P(V)

Plus en détail

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations...

calcul intégral Table des matières 1 intégrale d une fonction activité à retenir exercices évaluations... calcul intégral Table des matières intégrale d une fonction. activité.................................................... à retenir.................................................. 7. eercices...................................................

Plus en détail

Correction des exercices (Terminale S)

Correction des exercices (Terminale S) Correction des eercices (Terminale S) Merci de me signaler les erreurs éventuelles. Eercice Soit f la fonction définie par : f() = + 5 Avant tout, déterminons l ensemble de définition D f de la fonction

Plus en détail

Epreuve commune maths terminales S 8 décembre 2015

Epreuve commune maths terminales S 8 décembre 2015 Exercice 1 6 points ) On considère la fonction f définie et dérivable sur l ensemble R des nombres réels par fx) = x+1+ x e x On note C sa courbe représentative dans un repère orthonormé O; i ; ) j 1 Soit

Plus en détail

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban.

COMPLEXES. Sujets. septembre Antilles-Guyane. novembre Amérique du Sud. avril Pondichéry. mai Liban. COMPLEXES Sujets septembre 01 novembre 01 avril 01 mai 01 Antilles-Guyane Amérique du Sud Pondichéry Liban Formulaire COMPLEXES 1 Antilles-Guyane septembre 01. EXERCICE Le plan complexe est rapporté à

Plus en détail