Résumé du cours d analyse de Sup et Spé

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Résumé du cours d analyse de Sup et Spé"

Transcription

1 Résumé du cours d nlyse de Sup et Spé 1 Topologie 1.1 Normes, normes équivlentes Une norme sur le K-espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x) 0 (positivité) x E, (N(x) = 0 x = 0) (xiome de séprtion) x E, λ K, N(λx) = λ N(x) (homogénéité) (x,y) E 2, N(x+y) N(x)+N(y) (inéglité tringulire). Normes équivlentes. Les normes N et N sont équivlentes si et seulement si il existe deux réels strictement positifs α et β tel que x E, αn(x) N (x) βn(x). l revient u même de dire que l fonction N est bornée sur E\{0}. N Théorème. Si E est de dimension finie sur K, toutes les normes sont équivlentes. 1.2 Voisinge Soit x E. Un voisinge de x est une prtie de l espce vectoriel normé (E,N) qui contient une boule ouverte non vide de centre x. L ensemble des voisinges de x se note V (x). Si V est une prtie de E, (V V (X) r > 0/ B o (x,r) V). Théorème.Une réunion quelconque de voisinge de x est un voisinge de x. Une intersection finie de voisinge de x est un voisinge de x. 1.3 Ouverts, intérieur. Ouvert. Un ouvert de l espce vectoriel normé (E,N) est soit, soit une prtie non vide de E voisinge de chcun de ses points. Si O est une prtie non vide de E, (O est ouvert x O, r > 0/ B o (x,r) O). Théorème. Une réunion quelconque d ouverts est un ouvert. Une intersection finie d ouverts est un ouvert. ntérieur. Un élément x de A est intérieur à A si et seulement si A est voisinge de x. ( x E, (x A A V (x)). L intérieur d une prtie non vide A est l ensemble des points de A dont A est voisinge. Théorème. A est le plus grnd ouvert contenu dns A. Théorème. A est ouvert si et seulement si A = A. 1.4 Fermés, dhérence Fermé. A est fermé si et seulement si le complémentire de A est ouvert. Théorème. Une intersection quelconque de fermés est un fermé. Une réunion finie de fermés est un fermé. Théorème (crctéristion séquentielle des fermés). Une prtie non vide A est fermée si et seulement si toute suite convergente d éléments de A converge dns A. Adhérence. Un élément x de E est dhérent à A si et seulement si tout voisinge de x rencontre A x E, (x A V V(x), V A ). L dhérence de A est l ensemble des points dhérents à A. Théorème. A est le plus petit fermé contennt A. Théorème. A est fermé si et seulement si A = A. Théorème. x est dhérent à A si et seulement si il existe une suite d éléments de A convergente de limite x. et E sont des prties à l fois ouvertes et fermées. 1.5 Compcts Une prtie non vide K de E est compcte si et seulement si de toute suite d éléments de K, on peut extrire une sous-suite qui converge vers un élément de K. est compct pr convention. Théorème. Si K est compcte, K est fermée et bornée. 1

2 Théorème (de Borel-Lebesgue). Si (E, N) est un evn de dimension finie, les compcts sont les prties fermées et bornées. Théorème (de Bolzno-Weierstrss). Si (E, N) est un evn de dimension finie, de toute suite bornée, on peut extrire une sous-suite convergente. 2 Fonctions 2.1 Connexité pr rcs Définition. Soit A une prtie non vide de E. A est connexe pr rcs si et seulement si, pour tout (x,y) A 2, il existe γ : t γ(t) définir et continue sur [0,1] à vleurs dns E telle que γ(0) = x et γ(1) = y; t [0,1], γ(t) A. Théorème. Un convexe non vide est connexe pr rcs. 2.2 Continuité Théorème des vleurs intermédiires. Soit f une ppliction d un evn (E,N) dns un evn (E,N ). Si f est continue sur E, l imge d un connexe pr rcs de E est un connexe pr rcs de E. En prticulier, si f v de R dns R et est continue sur R, l imge d un intervlle de R pr f est un intervlle de R. Théorème (imges réciproques d ouverts ou de fermé). f v d une prtie D d un evn (E,N) dns un evn (E,N ). f est continue sur D si et seulement si l imge réciproque de tout ouvert de (E,N ) est un ouvert de D, c est-à-dire l intersection d un ouvert de E vec D. f est continue sur D si et seulement si l imge réciproque de tout fermé de (E,N ) est un fermé de D, c est-à-dire l intersection d un fermé de E vec D. Théorème (imge continue d un compct). f v d une prtie D d un evn (E,N) dns un evn (E,N ). Si f est continue sur D, l imge directe d un compct de D est un compct de (E,N ). En prticulier, si f v de R dns R et est continue sur R, l imge d un segment de R pr f est un segment de R. Théorème de Heine. Si f est continue sur un compct, lors f est uniformément continue sur ce compct. Théorème (continuité de l norme). L ppliction N : (E, N) (R, ) x N(x) est continue. Théorème (continuité d une ppliction linéire). f est une ppliction linéire de (E, E ) dns (F, F ). f est continue sur E si et seulement si k R + / x E, f(x) F k x E. Si E est de dimension finie, toute ppliction linéire, forme linéire, ppliction multilinéire... est continue sur E. Conséquence. Les sev d un evn de dimension finie sont fermés. 2.3 Dérivtion Théorème de Rolle. f est une ppliction définie sur un segment [,b] de R à vleurs dns R. Si f est continue sur [,b], dérivble sur ],b[ et vérifie f() = f(b), lors il existe c ],b[ tel que f (c) = 0. Théorème des ccroissements finis. f est une ppliction définie sur un segment [,b] de R à vleurs dns R. Si f est continue sur [,b], dérivble sur ],b[ lors il existe c ],b[ tel que f(b) f() = f (c). b Le théorème de Rolle et le théorème des ccroissements finis sont fux pour les pplictions derdnscou les pplictions de R dns R n, n 2. Théorème. f est une ppliction définie sur un segment [,b] de R à vleurs dns R ou C. Si f est continue sur [,b], de clsse C 1 sur ],b] et si f une limite réelle ou complexe en, lors f est de clsse C 1 sur [,b]. Formule de Tylor-Lplce. Soit f une ppliction définie sur un intervlle de R à vleurs dns R ou C de clsse C n+1 sur. Alors, pour tout (,b) 2, f(b) = f (k) () b (b ) k + k! (b t) n f (n+1) (t) dt. n! néglité des ccroissements finis. Soit f une ppliction définie sur un intervlle de R à vleurs dns R ou C, dérivble sur. On suppose que f est mjorée pr le réel M sur. Alors, pour tout (,b) 2, f(b) f() M b. 2

3 néglité de Tylor-Lgrnge. Soit f une ppliction définie sur un intervlle de R à vleurs dns R ou C, n + 1 fois dérivble sur. On suppose que f (n+1) est mjorée pr le réel M n+1 sur. Alors, pour tout (,b) 2, 2.4 ntégrtion n f(b) f (k) () k! (b ) k M n+1(b ) (n+1). (n+1)! Soit f une fonction continue sur un intervlle de R à vleurs dns R ou C. Alors, pour tout x 0 de, l fonction F : x x x 0 f(t) dt est de clsse C 1 sur et x, F (x) = f(x). 3 Séries numériques Règle de d Alembert. (u n ) est une suite complexe, ne s nnulnt ps à prtir d un certin rng telle que une limite l [0,+ ]. Si 0 l < 1, l série de terme générl u n converge bsolument. Si l > 1, l série de terme générl u n diverge grossièrement. Produit de Cuchy de deux séries bsolument convergentes. Si les séries de termes généruxu( n etv n sont bsolument convergentes, lors l série de terme générlw n = u k v n k converge et dns ce cs, w n = u n v n + )( + ). Critère spécil ux séries lternées (ou théorème de Leibniz). Soit (u n ) une suite réelle lternée en signe, dont l vleur bsolue tend vers 0 en décroissnt. Alors, l série de terme générl u n converge. De plus, S, S n et R n sont du signe de leur premier terme et leur vleur bsolue est mjorée pr l vleur bsolue de leur premier terme. Théorème (séries télescopiques). Soit ( n ) une suite complexe. L suite ( n ) et l série de terme générl n+1 n sont de même nture. Comprison séries-intégrles. Si f est une fonction continue pr morceux sur [0, + [, à vleurs réelles positives décroissnte, l série de terme générl n n 1 f(t) dt f(n) converge. En prticulier, l série de terme générl f(n) converge si et seulement si f est intégrble sur [0,+ [. Théorème (sommtion des reltions de comprison). Soient ( n ) et (b n ) deux suites réelles strictement positives telles que n b n. Si l série de terme générl n converge, lors l série de terme générl b n converge et k=n+1 k k=n+1 (règle de l équivlence des restes de séries à termes positifs convergentes). Si l série de terme générl n diverge, lors l série de terme générl b n diverge et k (règle de l équivlence des sommes prtielles de séries à termes positifs divergentes). Théorème de Fubini. Soit (u i,j ) une suite complexe double. Si Pour tout i, l série de terme générlu i,j est bsolument ( + convergente et que u i,j < +, lors l suite (u i,j ) est sommble et de plus, = u i,j ). i=0 j=0 b k b k i=0 j=0 u i,j j=0 u n+1 u n i=0 3

4 4 Suites et séries de fonctions 4.1 Suites de fonctions 1) Convergence simple, uniforme (f n ) converge simplement sur D vers f si et seulement si, pour chque x de D, l suite (f n (x)) converge vers f(x). (f n ) converge uniformément vers f sur D si et seulement si l suite ( f f n ) est définie à prtir d un certin rng et tend vers 0 qund n tend vers +. 2) nterversion des limites Théorème d interversion des limites. est dhérent à D ( réel, infini...). Si chque f n une limite l n (réelle, complexe) qund x tend vers et si (f n ) converge uniformément vers f sur D, lors : f une limite qund x tend vers ; l suite (l n ) converge ; lim f(x) = lim l n (c est-à-dire lim( lim f x x n(x)) = lim ( lim f n(x)).) x Ce théorème mrche ussi si les l n sont + ( infty) à prtir d un certin rng. 3) Continuité. Théorème. Si (f n ) converge uniformément vers f sur D et si chque f n est continue sur D, lors f est continue sur D (une limite uniforme de fonctions continues est continue) 4) Dérivtion. Théorème. Si (f n ) converge simplement vers f sur D ; chque f n est dérivble sur D ; l suite des dérivées (f n ) converge uniformément sur D (vers s limite). Alors, f est dérivble sur D et f = lim f n (c est-à-dire d dx ( lim f n) = lim ( ) d dx f n.) Théorème (générlistion). Si (f n ) converge simplement vers f sur D ; chque f n est de clsse C p, 1 p + sur D ; les suites des dérivées (f (k) n ), 1 k p, convergent toutes uniformément sur D (vers leur limite). Alors, f est de clsse C p sur D et k 1,p, f (k) = lim f(k) n. 5) ntégrtion Théorème (convergence uniforme sur un segment). Si chque f n est continue pr morceux sur le segment [,b] et si l suite (f n ) converge uniformément vers f sur [,b], lors : f est continue pr morceux ) sur D ; l suite ( b f n (x) dx b f(x) dx = lim b converge ; f n (x) dx (c est-à-dire b lim f n(x) dx = lim b f n (x) dx). Théorème de convergence dominée. (f n ) est une suite de fonctions continues pr morceux sur un intervlle quelconque de R à vleurs dns R ou C. Si l suite (f n ) converge simplement vers une fonction f continue pr morceux sur et s il existe une fonction ϕ continue pr morceux, positive et intégrble sur telle que n N, f n ϕ (hypothèse de domintion), lors f est intégrble sur et f(x) dx = lim f n (x) dx. 4.2 Séries de fonctions 1) Convergence simple, uniforme, bsolue, normle L série de fonctions de terme générl f n converge simplement sur D vers S si et seulement si, pour chque x de D, l série numérique de terme générl f n (x) converge vers S(x). L série de fonctions de terme générl f n converge uniformément sur D vers S si et seulement si l suite ( R n ) est définie à prtir d un certin rng et tend vers 0 qund n tend vers +. L série de fonctions de terme générl f n converge bsolument sur D si et seulement si, pour chque x de D, l série numérique de terme générl f n (x) converge bsolument. 4

5 L série de fonctions de terme générl f n converge normlement sur D (vers S) si et seulement si l série numérique de terme générl f n converge. 2) nterversion des limites Théorème d interversion des limites. est dhérent à D ( réel, infini...). Si chque f n une limite l n qund x tend vers et si l série de fonction de terme générl f n converge uniformément vers S sur D, lors : S une limite qund x tend vers ; l série numérique de terme générl l n converge ; lim x S(x) = l n. 3) Continuité Théorème. Si l série de fonctions de terme générl f n converge uniformément vers S sur D et si chque f n est continue sur D, lors S est continue sur D. 4) Dérivtion terme à terme Théorème de dérivtion terme à terme. Si l série de fonctions de terme générl f n converge simplement vers S sur D, chque f n est dérivble sur D, l série de fonctions de terme générl f n converge uniformément sur D, lors, S est dérivble sur D et S = f n Théorème (générlistion). Si l série de fonctions de terme générl f n converge simplement vers S sur D, chque f n est de clsse C p, 1 p + sur D, les séries de termes générux (f (k) n ), 1 k p, convergent toutes uniformément sur D, lors, S est de clsse C p sur D et k 1,p, S (k) = Revoir l étude de l fonction ζ de Riemnn. f (k) n. 5) ntégrtion terme à terme Théorème d intégrtion terme à terme sur un segment). Si chque f n est continue pr morceux sur le segment [,b] et si l série de terme générl f n converge uniformément vers S sur [,b], lors : S est continue pr morceux sur [, b] ;) l série de terme générl b S(x) dx = b ( b f n (x) dx. f n (x) dx converge ; Théorème d intégrtion terme à terme. Si chque f n est continue pr morceux et intégrble sur, si l série de terme générl f n converge simplement vers une fonction S continue pr morceux sur et si f n < +, lors S est intégrble sur et S(x) dx = 5 Séries entières 1) Ryon de convergence R = sup{r [0,+ [/ ( n r n ) bornée}. 2) Convergence normle f n. Théorème. n r n converge normlement sur tout [ r,r] (resp. tout disque fermé de ryon r) où r < R. 5

6 Théorème. L somme d une série entière est de clsse C sur son intervlle ouvert de convergence et les dérivées successives s obtiennent pr dérivtion terme à terme. dem pour primitive pr intégrtion terme à terme. Les différents ryons de convergence considérés sont égux. Théorème. Si pour tout x ] R,R [, f(x) = 6 ntégrles dépendnt d un prmètre n x n, lors n N, n = f(n) (0). n! est une prtie de R et est un intervlle quelconque de R. f : K est une fonction de deux vribles, définie sur, à vleurs dns K = R ou K = C. (x,t) f(x,t) Pour x, on pose F(x) = f(x,t) dt. Théorème de pssge à l limite sous le signe somme. Soit dhérent à D. Si pour tout x de, l fonction t f(x,t) est continue pr morceux sur, pour tout t de, l fonction x f(x,t) une limite l(t) qund t tend vers, où l est une fonction continue pr morceux sur, il existe une fonction ϕ continue pr morceux, positive et intégrble sur telle que, pour tout (x,t), f(x,t) ϕ(t). Alors, l fonction F une limite qund x tend vers, l fonction l est intégrble sur, lim x F(x) = l(t) dt (c est-à-dire lim f(x,t) dt = x ( ) lim f(x,t) dt. x Théorème de continuité d une intégrle à prmètres. Si pour tout x de, l fonction t f(x,t) est continue pr morceux sur, pour tout t de, l fonction x f(x,t) est continue sur, il existe une fonction ϕ continue pr morceux, positive et intégrble sur telle que, pour tout (x,t), f(x,t) ϕ(t). Alors, l fonction F est définie et continue sur. Théorème de dérivtion sous le signe somme (ou théorème de Leibniz) Si pour tout x de, l fonction t f(x,t) est continue pr morceux sur et intégrble sur, et si f dmet une dérivée prtielle f vérifint les hypothèses du théorème précédent, c est-à-dire x pour tout x de, l fonction t f (x,t) est continue pr morceux sur, x pour tout t de, l fonction x f f(x,t) est continue sur, x il existe une fonction ϕ continue pr morceux, positive et intégrble sur telle que, pour tout (x,t), f x (x,t) ϕ(t). Alors, l fonction F est de clsse C 1 sur et x, F f (x) = (x,t) dt. x Théorème de dérivtion sous le signe somme générlisé Si pour tout x de, l fonction t f(x,t) est continue pr morceux sur et intégrble sur, et si f dmet des dérivées prtielle k f jusqu à l ordre p, 1 k p +, vérifint les hypothèses du théorème précédent, c est-à-dire xk k 1,p, x, l fonction t k f xk(x,t) est continue pr morceux sur, k 1,p, t, l fonction x k f xkf(x,t) est continue sur, k 1,p, il existe une fonction ϕ k continue pr morceux, positive et intégrble sur telle que, pour tout (x,t), k f x k(x,t) ϕ k(t). Alors, l fonction F est de clsse C 1 sur et x, F f (x) = (x,t) dt. x Revoir l étude de l fonction Γ. 6

7 7 Equtions différentielles Théorème de Cuchy linéire : cs des équtions différentielles sclires du premier ordre. Soient et b deux fonctions continues sur un intervlle de R à vleurs dns K = R ou K = C. Alors, pour tout (x 0,y 0 ) K, il existe une et une seule solution f de l éqution différentielle y +y = b sur vérifint de plus f(x 0 ) = y 0 à svoir : x, f(x) = y 0 e A(x) +e A(x) x x 0 e A(t) b(t) dt où A(x) = x x 0 (t) dt. Théorème de Cuchy linéire : cs des systèmes du premier ordre à coefficients constnts. Soit A M n (K). Soit B une fonction continue sur un intervlle de R à vleurs dns M n,1 (K). Alors, pour tout (t 0,X 0 ) M n,1 (K), il existe une et une seule solution X de l éqution différentielle X = AX+B sur vérifint de plus X(t 0 ) = X 0 à svoir t, X(t) = e ta X 0 +e ta t t 0 e ua B(u) du. Théorème de Cuchy linéire : cs générl. Soient A et B deux fonctions continues sur un intervlle de R à vleurs respectivement dns M n (K) et M n,1 (K). Alors, pour tout (t 0,X 0 ) M n,1 (K), il existe une et une seule solution X de l éqution différentielle X = AX+B sur vérifint de plus X(t 0 ) = X 0. Théorème de Cuchy linéire : cs des équtions différentielles sclires du second ordre. Soient, b et c trois fonctions continues sur un intervlle de R à vleurs dns R ou C. Alors, pour tout (x 0,y 0,z 0 ) K K, il existe une et une seule solution f de l éqution différentielle y +y +by = c sur vérifint de plus f(x 0 ) = y 0 et f (x 0 ) = z 0. 7

Résumé du cours d analyse de maths spé MP

Résumé du cours d analyse de maths spé MP 1 TOPOLOGE Résumé du cours d nlyse de mths spé MP 1 Topologie 1) Normes, normes équivlentes Une norme sur l espce vectoriel E est une ppliction N de E dns R vérifint : x E, N(x). x E, (N(x) = x = ) (xiome

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers

Chapitre 5. Intégration. 5.1 Intégration des fonctions en escaliers Chpitre 5 Intégrtion Nous llons construire l intégrle pr un procédé de pssge à l limite. D bord on définit l intégrle des fonctions en escliers, ensuite on psse à l limite pour intégrer des fonctions plus

Plus en détail

EB - INTEGRALES DEPENDANT D UN PARAMETRE

EB - INTEGRALES DEPENDANT D UN PARAMETRE EB - INTEGRALES DEPENDANT D UN PARAMETRE Définition 1 Soit (f x ) x A une fmille de fonctions continues à vleurs dns C, définies sur un intervlle [, b[ de R. On considère l intégrle impropre g(x) = que

Plus en détail

1. Intégrale de Riemann des fonctions réglées.

1. Intégrale de Riemann des fonctions réglées. Agrégtion de Mthémtiques 2012-2013 CMI Université d Aix-Mrseille Résumé du cours d Intégrtion 1. Intégrle de Riemnn des fonctions réglées. Fonctions réglées. f : [, b] C est dite réglée si et seulement

Plus en détail

Résumé 07 : Intégrales généralisées

Résumé 07 : Intégrales généralisées Résumé 07 : Intégrles générlisées Dns tout ce chpitre, K ser le corps R ou C 1 INTÉGRALES GÉNÉRALISÉES 1 Convergence d une intégrle impropre Dns cette section, f ser ici indifféremment à vleurs dns R ou

Plus en détail

Petit supplément sur les fonctions à valeurs complexes

Petit supplément sur les fonctions à valeurs complexes Petit supplément sur les fonctions à vleurs complexes Jen-Pul Vincent 2008 1 Fonctions à vleurs complexes Limites et continuité Definition Une fonction à vleurs complexes est une fonction dont l imge est

Plus en détail

Chapitre 1 Suites de fonctions

Chapitre 1 Suites de fonctions Université de Bourgogne Déprtement de Mthémtiques Licence de Mthémtiques Résumé du cours Compléments d Anlyse Chpitre Suites de fonctions. Suites de nombres, suites de fonctions Dns tout ce chpitre, l

Plus en détail

Espaces vectoriels normés ; espaces de Banach

Espaces vectoriels normés ; espaces de Banach Chpitre 7 Espces vectoriels normés ; espces de Bnch Un espce vectoriel normé complet est ppelé un espce de Bnch On note K pour R ou C 71 Exemples d espces vectoriels normés 711 Normes sur K n Sur K n,

Plus en détail

Théorème de Rolle et formules de Taylor

Théorème de Rolle et formules de Taylor Théorème de Rolle et formules de Tylor 1 Extrémums des fonctions différentibles à vleurs réelles 1. Soient K un compct d un espce vectoriel normé (E, ) et f une fonction définie sur K à vleurs dns R. Montrer

Plus en détail

Outils Mathématiques 3

Outils Mathématiques 3 Université de Rennes1 Année 2010/2011 Outils Mthémtiques 3 Chpitre 4: Intégrtion curviligne résumé 1 Courbes prmétrées Définition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont

Plus en détail

Suites et séries de fonctions MP

Suites et séries de fonctions MP Suites et séries de fonctions MP 17 jnvier 2013 Tble des mtières 1 Convergence simple et convergence uniforme 2 1.1 L convergence simple.............................. 2 1.2 L convergence uniforme.............................

Plus en détail

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math

Espaces métriques, espaces vectoriels normés. Tewfik Sari. L2 Math Espces métriques, espces vectoriels normés Tewfik Sri L2 Mth Avertissement : ces notes sont l rédction, progressive et provisoire, d un résumé du cours d espces métriques de d espces vectoriels normés

Plus en détail

Chapitre 6 Suites et séries de fonctions

Chapitre 6 Suites et séries de fonctions Chpitre 6 Suites et séries de fonctions Semine 1 : Etude des prgrphes 1 et 2. Fire les exercices d pprentissge 6.1 6.10. Semine 2 : Etude du prgrphe 3. Fire les exercices d pprofondissement 6.11 6.24.

Plus en détail

Intégrabilité d une fonction à valeurs réelles ou complexes

Intégrabilité d une fonction à valeurs réelles ou complexes Cours de Mthémtiques ntégrtion sur un intervlle quelconque Prtie : Fonctions intégrbles à vleurs complexes Fonctions intégrbles à vleurs complexes Dns ce prgrphe, est un intervlle de R, et K désigne R

Plus en détail

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes...

Limites de Fonction. 1 Limites d une fonction et asymptotes 1.1 Limite en l infini. 1.2 Limite en un réel a Asymptotes... Lycée Pul Doumer 203-204 TS Cours Limites de Fonction Contents Limites d une fonction et symptotes. Limite en l infini....................................2 Limite en un réel..................................

Plus en détail

11 Fonctions numériques - continuité

11 Fonctions numériques - continuité 11 Fonctions numériques - continuité 11.1 Ensemble des fonctions à vleurs réelles 11.1.1 Fonctions numériques Soit E un ensemble non vide. On note E l ensemble des pplictions de E dns. On définit les opértions

Plus en détail

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S

BACCALAURÉAT GÉNÉRAL. Session Pondichéry (avril 2010) MATHÉMATIQUES (obligatoire) Correction. Série : S BACCALAURÉAT GÉNÉRAL Session Pondichéry vril ) MATHÉMATIQUES obligtoire) Correction Série : S Durée de l épreuve : 4 heures Coefficient : 7 EXERCICE PARTIE A Soient et b deux réels tels que < b. Soient

Plus en détail

Limite d une fonction à l infini

Limite d une fonction à l infini CHAPITRE 3 LIMITES DE FONCTIONS ET DE SUITES Limite d une fonction à l infini et s courbe repré-. Limite finie d une fonction à l infini Soit f une fonction définie sur un intervlle [ ; + [ senttive. L

Plus en détail

Intégrale de Lebesgue

Intégrale de Lebesgue 29 Chpitre 2 Intégrle de Lebesgue 2.1 Rppels sur l intégrle de Riemnn Soit f bornée sur un intervlle [,b] fini de IR, et soit x 1,...,x n un ensemble fini de points de [,b] tels que = x 0 < x 1

Plus en détail

f 1 f = f n f 1(t). f (t) = f n(t) le vecteur tangent au point f(t). Pour une courbe dérivable on a par définition de la dérivée f(t + h) f(t) h o(h)

f 1 f = f n f 1(t). f (t) = f n(t) le vecteur tangent au point f(t). Pour une courbe dérivable on a par définition de la dérivée f(t + h) f(t) h o(h) Chpitre 2 Courbes dns R n 2.1 Courbes dérivbles Définition. Soit I R un intervlle. Une courbe (ou un chemin) est une ppliction continue f : I R n. Une courbe est donnée pr un n-tuplet de fonctions continues

Plus en détail

Cours de remise à niveau Maths 2ème année. Intégrales généralisées

Cours de remise à niveau Maths 2ème année. Intégrales généralisées Cours de remise à niveu Mths 2ème nnée Intégrles générlisées C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 24 Pln 1 Définitions et premières propriétés Intégrles

Plus en détail

Intégrale de Riemann et Intégrale de Lebesgue INTEGRALE DE RIEMANN

Intégrale de Riemann et Intégrale de Lebesgue INTEGRALE DE RIEMANN Intégrle de Riemnn et Intégrle de Lebesgue Jen Gounon http://dm.ens.fr/culturemth Définitions INTEGRALE DE RIEMANN Dns tout le chpître, b et f est une fonction réelle bornée sur [,b] = I Définition. Un

Plus en détail

LIMITES DE SUITES ET DE FONCTIONS I..

LIMITES DE SUITES ET DE FONCTIONS I.. TS-cours-chp2-1 - LIMITES DE SUITES ET DE FONCTIONS I.. Limite d une suite 1 / tend vers l infini Définition ( rppel ) Dire que l suite tend vers + signifie que, pour tout nombre A, l intervlle [A ; +

Plus en détail

Résumé de cours sur les intégrales dépendant d un paramètre

Résumé de cours sur les intégrales dépendant d un paramètre Résumé de cours sur les intégrles dépendnt d un prmètre On v considérer une fonction à deux vribles ' puis on étudier l existence, l continuité, dérivbilité,...de l fonction F dé nie pr x! F (x) = F est

Plus en détail

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org)

CCP 2007. Filière MP. Mathématiques 1. Corrigé pour serveur UPS de JL. Lamard (jean-louis.lamard@prepas.org) CCP 27. Filière MP. Mthémtiques. Corrigé pour serveur UPS de JL. Lmrd (jen-louis.lmrd@preps.org EXERCCE.. f est continue (en tnt de frction rtionnelle dont le dénominteur ne s nnule ps sur le compct F

Plus en détail

Intégrales impropres et séries. Tewfik Sari. L2 Math

Intégrales impropres et séries. Tewfik Sari. L2 Math Intégrles impropres et séries Tewfik Sri L2 Mth Chpitre 1 Rppels sur l intégrtion 1.1 Intégrle de Riemnn des fonctions en esclier Soit [, b] un intervlle fermé et borné de R. Une subdivision de [, b] et

Plus en détail

Outils Mathématiques 4

Outils Mathématiques 4 Université de Rennes1 Année 5/6 1 Courbes prmétrées Outils Mthémtiques 4 Intégrtion résumé éfinition 1.1 Une courbe plne est un ensemble de couples (f(t), g(t)) où f et g sont des fonctions continues sur

Plus en détail

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1

Intégration I Licence de mathématiques, 4 e semestre Université Aix-Marseille 1 ntégrtion Licence de mthémtiques, 4 e semestre Université Ai-Mrseille J-Y. Briend Fscicule de résultts ntégrbilité, intégrle Définition.. Soit = [,b] un intervlle compct. Une subdivision pointée P de est

Plus en détail

Intégration des fonctions continues par morceaux

Intégration des fonctions continues par morceaux Chpitre 4 Intégrtion des fonctions continues pr morceu 4.1 Introduction Dns cette section, on fie < deu réels, on note I = [, ] et on considère f : I R une ppliction continue. On suppose en outre que f

Plus en détail

Série n 6 : Interpolation et méthodes des moindres carrés

Série n 6 : Interpolation et méthodes des moindres carrés Université Clude Bernrd, Lyon I 43, boulevrd du 11 novembre 1918 696 Villeurbnne Cedex Licence Sciences & Technologies Spécilité Mthémtiques UE : Clcul Scientifique 009-010 Série n 6 : Interpoltion et

Plus en détail

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable e x 2 x dx 6) (**) +

* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable e x 2 x dx 6) (**) + Eo7 Intégrtion Eercices de Jen-Louis Rouget. Retrouver ussi cette fiche sur www.mths-frnce.fr * très fcile ** fcile *** difficulté moyenne **** difficile ***** très difficile I : Incontournble Eercice

Plus en détail

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral

Définition Propriétés de d intégrale Intégrale fonction de sa borne supérieure Méthodes d intégration. Calcul Intégral Clcul Intégrl christophe.profet@univ-evry.fr http://www.mths.univ-evry.fr/pges_perso/cprofet/ Amphi n 1 Jnvier 214 Objectifs du cours 1 donner une définition de l intégrle f (x)dx qui permet de comprendre

Plus en détail

CHAPITRE 1 SUITES ET SÉRIES NUMÉRIQUES

CHAPITRE 1 SUITES ET SÉRIES NUMÉRIQUES PARTIE I ANALYSE CHAPITRE SUITES ET SÉRIES NUMÉRIQUES I. Les nombres réels Progrmme officiel Propriétés des nombres réels Reltion d ordre, prtie entière, vleur bsolue, intervlles (ouverts, fermés, semi-ouverts),

Plus en détail

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond

Mathématiques. Analyse de Fourier D après des notes rédigées par B. Helffer et T. Ramond Mthémtiques Anlyse de Fourier D près des notes rédigées pr B. Helffer et T. Rmond Année 2007 2 Tble des mtières I Suites, Intégrles et Séries 1 1 Suites de nombres réels ou complexes 1 1.1 Générlités.........................................

Plus en détail

Analyse M1 ENSM. Ch. Menini

Analyse M1 ENSM. Ch. Menini Anlyse M1 ENSM Ch. Menini 10 jnvier 2013 2 Tble des mtières 1 Suites et séries numériques 5 1.1 Premiers résultts sur les suites numériques................................. 5 1.2 Suites monotones et conséquences.......................................

Plus en détail

Jour no1 Exercice 1.0 Exercice 1.1 Exercice 1.2

Jour no1 Exercice 1.0 Exercice 1.1 Exercice 1.2 Jour n o Exercice. ) Étudier l intégrbilité de x e x x2 sur ], + [. 2) Étudier l intégrbilité de x ln x x 2 + sur ], + [. Exercice. Soit f de clsse C 2 sur [, + [ telle que f est intégrble sur [, + [ et

Plus en détail

LEÇON N 67 : Formules de Taylor. Applications.

LEÇON N 67 : Formules de Taylor. Applications. LEÇON N 67 : Formules de Tylor. Applictions. Pré-requis : Théorème de Rolle, théorème des Accroissements Finis ; Intégrtion pr prties ; Nottions de Lndu. 67. Résultts globux 67.. Formule de Tylor-Lgrnge

Plus en détail

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER

LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE. Unité d enseignement LCMA 4U11 ANALYSE 3. Françoise GEANDIER LICENCE DE MATHÉMATIQUES DEUXIÈME ANNÉE Unité d enseignement LCMA 4U ANALYSE 3 Frnçoise GEANDIER Université Henri Poincré Nncy I Déprtement de Mthémtiques . Tble des mtières I Séries numériques. Séries

Plus en détail

5. Intégration complexe

5. Intégration complexe 49 5. Intégrtion complexe 1. Intégrles définies d une fonction complexe d une vrible réelle Les intégrles sont extrêmement importntes dns l étude des fonctions d une vrible complexe. Nous étblirons l équivlence

Plus en détail

I.S.F.A. Université Lyon 1 Année Concours d Entrée

I.S.F.A. Université Lyon 1 Année Concours d Entrée I.S.F.A. Université Lyon 1 Année 29. Concours d Entrée Deuxième épreuve de mthémtiques Durée 4h. OPTION A Le sujet est composé d un problème comportnt 3 prties. Toutes les réponses doivent être soigneusement

Plus en détail

Fiche de cours 5 - Calcul intégral.

Fiche de cours 5 - Calcul intégral. Licence de Sciences et Technologies EM - Anlyse Primitives et intégrles Fiche de cours 5 - Clcul intégrl. Définition : soit deu fonctions f, F, définies sur un intervlle I non réduit à un point. L fonction

Plus en détail

dans un EVMPS Moindres carrés

dans un EVMPS Moindres carrés Meilleure pproximtion dns un EVMPS Moindres crrés Meilleure pproximtion Définition. Soit V un EVMPS, W un sous-espce quelconque de V, et u un vecteur quelconque de V. On ppelle meilleure pproximtion de

Plus en détail

Chapitre 19 Intégration sur un segment

Chapitre 19 Intégration sur un segment Chpitre 19 ntégrtion sur un segment Dns tout ce chpitre, suf mention contrire,, b désignent deux réels tels que < b et un intervlle de R contennt u moins deux points. - Construction de l'intégrle.1 - Continuité

Plus en détail

Etude de suites récurrentes

Etude de suites récurrentes [http://mp.cpgedupuydelome.fr] édité le 5 mi 06 Enoncés Etude de suites récurrentes Exercice [ 0304 ] [Correction] u 0 = R et n N, + = u n ) Justifier que l suite ( ) est bien définie et n N, [ ; ] b)

Plus en détail

Quelques épreuves d évaluation

Quelques épreuves d évaluation UNIVERSITÉ DE VALENCIENNES MASTER 1 MATHÉMATIQUES Géométrie différentielle pr Aziz El Kcimi Quelques épreuves d évlution 0 Année universitire 00-004 Devoir surveillé Notes de cours et de TD utorisées On

Plus en détail

Cours d intégration L3-mass

Cours d intégration L3-mass Cours d intégrtion L3-mss Renud Leplideur Année 214-215 UBO 2 Tble des mtières 1 Rppels sur l intégrle de Riemnn et les limites croissntes 5 1.1 L intégrle u sens de Riemnn et les principux résultts.........

Plus en détail

Convergence dominée et conséquences.

Convergence dominée et conséquences. Chpitre 3 Convergence dominée et conséquences.. nterversion ite-intégrle............................................................2 / Le cs d une CU sur un segment..................................................

Plus en détail

Terminales S. Liste «non exhaustive» des Restitutions Organisées des Connaissances:

Terminales S. Liste «non exhaustive» des Restitutions Organisées des Connaissances: Terminles S Liste «non exhustive» des Restitutions Orgnisées des Connissnces: Théorème 1 : Critère de divergence d'une suite Théorème 2 : Comprison pr rpport à une suite divergente Théorème 3 : Théorème

Plus en détail

PRIMITIVES ET INTÉGRALES

PRIMITIVES ET INTÉGRALES Lurent Grcin MPSI Lycée Jen-Bptiste Corot PRIMITIVES ET INTÉGRALES Les fonctions de ce chpitre sont des fonctions d une vrible réelle à vleurs réelles ou complexes. Primitives. Définition Définition. Primitive

Plus en détail

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications.

LEÇON N 76 : Primitives d une fonction continue sur un intervalle ; définition et propriétés de l intégrale, inégalité de la moyenne. Applications. LEÇON N 76 : Primitives d une fonction continue sur un intervlle ; définition et propriétés de l intégrle, inéglité de l moyenne. Applictions. Pré-requis : Si f est une fonction numérique dérivble sur

Plus en détail

Mémo de cours n 4. Intégrales

Mémo de cours n 4. Intégrales Mémo de cours n 4 Intégrles v.0 4. Primitive 4.. Définition Si l fonction f (x) est l dérivée de l fonction F(x), c est à dire que f (x) = df(x) dx, lors nous ppelons l fonction F une primitive de f. On

Plus en détail

Chapitre 10 - Séries de Fourier - Cours. 1. Fonctions dénies par morceaux

Chapitre 10 - Séries de Fourier - Cours. 1. Fonctions dénies par morceaux Chpitre 1 - Séries de Fourier - Cours Lcée Blise Pscl - SI - Jérôme Von Buhren - http://vonbuhren.free.fr Chpitre 1 Séries de Fourier Nottion : Dns tout le chpitre, on e un réel > et on note ω =. 1. Fonctions

Plus en détail

Espaces vectoriels normés

Espaces vectoriels normés Espaces vectoriels normés Essaidi Ali 19 octobre 2010 K = R ou C. E un K-espace vectoriel. 1 Normes et distances : 1.1 Normes et distances : Définition : On appelle semi-norme sur E toute application N

Plus en détail

Cours d Analyse IV Suites et Séries de fonctions

Cours d Analyse IV Suites et Séries de fonctions Université Clude Bernrd, Lyon I Licence Sciences, Technologies & Snté 43, boulevrd 11 novembre 1918 Spécilité Mthémtiques 69622 Villeurbnne cedex, Frnce L. Pujo-Menjouet pujo@mth.univ-lyon1.fr Cours d

Plus en détail

Nous admettrons et utiliserons souvent le théorème suivant:

Nous admettrons et utiliserons souvent le théorème suivant: < 20 Intégrtion: fonction réelle d une vrile réelle. Définition 2.5. (Intégrilité u sens de Riemnn) Une fonction réelle f: [, ] R est dite intégrle sur [,], si ǫ > 0, f 1, f 2 : [, ] R fonctions en escliers

Plus en détail

( ) non vides et disjoints tels que D= A1 A2. Soit f la fonction définie par : 1. sont non vides.

( ) non vides et disjoints tels que D= A1 A2. Soit f la fonction définie par : 1. sont non vides. Prties connexes de R et fonctions continues PARTIES CONNEXES DE R ET FONCTIONS CONTINUES Prties connexes de R crctéristion Prtie connexe de R On dit qu'une prtie D de est connexe si D n'dmet ps de prtition

Plus en détail

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23

Calcul intégral. Catherine Decayeux. Catherine Decayeux () Calcul intégral 1 / 23 Clcul intégrl Ctherine Decyeux Ctherine Decyeux () Clcul intégrl 1 / 23 I-Introduction Le clcul intégrl s est développé u XVIIe siècle vec les trvux de Bonvntur Cvlieri, Isc Newton, Leibniz... mis les

Plus en détail

Calcul différentiel 1 Licence de Mathématiques

Calcul différentiel 1 Licence de Mathématiques Clcul différentiel 1 Licence de Mthémtiques Tble des mtières Avertissement 5 Chpitre 1. Préliminires 7 1. Espces vectoriels normés 7 2. Convergence, continuité 10 3. Vocbulire topologique 13 4. Compcité,

Plus en détail

LIMITE ET CONTINUITÉ DE FONCTIONS

LIMITE ET CONTINUITÉ DE FONCTIONS Lurent Grcin MPSI Lycée Jen-Bptiste Corot LIMITE ET CONTINUITÉ DE FONCTIONS Soit R. Dns tout ce chpitre, on dir qu une fonction f de domine de définition D f est définie u voisinge de s il existe un réel

Plus en détail

Rappels sur l intégrale de Lebesgue

Rappels sur l intégrale de Lebesgue Rppels sur l intégrle de Lebesgue Renud Leplideur Année 214-215 UBO Tble des mtières 1 Rppels sur l intégrle de Riemnn et les limites croissntes 2 1.1 Trois spects de l intégrtion..........................

Plus en détail

Propriétés de l'intégrale.

Propriétés de l'intégrale. Propriétés de l'intégrle. I Résultts sur l'intégrle. Interversion des bornes. { et b des réels, Soit f une fonction continue sur un intervlle contennt et b. = b Linérité de l'intégrle. {, b, α et β des

Plus en détail

Cours de Terminale S /Intégration. E. Dostal

Cours de Terminale S /Intégration. E. Dostal Cours de Terminle S /Intégrtion E. Dostl Février 26 Tble des mtières 9 Intégrtion 2 9. Intégrles............................................. 2 9.. Aire sous une courbe...................................

Plus en détail

Résumé sur les Intégrales Impropres & exercices supplémentaires

Résumé sur les Intégrales Impropres & exercices supplémentaires L-MATH II-(25-26). Résumé sur les Intégrles Impropres & eercices supplémentires Une fonction définie sur un intervlle I est dite loclement intégrble sur I si f est Riemnnintégrble sur tout intervlle [,

Plus en détail

Clamaths.fr - Les Roc en Terminale S

Clamaths.fr - Les Roc en Terminale S Clmths.fr - Les Roc en Terminle S CONTENTS ROC - exigibles... 2 Roc 1 Théorème de comprison pour les suites... 2 Roc 2 Limite de qn lorsque q > 1... 2 Roc 3 Unicité de l fonction exponentielle... 3 Roc

Plus en détail

Analyse 2 - Résumé du Cours

Analyse 2 - Résumé du Cours UFR de Mthémtiques Université de Lille Licence sciences et technologies A - S MASS Anlyse - Résumé du Cours Tble des mtières Prtie I : Intégrtion. Introduction : Premières remrques sur les primitives et

Plus en détail

CHAPITRE 5. Champs de vecteurs

CHAPITRE 5. Champs de vecteurs CHAPITRE 5 Chmps de vecteurs Définition 5.1. Un chmp de vecteur est une ppliction F définie et continue sur un domine D( F ) de R 3 qui chque point (x, y, z) de R 3 ssocie une vecteur F (x, y, z) de R

Plus en détail

Comparaison des fonctions au voisinage d un point

Comparaison des fonctions au voisinage d un point DOCUMENT 29 Comprison des fonctions u voisinge d un point Pour tout 0 R on pose : V 0 = {] 0 η, 0 + η[ η > 0} si 0 R; V 0 = {], + [ R} si 0 = + et V 0 = {], [ R} si 0 =. Un élément de V 0 est ppelé un

Plus en détail

Corrigés d exercices pour le TD 7

Corrigés d exercices pour le TD 7 Corrigés d exercices pour le TD 7 Dns cette feuille, suf indiction contrire, H désigne un espce de Hilbert réel de produit sclire,, et de norme ssociée =,. De plus, pr un léger bus de nottion, on identifier

Plus en détail

7. Applications du théorème des

7. Applications du théorème des 67 7. Applictions du théorème des résidus. Évlution d intégrles réelles impropres Une ppliction importnte de l théorie des résidus est l évlution de certins types d intégrles définies et d intégrles impropres

Plus en détail

Cours de remise à niveau Maths 2ème année. Intégrales simples

Cours de remise à niveau Maths 2ème année. Intégrales simples Cours de remise à niveu Mths 2ème nnée Intégrles simples C. Mugis-Rbusseu GMM Bureu 116 cthy.mugis@ins-toulouse.fr C. Mugis-Rbusseu (INSA) 1 / 47 Pln 1 Définitions 2 Propriétés des fonctions intégrbles

Plus en détail

Topologie des espaces vectoriels normés

Topologie des espaces vectoriels normés Topologie des espaces vectoriels normés Cédric Milliet Version préliminaire Cours de troisième année de licence Université Galatasaray Année 2011-2012 2 Chapitre 1 R-Espaces vectoriels normés 1.1 Vocabulaire

Plus en détail

Cours de Mathématiques Compléments de calcul intégral Sommaire

Cours de Mathématiques Compléments de calcul intégral Sommaire Sommire Sommire I Intégrles doubles ou triples....................... 2 I.1 Intégrles doubles : théorèmes de Fubini................. 2 I.2 Intégrles doubles : Chngement de vribles.............. 2 I.3 Formule

Plus en détail

CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN

CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN CHAPITRE III. CONSTRUCTION DE L INTÉGRALE DE RIEMANN 1. Fonctions en esclier. Le but de l construction de l intégrle d une fonction f : [, b] R étit, initilement, de définir rigoureusement l ire de l figure

Plus en détail

Primitive et intégrale d une fonction continue

Primitive et intégrale d une fonction continue Primitive et intégrle d une fonction continue O. Simon, Université de Rennes I 24 mi 2005 Avertissement : Ceci n est ps le contenu d une leçon de CAPES. Dns le progrmme 2002 de terminles S, on introduit

Plus en détail

Définition d une norme

Définition d une norme Définition d une norme Définition E est un K-ev. L application N : E R + est une norme sur E ssi 1. x E, N(x) = 0 x = 0. 2. k K, x E, N(k.x) = k N(x). 3. x, y E, N(x + y) N(x) + N(y) Notation N,. Propriété

Plus en détail

Théorie de la mesure et intégration. J.C. Pardo

Théorie de la mesure et intégration. J.C. Pardo Feuille de TD 6. Théorie de l mesure et intégrtion. J.C. Prdo Exercices. Exo. 72 Soit f une fonction sur. On considère muni de l tribu B des boréliens et d une mesure λ sur B. On suppose que f est λ-loclement

Plus en détail

Primitives et Calcul d une intégrale

Primitives et Calcul d une intégrale Primitives et Clcul d une intégrle I) Primitive ) Définition : Soit f une fonction définie sur un intervlle I. On ppelle primitive de f sur I, toute fonction F dérivle sur I dont l dérivée F est égle à

Plus en détail

Cours de Mathématiques Seconde. Ordre et valeur absolue

Cours de Mathématiques Seconde. Ordre et valeur absolue Cours de Mthémtiques Seconde Frédéric Demoulin 1 Dernière révision : 16 vril 2007 Document diffusé vi le site www.cmths.net de Gilles Costntini 2 1 frederic.demoulin (chez) voil.fr 2 gilles.costntini (chez)

Plus en détail

L ensemble? contient les rationnels, mais aussi les nombres comme 2,? appelés irrationnels. f) lien entre les ensembles de nombres

L ensemble? contient les rationnels, mais aussi les nombres comme 2,? appelés irrationnels. f) lien entre les ensembles de nombres Chpitre I : Les nombres I. Les différents ensembles de nombres ) les entiers nturels :? = {0 ; 1 ; ; 3 ; } b) les entiers reltifs :? Ce sont les entiers nturels et leurs opposés :? = { ; -3 ; - ; -1 ;

Plus en détail

Intégrale de Riemann. L3 Mathématiques. Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2009

Intégrale de Riemann. L3 Mathématiques. Jean-Christophe Breton Université de Rennes 1 Septembre Décembre 2009 Intégrle de Riemnn L3 Mthémtiques Jen-Christophe Breton Université de Rennes 1 Septembre Décembre 009 version du 1 décembre 009 Tble des mtières 1 Intégrles des fonctions en esclier 1 1.1 Fonctions en

Plus en détail

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015

Calcul intégral. Mathématique. Sylvie Jancart. Octobre 2015 Mthémtique Sylvie Jncrt sylvie.jncrt@ulg.c.be Octobre 2015 Introduction L notion d intégrle répond à deux problèmes de nture différente: l une lgébrique, l utre géométrique. Une fonction étnt donnée, existe-t-il

Plus en détail

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER

CHAPITRE 4 LA TRANSFORMÉE DE F OURIER CHAPITRE 4 LA TRANSFORMÉE DE F OURIER 4. Fonctions loclement intégrbles Soit I un intervlle de R et soit f : R R une ppliction. Définition 4.. On dit que f est loclement intégrble sur I si f est intégrble

Plus en détail

I. Fonctions

I. Fonctions FORMULAIRE MATHÉMATIQUES - RENTRÉE 205 - PRÉPA ECS PREMIÈRE ANNÉE Tble des mtières I. Fonctions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4. Générlités sur les fonctions...................

Plus en détail

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie

Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M. Topologie Université de Cergy-Pontoise 2008-2009 Calcul Diff S6 M Topologie 1 Espaces métriques 1.1 Distance Dans toute cette partie E représente un ensemble qui n est pas forcément un espace vectoriel. Définition

Plus en détail

R.O.C. Nombres complexes. Pondichéry Enseignement spécifique. Exercice 4 Enoncé Restitution organisée de connaissances

R.O.C. Nombres complexes. Pondichéry Enseignement spécifique. Exercice 4 Enoncé Restitution organisée de connaissances Nombres complexes R.O.C. Pondichéry 22. Enseignement spécifique. Exercice 4 Prtie A Restitution orgnisée de connissnces Soit z uombre complexe. On rppelle que z est le conjugué de z et que z est le module

Plus en détail

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2

Intégrale de Riemann cours et exercices de Licence, L1, PC, S2 Intégrle de Riemnn cours et exercices de Licence, L1, PC, S2 H. Le Ferrnd Jnury 29, 2010 Contents 1 Des premières méthodes 2 2 Sommes de Drboux 2 3 Fonction intégrble u sens de Riemnn 3 3.1 Qu est-ce qu

Plus en détail

Intégration Primitives

Intégration Primitives Intégrtion Primitives Christophe ROSSIGNOL Année scolire 2015/2016 Tble des mtières 1 Rppels et compléments 3 1.1 Rppels de dérivtion.......................................... 3 1.1.1 Dérivtion en un point......................................

Plus en détail

Espaces de modules en géométrie algébrique

Espaces de modules en géométrie algébrique Espces de modules en géométrie lgébrique O. Sermn Thèse effectuée u JAD sous l direction d A. Beuville 1 Deux problèmes clssiques Triplets pythgoriciens : Trouver tous les tringles rectngles dont les trois

Plus en détail

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions.

Fiches de cours analyse 4 ème Sciences expérimentales. Limites et continuité. Limites et comparaison de fonctions. Fiches de cours nlyse 4 ème Sciences epérimentles Limites et continuité Limites et comprison de fonctions. L et L ' sont des réels. désigne soit un réel, soit +, soit Premier théorème de comprison Soit

Plus en détail

Les théorèmes fondamentaux

Les théorèmes fondamentaux Université d Artois Fculté des ciences Jen Perrin Mesure et Intégrtion (Licence 3 Mthémtiques-Informtique) Dniel Li Les théorèmes fondmentux 21 vril 28 1 L notion de presque prtout Avnt de donner les théorèmes

Plus en détail

Remise en forme. Chapitre 1

Remise en forme. Chapitre 1 Chpitre 1 Remise en forme 1) Trigonométrie L fonction exponentielle est l réciproque de l fonction logrithme. Elle trnsforme une somme en un produit, lors que le logrithme trnsforme un produit en une somme

Plus en détail

LOI DE PROBABILITE CONTINUE

LOI DE PROBABILITE CONTINUE LOI DE PROBABILITE CONTINUE I) VERIFIER LES ACQUIS ( voir le chpitre des probbilités) 1) Clculer l moyenne, l vrince et l'écrt-type de ces deux séries sttistiques x i 3 5 6 10 effectifs 5 20 10 15 x =

Plus en détail

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1

[http://mp.cpgedupuydelome.fr] édité le 10 juillet 2014 Enoncés 1 [http://mp.cpgedupuydelome.fr] édité le 1 juillet 14 Enoncés 1 Topologie Ouverts et fermés Exercice 6 [ 118 ] [correction] On muni le R-espce vectoriel des suites réelles bornées de l norme u = sup u n

Plus en détail

Variables aléatoires à densité

Variables aléatoires à densité Vribles létoires à densité Rppels : Une vrible létoire réelle (VAR) est une ppliction X : Ω R où (Ω,A,P) est un espce probbilisé. Lorsque X(Ω) est un ensemble discret on dit que X est une VAR discrète.

Plus en détail

Exercices du chapitre 7 avec corrigé succinct

Exercices du chapitre 7 avec corrigé succinct Eercices du chpitre 7 vec corrigé succinct Eercice VII. Ch7-Eercice Montrer qu une fonction constnte sur [,b] est étgée. Si f est une fonction constnte sur [,b], lors il eiste bien une subdivision de [,b],

Plus en détail

Résolution d équations numériques

Résolution d équations numériques Résolution d équtions numériques Dniel PERRIN On présente ici trois méthodes de résolution d équtions : les méthodes de Newton, d interpoltion linéire et, très rièvement, d justement linéire. Pour des

Plus en détail

L1MI - Mathématiques: Analyse

L1MI - Mathématiques: Analyse Université de Metz (UFR MIM) Année universitire - Déprtement de Mthémtiques Dérivtion et Dérivée Exercice Clculer l dérivée des fonctions suivntes (x) = x + ln(x + x + ), LMI - Mthémtiques: Anlyse b(x)

Plus en détail

Intégrale impropre. 9.1 Convergence d intégrales Intervalles semi ouverts 2 Intervalles ouverts 3 Propriétés 4

Intégrale impropre. 9.1 Convergence d intégrales Intervalles semi ouverts 2 Intervalles ouverts 3 Propriétés 4 Lyee Fidherbe, Lille PC* 2008 2009 Chpitre 9 ntégrle impropre 9. Convergene d intégrles.................................... 2 ntervlles semi ouverts 2 ntervlles ouverts 3 s 4 9.2 ntégrbilité.................................................

Plus en détail

1 Intégration sur [a, + [

1 Intégration sur [a, + [ ntégrtion sur un intervlle quelconque pr Emmnuel AMOT 3 jnvier 27 NB : dns tout ce chpitre, on se limite à des fonctions continues pr morceu. C est une limittion inhérente à notre progrmme et qui ser levée

Plus en détail