IMPÉDANCES D ENTRÉE ET DE SORTIE

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "IMPÉDANCES D ENTRÉE ET DE SORTIE"

Transcription

1 MPÉDNCE D ENTÉE ET DE OTE. DÉFNTON On s plac n régim sinusoïdal forcé. oit Q un quadripôl. Nous allons modélisr c quadripôl n utilisant ls impédancs d ntré t d sorti. quadripôl Q V V. Point d vu du génératur On appll l impédanc équivalnt, c st cll qui mis aux borns du génératur (, g g) intnsité t la mêm tnsion V. On a donc l schéma équivalnt suivant : E donn la mêm V L impédanc d ntré du quadripôl st. Point d vu d la résistanc u La résistanc a l imprssion d êtr branché sur un génératur (, ) C st l schéma équivalnt d Thévnin. E qui donnrait l mêm avc l mêm V. V E L impédanc d sorti du quadripôl st.3 Modélisation On put donc donnr l schéma équivalnt du quadripôl : V E V mpédancs d ntré t d sorti (3-8) Pag sur 7 JN Bury

2 . CLCUL DE L MPÉDNCE D ENTÉE ET DE L MPÉDNCE DE OTE. Méthod d calcul d l impédanc d ntré La méthod st d calculr V n fonction d t d calculr : V =. Exmpls d calculs d l impédanc d ntré a) Montag invrsur V montag équivalnt vu d l'ntré V Prmir schéma : L O st n régim linéair. On a donc V =, soit V = (rlation n ) V Duxièm schéma : = (rlation n ) car on st n convntion récptur. En comparant ls dux rlations, on n déduit : L impédanc du montag invrsur st = b) Montag suivur montag équivalnt vu d l'ntré V V + Prmir schéma : L O st n régim linéair t = =. = qulqu soit V V Duxièm schéma : = (rlation n ) car on st n convntion récptur. En comparant ls dux rlations, on n déduit : L impédanc du montag suivur st = On rtrouv très rapidmnt c résultat puisqu = + =. mpédancs d ntré t d sorti (3-8) Pag sur 7 JN Bury

3 .3 Calcul d l impédanc d sorti quadripôl Q V V montag équivalnt vu d la sorti E V l faut appliqur l théorèm d Thévnin à la sorti. a) Calcul d l impédanc d sorti L impédanc d sorti st l impédanc équivalnt au montag lorsqu on étint tous ls génératurs indépndants. On étint un génératur d tnsion indépndant n l rmplaçant par un intrruptur frmé. On étint un génératur d courant indépndant n l rmplaçant par un intrruptur ouvrt. V quadripôl Q V montag équivalnt vu d la sorti V b) Calcul d E E st la tnsion à vid aux borns du quadripôl..4 Exmpls d calculs d l impédanc d sorti a) Montag invrsur V V E st la tnsion à vid. V V = E mpédancs d ntré t d sorti (3-8) Pag 3 sur 7 JN Bury

4 Dans l chapitr sur ls amplificaturs opérationnls on vrra qu E = V = V st l impédanc équivalnt lorsqu on étint tous ls génératurs indépndants. montag équivalnt vu d la sorti V V L amplificatur opérationnl idéal st n régim linéair. On a donc V =. L courant qui circul dans st donc nul. Comm =, l courant qui circul dans st nul t V =. L impédanc d sorti vaut : V = = Très souvnt dans ls montags à bas d O, l impédanc d sorti st null. b) Montag suivur V V E st la tnsion à vid. V V = E Dans l chapitr sur ls amplificaturs opérationnls on vrra qu E = V = V = car l O idéal st n + régim linéair : ε = V V = t = =. mpédancs d ntré t d sorti (3-8) Pag 4 sur 7 JN Bury

5 st l impédanc équivalnt lorsqu on étint tous ls génératurs indépndants. V montag équivalnt vu d la sorti V + L amplificatur opérationnl idéal st n régim linéair t = =. On a donc V = t V =. L impédanc d sorti du montag suivur vaut : V = = Très souvnt dans ls montags à bas d O, l impédanc d sorti st null.. DÉTEMNTON EXPÉMENTLE D MPÉDNCE P DVEU DE TENON. Princip d la msur On suppos connu l impédanc t on chrch à détrminr n utilisant la rlation du divisur d tnsion. u On suppos connu l impédanc t on chrch à détrminr. La formul du pont divisur d tnsion donn : u = + On msur ls caractéristiqus d la tnsion n prnant =. En msurant clls d u pour un valur connu d, on n déduit la détrmination d.. Msur d un résistanc C st l cas l plus simpl où ls impédancs t sont ds résistancs notés rspctivmnt t. l n y a pas d déphasag t la sul msur d l amplitud prmt d obtnir la valur d à partir d la rlation : U = E. + On n déduit ( E U) = U En général, on utilis la méthod d la dmi-tnsion. l s agit d prndr un résistanc variabl t d modifir sa valur jusqu à obtnir un amplitud U égal à la moitié d cll d E. La rlation précédnt dvint alors : = Et il suffit d «lir» la valur d pour connaîtr cll d chrché. mpédancs d ntré t d sorti (3-8) Pag 5 sur 7 JN Bury

6 On utilis ctt méthod pour msurr la résistanc d un résistor bin sûr mais égalmnt ls résistancs d ntré ou d sorti d un montag comm par xmpl la résistanc d ntré d un oscilloscop ou la résistanc d sorti d un G.B.F..3 Msur d un inductanc ou d un capacité Dans cs cas, ls impédancs sont ffctivmnt complxs t non rélls : il st donc nécssair d msurr ls amplituds E t U d t u à un fréqunc donné. On obtint alors la rlation n notation complx : ( u) = u On n déduit l amplitud d : ( xp( ϕ )) E U j = U arg = arg + arg E Uxp jϕ ϕ. ( ) t son argumnt : ( ) C st la méthod utilisé pour détrminr l impédanc d ntré d un oscilloscop. L impédanc connu st un résistanc réglabl. L impédanc inconnu st l impédanc d ntré d l oscilloscop, équivalnt à un résistanc n parallèl avc un condnsatur d capacité C. Ell st égal à =. Dans un prmir + j C ω tmps, on travaill à très bass fréqunc ( Hz) nviron d tll sort qu pour détrminr. C ω Puis, à fréqunc plus élvé ( khz par xmpl), on msur c qui prmt d détrminr la valur d C. u = = ( Cω ) mpédancs d ntré t d sorti (3-8) Pag 6 sur 7 JN Bury

7 V. DÉTEMNTON EXPÉMENTLE DE L MPÉDNCE D ENTÉE ET DE L MPÉDNCE DE OTE V. Détrmination xpérimntal d l impédanc d ntré du montag suivur La méthod consist à placr un résistanc variabl n séri avc l ntré du montag suivur. V V V V E ans ctt résistanc, la msur d la tnsion d sorti donnrait : V = V = E g vc un résistanc, on aura alors : V = E g + t on msur n sorti : V = V = E g + On augmnt au maximum par xmpl 6 Ω. On n obsrv quasimnt aucun variation d V t donc d V. Cla signifi qu. On n déduit qu : 6 > Ω V. Détrmination xpérimntal d l impédanc d sorti du montag suivur Étant donné la très faibl valur d l impédanc d sorti du montag suivur, on n put ffctur sa msur mais sulmnt donnr un born supériur. On put ssayr d appliqur la méthod dit d la dmi-tnsion. Quand il n y a pas d charg, on msur la tnsion à vid, à savoir E. On not qu n réalité, il faut tnir compt d l impédanc d ntré d l apparil d msur. Mais cll-ci st très grand t on put négligr l courant qui pass dans l apparil d msur par rapport au courant qui pass dans. Quand on plac la résistanc, on a alors : u V = E + u On ssai d fair varir la valur d pour obtnir un tnsion dont la valur sra la moitié d cll obtnu n l absnc d résistanc soit u = + u c qui équivaut à = u On put ainsi mttr n évidnc qu < Ω. Mais il faut fair attntion à c qu l courant d sorti n soit pas saturé (si c st l cas, il faut diminur l amplitud d la tnsion d ntré). mpédancs d ntré t d sorti (3-8) Pag 7 sur 7 JN Bury

L AMPLIFICATEUR OPÉRATIONNEL

L AMPLIFICATEUR OPÉRATIONNEL L PLIFICTEU OPÉTIONNEL I. L PLIFICTEU OPÉTIONNEL IDÉL I. Circuit intégré rpèr Un mplificatur Opérationnl (.O.) st un circuit intégré accssibl par V t V 3 + t un born d 8 borns. Il y a dux borns d ntré

Plus en détail

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé

TD d électrocinétique n o 4 Circuits linéaires en régime sinusoïdal forcé ycé François Arago Prpignan M.P.S.I. 2012-2013 TD d élctrocinétiqu n o 4 ircuits linéairs n régim sinusoïdal forcé Exrcic 1 - Détrmination ds modèls d Thévnin t d Norton. A Détrminr l modèl d Thévnin t

Plus en détail

MÉTHODES DE RÉSOLUTION DES RÉSEAUX LINÉAIRES EN COURANT CONTINU

MÉTHODES DE RÉSOLUTION DES RÉSEAUX LINÉAIRES EN COURANT CONTINU MÉTHODES DE ÉSOLUTION DES ÉSEUX LINÉIES EN OUNT ONTINU I. DEUX FÇONS DE POSE LE POLÈME On considèr l circuit suivant. Nous chrchons à connaîtr l état élctriqu du circuit, c st à dir connaîtr ls potntils

Plus en détail

CONTRE REACTION SUR UN AMPLI 5 C.R courant-parallèle. schéma de contre réaction

CONTRE REACTION SUR UN AMPLI 5 C.R courant-parallèle. schéma de contre réaction CONTRE REACTION SUR UN AMPLI 5 C.R courant-parallèl schéma d contr réaction Ig Is grandur d sorti :courant Ig A 0 nœud d courant : Entré // Is CONTRE REACTION SUR UN AMPLI 5 C.R courant-parallèl ouvrtur

Plus en détail

7.B ANNEXE: RÉGULATEURS ANALOGIQUES

7.B ANNEXE: RÉGULATEURS ANALOGIQUES 7.B ANNEXE: ÉGULATEUS ANALOGIQUES 7.B. Généralités Pour réalisr un régulatur analogiqu, on adoptra un montag à amplificatur qui prmt d réalisr la fonction d transfrt souhaité dans un larg gamm d'utilisation.

Plus en détail

DIODES. anode cathode Représentation d une diode : On peut démontrer que la caractéristique de ce dipôle récepteur peut s écrire : qu

DIODES. anode cathode Représentation d une diode : On peut démontrer que la caractéristique de ce dipôle récepteur peut s écrire : qu DIODE I CAACTÉITIQUE D UNE DIODE À FONCTION PN I1 Dio à jonction PN Un io à jonction PN st constitué ux smi-conucturs mêm natur (silicium ou grmanium), opés ifférmmnt : l un typ N (ls élctrons sont ls

Plus en détail

Exercices sur la notion d impédance

Exercices sur la notion d impédance Exrcics sur la notion d impédanc C documnt st un compilation ds xrcics posés n dvoirs survillés d élctricité au départmnt Géni Elctriqu t nformatiqu ndustrill d l UT d Nants. Cs dvoirs s sont déroulés

Plus en détail

- Amplificateur opérationnel -

- Amplificateur opérationnel - - Ampliicatur opérationnl - L ampliicatur opérationnl st un composant utilisé usullmnt n élctroniqu (ampliication d un tnsion ou du courant d un photodiod, étag suivur qui évit d chargr l étag élctroniqu

Plus en détail

Guide de correction TD 6

Guide de correction TD 6 Guid d corrction TD 6 JL Monin nov 2004 Choix du point d polarisation 1- On décrit un montag mttur commun à résistanc d mttur découplé, c st à dir avc un condnsatur n parallèl sur R. La condition d un

Plus en détail

Série n 3 d Electrocinétique : Régime sinusoïdal forcé

Série n 3 d Electrocinétique : Régime sinusoïdal forcé Séri n 3 d Elctrocinétiqu : Régim sinusoïdal forcé Exrcic n 1 : Résonanc n tnsion d un circuit RLC parallèl 1.\ Détrminr l équation différntill qui régi l évolution d u(t). 2.\ Exprimr l amplitud complx

Plus en détail

Physique - électricité : TC1

Physique - électricité : TC1 Ministèr d l Ensignmnt Supériur, d la chrch Scintifiqu t d la Tchnologi Univrsité Virtull d Tunis Physiqu - élctricité : T Ls condnsaturs oncptur du cours: Jilani Lamloumi t Monjia Bn Braik Attntion! produit

Plus en détail

VII. La méthode ESPRIT

VII. La méthode ESPRIT Patrick VAUDON Introduction à la détction ds angls d arrivés d un ond élctromagnétiqu. Mastr Rchrch Tchniqus hyprfréquncs élctroniqus t optiqus 4 VII La méthod ESPRIT ESPRIT st un acronym formé à partir

Plus en détail

Électronique Numérique. Licence Physique et Applications. Applications de l électronique. combinatoire

Électronique Numérique. Licence Physique et Applications. Applications de l électronique. combinatoire Élctroniqu Numériqu Licnc Physiqu t Application Élctroniqu Numériqu Licnc Physiqu t Applications Applications d l élctroniqu combinatoir Fabric AIGNET LAAS - NRS fcaignt@laas.fr http://www.laas.fr/~fcaignt

Plus en détail

TP HF Manipulation 6 CARACTERISATION D UN AMPLIFICATEUR MICRO ONDE

TP HF Manipulation 6 CARACTERISATION D UN AMPLIFICATEUR MICRO ONDE TP HF Manipulation 6 CARACTERIATION D UN AMPLIFICATEUR MICRO ONDE I. Introduction Ls amplificaturs micro onds sont aujourd hui utilisés dans ls chaîns d transmission ds systèms d télécommunications. Il

Plus en détail

Elizabeth Colin. 2 ème année cycle préparatoire ESIGETEL

Elizabeth Colin. 2 ème année cycle préparatoire ESIGETEL 1 Elizabth Colin èm anné cycl préparatoir ESIGETEL Plan du cours I - Introduction 1 èr Parti : l amplification II - Ls montags amplificaturs III Amplificatur à bas d transistors èm Parti : du transistor

Plus en détail

RETROACTION NEGATIVE DE L AMPLIFICATEUR

RETROACTION NEGATIVE DE L AMPLIFICATEUR RETROCTION NEGTIVE DE L MPLIFICTEUR Philipp ROUX 24 RETROCTION NEGTIVE DE L MPLIFICTEUR. PRINCIPE DE L RETROCTION NEGTIVE Pour s placr dans l cas général on considèrra un ampliicatur ayant un onction d

Plus en détail

REDRESSEMENT NON COMMANDE

REDRESSEMENT NON COMMANDE EDEEMEN NON COMMANDE I. INODUCION. i i 1. Définition. Un montag rdrssur prmt d obtnir un tnsion continu (d valur moynn non null) à partir d un tnsion altrnativ sinusoïdal (d valur moynn null). On distingu

Plus en détail

ELECTRICITE. Chapitre 7 Théorèmes de superposition, Thévenin et Norton appliqués à un réseau électrique linéaire en alternatif sinusoïdal.

ELECTRICITE. Chapitre 7 Théorèmes de superposition, Thévenin et Norton appliqués à un réseau électrique linéaire en alternatif sinusoïdal. TT nalys ds signaux t ds circuits élctriqus Michl Piou hapitr 7 Théorèms d suprposition, Thévnin t Norton appliqués à un résau élctriqu linéair n altrnatif sinusoïdal. dition /03/04 Tabl ds matièrs POUQUO

Plus en détail

Traitement du Signal - Travaux Dirigés - Sujet n 3 : "Echantillonnage, Transformée de Fourier d un signal échantillonné"

Traitement du Signal - Travaux Dirigés - Sujet n 3 : Echantillonnage, Transformée de Fourier d un signal échantillonné raitmnt du Signal - ravaux Dirigés - Sujt n 3 : "Echantillonnag, ransormé d Fourir d un signal échantillonné" Exrcic : Sur-échantillonnag L objcti d ct xrcic st d mttr n évidnc l intérêt qu il put y avoir

Plus en détail

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI

Les systèmes asservis linéaires. échantillonnés. Mohamed AKKARI Ministèr d l Ensignmnt Supériur, d la Rchrch Scintifiqu Univrsité Virtull d Tunis Ls systèms assrvis linéairs échantillonnés Echantillonnag instantané d un signal Mohamd AKKARI Attntion! C produit pédagogiqu

Plus en détail

Corrigé - Baccalauréat blanc TS

Corrigé - Baccalauréat blanc TS Corrigé - Baccalauréat blanc TS - 00 EXERCICE 5 points Commun à tous ls candidats Parti A : Étud d un fonction On considèr la fonction f défini sur ]0 ; + [ par f = + ln On not C la courb rprésntativ d

Plus en détail

Dans le fer à souder se trouve un...qui compare à chaque instant t f et t c

Dans le fer à souder se trouve un...qui compare à chaque instant t f et t c UTOMTIQUE Lçon : 4 Objctifs : Décrir un systèm assrvi n fonctionnmnt. Modélisr un systèm assrvi par un schéma fonctionnl. Détrminr la fonction d transfrt d un systèm assrvi Mttr n œuvr un systèm assrvi

Plus en détail

TS Exercices sur la fonction exponentielle (1)

TS Exercices sur la fonction exponentielle (1) TS Ercics sur la fonction ponntill () 4 a. 4 4 b. Simplifir ls prssions suivants : p( ) a. A = p () p () b. B = p () p ( ) c. C p( ) d. D p( ) 4 5 6 (on pourra posr X ) 4 Simplifir ls prssions suivants,

Plus en détail

Les trois questions de l exercice sont indépendantes.

Les trois questions de l exercice sont indépendantes. Pondichéry Avril 00 Séri S Exrcic Un urn contint 0 bouls blanchs t n bouls rougs, n étant un ntir naturl supériur ou égal à On fait tirr à un jouur ds bouls d l urn A chaqu tirag, touts ls bouls ont la

Plus en détail

TP Filtrage numérique

TP Filtrage numérique TP Filtrag On chrch à réalisr un filtrag pass-bas puis pass-band d un signal périodiqu t à mttr n évidnc la limitation introduit par l échantillonnag. I. Introduction I.1. Du filtrag au filtrag Jusqu à

Plus en détail

Fiche 3 : Exponentielles, logarithmes, puissances

Fiche 3 : Exponentielles, logarithmes, puissances Tous droits résrvés Studyrama 00 En partnariat avc : Fich téléchargé sur wwwstudyramacom Séri S Nº : 00 Fich Corrigés Fich : Eponntills, logarithms, puissancs Opérations élémntairs t fonction ponntill

Plus en détail

LENTILLES EPAISSES LENTILLES MINCES

LENTILLES EPAISSES LENTILLES MINCES AEP / ptiqu géométriqu / Lntills / Pag sur 0 LETILLES EPAISSES LETILLES MICES. Lntill épaiss. Vocabulair Lntill biconvx Lntill équiconvx Lntill biconcav Lntill équiconcav Lntill plan convx Lntill plan

Plus en détail

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES

CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES CINÉTIQUE FORMELLE DES RÉACTIONS COMPOSÉES I OBTENTION GÉNÉRALE DE L ÉQUATION DIFFÉRENTIELLE Dans un réactur, ont liu plusiurs réactions mttant n ju plusiurs spècs Soit A un spèc On va voir sur da un xmpl

Plus en détail

dq dt Chapitre 7 : les courants électriques 7.1 Intensité et densité de courant

dq dt Chapitre 7 : les courants électriques 7.1 Intensité et densité de courant Chapitr 7 : ls courants élctriqus 7.1 Intnsité t dnsité d courant Ls courants élctriqus sont produits par l déplacmnt ds porturs d chargs. L courant élctriqu dans un fil st un msur d la quantité d charg

Plus en détail

MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES

MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES MODÉLISATION TEMPORELLE DES SYSTÈMES LINÉAIRES Mis n équation ds systèms linéairs. systèms du prmir ordr équation d la maill: u (t) = u R (t) + u C (t) mpl élctriqu: R i(t) = C du C u R (t) = RC du C u

Plus en détail

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES

CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES CI 3 CIN : ÉTUDE DU COMPORTEMENT CINÉMATIQUE DES SYSTÈMES CHAPITRE 4 ÉTUDE DES CHAÎNES FERMÉES : DÉTERMINATION DES LOIS ENTRÉE SORTIE Trainr Solo Sport [1] Modèl CAO d un motur d modélism [2] Modélisation

Plus en détail

TP DE VIBRATIONS TP n 4 Etude du Haut Parleur Electrodynamique

TP DE VIBRATIONS TP n 4 Etude du Haut Parleur Electrodynamique TP DE VIBRATIONS TP n 4 Etud du Haut Parlur Elctrodynaiqu L but d la anipulation st la odélisation t la sur ds différnts paraètrs du H-P. 0 Généralités : Vu d profil, un haut-parlur st ainsi constitué

Plus en détail

Correction DST optique ondulatoire

Correction DST optique ondulatoire PT Champagn 04 Corrction DST optiqu ondulatoir Sptmbr 04 Corrction DST optiqu ondulatoir Parti I. I..a L phénomèn obsrvé st la diffraction. I..b La formul avc d au dénominatur n st pas homogèn à un longuur.

Plus en détail

REDRESSEMENT COMMANDE

REDRESSEMENT COMMANDE EDEEMENT COMMANDE I. INTODUCTION..Définition. i Un montag rdrssur commandé prmt d obtnir un tnsion continu réglabl (d valur moynn non null) à partir d un tnsion altrnativ sinusoïdal (d valur moynn null).

Plus en détail

Fonctions Numériques, fonctions usuelles.

Fonctions Numériques, fonctions usuelles. Fonctions Numériqus, fonctions usulls.. Fonction constant : Soit b un rél fié. Définition : La fonction constant st la fonction qui à tout rél associ l rél b. la fonction constant st donc la fonction f

Plus en détail

Condensateur. Un condensateur est constitué par deux conducteur séparé par un isolant.

Condensateur. Un condensateur est constitué par deux conducteur séparé par un isolant. I. Etud d un condnsatur plan A. ondnsation ds chargs ondnsatur On charg un élctroscop négativmnt. On approch un conductur métalliqu tnu à la main (donc rlié à la trr) initialmnt nutr. Il s charg positivmnt

Plus en détail

CHAPITRE IV EQUATIONS DIFFERENTIELLES

CHAPITRE IV EQUATIONS DIFFERENTIELLES CHAPITRE IV EQUATIONS DIFFERENTIELLES Objctifs Un équation différntill st un équation dans laqull l inconnu st un fonction f. D plus, ctt équation fait intrvnir la fonction f ainsi qu ss dérivés, d où

Plus en détail

2- Le nucléide On appelle un nucléide l'ensemble des atomes dont les noyaux ont même valeur de nombre de charge Z et de nombre de masse A.

2- Le nucléide On appelle un nucléide l'ensemble des atomes dont les noyaux ont même valeur de nombre de charge Z et de nombre de masse A. PHYSIQUE / Unité :2 TRNSFORMTIONS NUCLEIRES I- L noyau atomiqu - L noyau Un noyau st composé d nucléons, qui rassmblnt ls protons t ls nutrons. La rprésntation symboliqu du noyau d un atom st la suivant

Plus en détail

ÉTUDE D UN TRANSFORMATEUR

ÉTUDE D UN TRANSFORMATEUR A 05 PHYS. I ÉCOLE NATIONALE DES PONTS ET CHAUSSÉES, ÉCOLES NATIONALES SUPÉRIEURES DE L'AÉRONAUTIQUE ET DE L'ESPACE, DE TECHNIQUES AVANCÉES, DES TÉLÉCOMMUNICATIONS, DES MINES DE PARIS, DES MINES DE SAINT-ÉTIENNE,

Plus en détail

.., signal (X(t),t R), ex: sinusoïde. .., tout signal est une somme de sinusoïdes. .., filtre passe-bas idéal et filtre à moyenne mobile

.., signal (X(t),t R), ex: sinusoïde. .., tout signal est une somme de sinusoïdes. .., filtre passe-bas idéal et filtre à moyenne mobile Information, Calcul t Communication Lçon 2.2: Echantillonnag d signaux (2èm parti) Information, Calcul t Communication O. Lévêqu Faculté Informatiqu t Communications Modul 2 : Information t Communication

Plus en détail

Chapitre II : Atomes polyélectroniques et Classification Périodique

Chapitre II : Atomes polyélectroniques et Classification Périodique Chapitr II : Atoms polyélctroniqus t Classification Périodiqu Plan : ********************** IV- EVOLUTION DES PROPRIETES PHYSIQUES DES ELEMENTS DANS LA CLASSIFICATION PERIODIQUE... 3 - Enrgi d... 3 a-

Plus en détail

Daniel Abécassis. Année universitaire 2010/2011

Daniel Abécassis. Année universitaire 2010/2011 Danil bécassis. nné univrsitair 00/0 COURS L UE Chimi Physiqu. Chapitr VII : Chimi analytiqu. Calcul du ph VII.. Transormations associés à ds réactions acido-basiqus. Dans c paragraph, nous allons étudir

Plus en détail

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e

Cha h p a i p tr t e r e 2 Rep e r p é r s é en e t n a t t a i t on o n d e d s e f o f n o c n ti t on o s n log o i g qu q e u s e Chapitr 2 Rprésntation ds fonctions logiqus 26..9 Ch 2 : Rprésntation ds fonctions logiqus Réalisation avc ds intrrupturs : a b +5 V Intrruptur a ouvrt (inactif) : a Intrruptur b frmé (actif) : b a Intrruptur

Plus en détail

Interpolation & Intégration Numérique. Laydi M.R. Rédaction provisoire 2004-ENS2M

Interpolation & Intégration Numérique. Laydi M.R. Rédaction provisoire 2004-ENS2M Intrpolation & Intégration Numériqu Laydi M.R. Rédaction provisoir 4-ENSM Sommair I Intrpolation Généralités 7. Exmpl introductif......................... 7. Cadr abstrait............................

Plus en détail

Baccalauréat S Polynésie juin 2012

Baccalauréat S Polynésie juin 2012 Baccalauréat S Polynési juin 1 EXERCICE 1 L plan st rapporté à un rpèr orthonormal On considèr ls points B 1 ; 1 t C 5 ; O ; i ; j. 5 t la droit D d équation y = x. On not f la fonction défini sur R dont

Plus en détail

Loi exponentielle. Rappels sur le chapitre précédent :

Loi exponentielle. Rappels sur le chapitre précédent : TS Loi ponntill Rappls sur l chapitr précédnt : On st parti d la loi uniform sur l intrvall [ ; ] puis sur un intrvall [a ; b] qulconqu (formul donnant la probabilité d un intrvall [ ; ] inclus dans [a

Plus en détail

Etude du circuit RLC. (5,5 points) de plus i = ; on obtient donc : = 0 (1) m /T 2 *cos(2πt/t) Q m* cos(2πt/ T 0 ) = 0 (2)

Etude du circuit RLC. (5,5 points) de plus i = ; on obtient donc : = 0 (1) m /T 2 *cos(2πt/t) Q m* cos(2πt/ T 0 ) = 0 (2) Exrcic I (7 points) Parti A Étud comparativ ds dipôls RL, RC t RLC séri. (1,5 point) Q1 a) Captur + Intrfac + ordinatur ou oscillo à mémoir. Pour visualisr la tnsion u R aux borns du conductur ohmiqu,

Plus en détail

CONCEPTION ET CALCUL DES COUVRES- JOINTS DE CONTINUITE Continuité : cette solution rationalise souvent les sections.

CONCEPTION ET CALCUL DES COUVRES- JOINTS DE CONTINUITE Continuité : cette solution rationalise souvent les sections. CONCEPION E CALCUL DES COUVRES- JOINS DE CONINUIE Continuité : ctt solution rationalis souvnt ls sctions. Pour ls panns on put avoir dux solutions : Continuité réalisé par la pann ll mêm. Par xmpl pann

Plus en détail

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé

Baccalauréat S Antilles-Guyane 22 juin 2015 Corrigé Baccalauréat S Antills-Guyan juin 05 Corrigé A. P. M. E. P. EXERCICE Commun à tous ls candidats 6 POINTS. On put calculr par xmpl ls ordonnés ds points d absciss d cs différnts courbs : f ()=ln =0< g 0,05

Plus en détail

LES ERREURS DE MESURE

LES ERREURS DE MESURE Chapitr 2 LES ERREURS DE MESURE OBJECTIFS Général Fair acquérir à l apprnant ls notions d rrur t d incrtitud. Spécifiqus Connaîtr ls différnts typs d rrurs t d incrtituds, ainsi qu lurs méthods d calcul.

Plus en détail

Correction du bac blanc de mathématiques

Correction du bac blanc de mathématiques Corrction du bac blanc d mathématiqus Exrcic (commun à tous ls candidats, point) Rstitution organisé d connaissancs :. Démontrr par récurrnc l inégalité d Brnoulli : pour tout x >, pour n N, (+x) n +nx.

Plus en détail

Correction feuille TD 3 : probabilités conditionnelles, indépendance

Correction feuille TD 3 : probabilités conditionnelles, indépendance Univrsité d Nic-Sophia Antipolis -L2 MASS - Probabilités Corrction fuill TD 3 : probabilités conditionnlls, indépndanc Exrcic Dans ct xrcic, nous supposons pour simplir qu ls yux d'un êtr humain sont soit

Plus en détail

REVISIONS D ELECTROCINETIQUE ET D ELECTRONIQUE

REVISIONS D ELECTROCINETIQUE ET D ELECTRONIQUE PS ANN SOLA 2011/2012 VSONS D LTONTQ T D LTONQ VSONS D LTONTQ T D LTONQ A- MODLSATON DS DPOLS LNAS SLS. 1. SSTAN NON LNA. La caractéristiqu d'un résistanc non linéair (NL) st corrctmnt rprésnté par la

Plus en détail

I B. avec β= = gain en courant en émetteur commun 1 α. 7 V (silicium) Université Mohammed Khider Biskra A.U. : 2010/2011. Sciences et Techniques

I B. avec β= = gain en courant en émetteur commun 1 α. 7 V (silicium) Université Mohammed Khider Biskra A.U. : 2010/2011. Sciences et Techniques Unirité Moammd Kidr Bikra A.U. : 200/20 Scinc t Tcniqu lctroniqu fondamntal Bkouc K. L TANSSTO BPOLA (BJT) - Définition : L tranitor ipolair t un ourc d courant commandé n courant. Un tranitor rt à amplifir

Plus en détail

APPROCHE DE L ELECTRONIQUE PAR LES FONCTIONS

APPROCHE DE L ELECTRONIQUE PAR LES FONCTIONS APPOHE DE L ELETONIQUE PA LES FONTIONS Manul Avila, Pascal Vrignat, Stéphan Bgot, Flornt Duculty To cit this vrsion: Manul Avila, Pascal Vrignat, Stéphan Bgot, Flornt Duculty. APPOHE DE L ELETONIQUE PA

Plus en détail

Psy1004 Section 9: Plans à plusieurs facteurs. Varia. Rappel: le TP3 est arrivé

Psy1004 Section 9: Plans à plusieurs facteurs. Varia. Rappel: le TP3 est arrivé Psy1004 Sction 9: Plans à plusiurs facturs Plan du cours: Varia 9.0: Idé général ds plans factorils 9.1: Nomnclatur ds plans factoril 9.2: Typ d résultats possibls 9.3: Répartition d la SC t ds DL 9.4:

Plus en détail

Feuille d exercices : Amplificateur linéaire intégré

Feuille d exercices : Amplificateur linéaire intégré Fuill d xrcic : Amplificatur linéair intégré P Colin 2017/2018 1 Intérêt du montag uivur 1. Détrminr la tnion v t l courant d intnité i dan chacun d montag rprénté ur la figur 1. 50 Ω 50 Ω i 12 V i 100

Plus en détail

Presser la touche F5 pour faire apparaître les signets qui favorisent la navigation dans le document.

Presser la touche F5 pour faire apparaître les signets qui favorisent la navigation dans le document. AMPLIFIATEU OPEATIONNEL Prssr la touch F5 pour fair apparaîtr ls signts qui faorisnt la naigation dans l documnt. Sommair Généralités.... Introduction.... Nots sur l'étag différntil Application à l'amplificatur

Plus en détail

Réseaux linéaires en régime sinusoïdal forcé

Réseaux linéaires en régime sinusoïdal forcé Résaux lnéars n rég snusoïdal forcé Vdéoprojcton I Rég snusoïdal forcé ) Défnton Nous étudons l coportnt d un systè lnéar n présnc d un xctaton snusoïdal d pulsaton ω (génératur d tnson snusoïdal). Avc

Plus en détail

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00

Master1 Mesures, Instrumentation et Procédés U.E. M105 : Capteurs, Chaînes de mesure 2 ème session Jeudi 18 Juin H00 Mastr1 Msurs, Instrumntation t Procédés U.E. M15 : Capturs, Chaîns d msur 2 èm sssion Judi 18 Juin 29-9H Anné Univrsitair 28-29 Duré : 2H Documnts t calculatric autorisés Ls 2 partis sont indépndants t

Plus en détail

Atomic Absorption. Spectroscopy

Atomic Absorption. Spectroscopy Chimi Analytiqu Atomic Absorption Spctroscopy Crost Elliott - Frnandz Samul - Tissot Guillaum (Group 2) Univrsité d Gnèv, Scincs II 17 Janvir 29 Résumé L but du laboratoir consist dans un prmir tmps à

Plus en détail

J AUVRAY Systèmes Electroniques LES COMPOSANTS ACTIFS

J AUVRAY Systèmes Electroniques LES COMPOSANTS ACTIFS J AUVRAY Systèms lctroniqus LS OMPOSANTS ATIFS L TRANSISTOR IPOLAIR Il st constitué d 3 couchs d smi-conductur rspctivmnt N P t N (ou PNP).La couch cntral, la bas,st minc, sa largur doit êtr très infériur

Plus en détail

Correction du devoir de vacances Les suites dans plusieurs situations

Correction du devoir de vacances Les suites dans plusieurs situations L.E.G.T.A. L Chsnoy TB2 21-211 D. Blottièr Mathématiqus Corrction du dvoir d vacancs Ls suits dans plusiurs situations Exrcic 1 : Un pas vrs ls fractals On considèr un carré F 1 d côté d longuur 1. Au

Plus en détail

Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points)

Contrôle du mardi 17 mai 2016 (50 min) TS1. Partie 1 (5 points : 1 ) 1 point ; 2 ) 4 points) TS Contrôl du mardi 7 mai 206 (50 min) rénom : Nom : Not :. / 20 arti (5 points : ) point ; 2 ) 4 points) L tmps d incubation, xprimé n hurs, du irus put êtr modélisé par un ariabl aléatoir X suiant un

Plus en détail

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S

Lycée Municipal d Adultes de la ville de Paris Mardi 25 février 2014 BACCALAURÉAT BLANC DE MATHÉMATIQUES. correction SÉRIE S Lycé Municipal d Adults d la vill d Paris Mardi 5 févrir 04 BACCALAURÉAT BLANC DE MATHÉMATIQUES SÉRIE S Duré d l épruv : 4 HEURES Ls calculatrics sont AUTORISÉES corrction obligatoir t spé L candidat doit

Plus en détail

Quelques rappels concernant. LA PROPAGATION DES ONDES ELECTROMAGNETIQUES (par Jacques Verdier, dept GE, INSA Lyon)

Quelques rappels concernant. LA PROPAGATION DES ONDES ELECTROMAGNETIQUES (par Jacques Verdier, dept GE, INSA Lyon) Qulqus rappls onrnant LA PROPAGATION DE ONDE ELECTROMAGNETIQUE (par Jaqus Vrdir, dpt GE, INA Lyon) I- Equations d Maxwll Ells régissnt ls variations ds vturs (, h, d, b ) dans l tmps t dans l spa, ompt

Plus en détail

Correction - TD n 19 - Phénomènes de

Correction - TD n 19 - Phénomènes de Corrction - TD n 19 - Phénomèns d diffusion 1 QCM - Diffusion thrmiqu 1. 1.a) 2. 2.a) 3. 3.c) 2 Théièr Avantags : La théièr st très bin isolé thrmiqumnt, car l sul contact avc la tabl s fait par ls trois

Plus en détail

Théorie des machines thermiques

Théorie des machines thermiques héori ds machins thrmiqus I 7 éfrigératur trithrm, d'après concours Icar 997 ) Définir la notion d machin thrmiqu dans l langag d la thrmodynamiqu ) applr sans démonstration l théorèm d arnot régissant

Plus en détail

Hygiène et Sécurité HS 2

Hygiène et Sécurité HS 2 Hygièn t Sécurité HS 2 Lçon N 7 : Ls Acid, ls Bass t l ph Introduction La plupart ds boissons commrcialisés sont acids. Ls solutions d acid chlorhydriqu sont par aillurs très corrosivs. Par aillurs ls

Plus en détail

Filtres passifs. III 39. Un filtre comportant des résistances R, des capacités C et d autres composants linéaires a pour fonction de transfert

Filtres passifs. III 39. Un filtre comportant des résistances R, des capacités C et d autres composants linéaires a pour fonction de transfert Filtr paif I 4 Amplificatur élctif ) Un amplificatur élctif t rprénté ci-contr Il (t) g (t) (t) comport un ourc d courant commandé par la tnion d ntré, un réitanc, un inductanc t un condnatur ; g t un

Plus en détail

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine.

Au rayon «image et son» d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. EXERCICE 5 points Commun tous ls candidats Au rayon «imag t son» d'un grand magasin, un télévisur t un lctur d DVD sont n promotion pndant un smain. Un prsonn s présnt : T st l'évènmnt : «la prsonn achèt

Plus en détail

2.4 Logarithme Népérien et fonction exponentielle

2.4 Logarithme Népérien et fonction exponentielle 6 2.4 Logarithm Népérin t fonction ponntill Définition 20 (Logarithm Népérin). On appll Logarithm Népérin, noté ln, l uniqu fonction défini sur R + = ]0, + [ qui vaut 0 n = t dont la dérivé sur ]0, + [

Plus en détail

Physique Générale IV, solution série 3

Physique Générale IV, solution série 3 Phsiqu Général IV, solution séri 3 Ercic Du virations d mêm fréqunc, slon du as t prpndiculairs, avc un différnc d phas / : (t) = a sin (ωt) M(t) (t) = sin (ωt + /) = cos (ωt) où a t sont ls amplituds

Plus en détail

Date : Communication technique. L isolement

Date : Communication technique. L isolement Kz5/z& Dat : Communication tchniqu Pag 2 L isolmnt. Problématiqu La prmièr msur d sécurité adopté pour la protction ds utilisaturs contr ls partis sous tnsion st l isolation ds partis activs. Toutfois,

Plus en détail

1 Machine à courant continu

1 Machine à courant continu Dans c problèm nous allons étudir différnts dispositifs ntrant dans la réalisation d un bus élctriqu à conduit partillmnt automatisé. Ls quatr partis du problèm sont indépndants, lls s intérssnt rspctivmnt

Plus en détail

Numérisation. Capteurs avec conditionnement. Actionneurs avec conditionnement. Fig : Principe d un système numérique de contrôle-commande.

Numérisation. Capteurs avec conditionnement. Actionneurs avec conditionnement. Fig : Principe d un système numérique de contrôle-commande. Numérisation A. Définition La figur suivant illustr l princip d un systèm numériu d contrôl-command. Cluici, à gauch, st chargé d contrôlr crtains comportmnts, par xmpl la tmpératur, d un systèm physiu.

Plus en détail

BAC S Liban 2014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points)

BAC S Liban 2014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) BAC S Liban 014 EXERCICE II : LES DÉBUTS DE L ELECTRON EN PHYSIQUE (9 points) L problèm posé par la natur ds «rayons cathodiqus» à la fin du XIX èm siècl fut résolu n 1897 par l'anglais JJ Thomson : il

Plus en détail

Mathématiques Bac Blanc TES du jeudi 28 mars 2013

Mathématiques Bac Blanc TES du jeudi 28 mars 2013 Mathématiqus Bac Blanc TES du judi 8 mars 03 (3 hurs) Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi t la précision ds raisonnmnts ntrront

Plus en détail

Transferts thermiques

Transferts thermiques IUT d St Dnis Départmnt Géni Industril t Maintnanc Modul THERMb (S2) Transfrts thrmiqus corrction ds xrcics Exrcic 1 01 01 01 01 01 01 01 01 01 01 01 isolant Flux thrmiqu00 11 Flux thrmiqu Rsistanc lctriqu

Plus en détail

LES FILTRES. Les Filtres 1 Les filtres 2 Définitions 2

LES FILTRES. Les Filtres 1 Les filtres 2 Définitions 2 LES FILTES Ls Filtrs Ls filtrs Définitions ôl d'un filtr Typs d filtrs Filtrs passifs t actifs abarit d un filtr Ordr d un filtr Filtrs du prmir ordr (rappl) Filtr pass haut Filtr pass bas Filtr pass band

Plus en détail

3.1 La valeur actualisée des profits anticipés

3.1 La valeur actualisée des profits anticipés Univrsité Paris Oust Nantrr La Défns Anné univrsitair 25-26 Licns Economi-Gstion Grands Fonctions Macroéconomiqus Ensignants : Alain Ayong L Kama, Draman Coulibaly, Patricia Crifo, Elna Dimitrscu, Michl

Plus en détail

Hervé BOEGLEN ELECTRONIQUE APPLIQUEE AUX TELECOMMUNICATIONS

Hervé BOEGLEN ELECTRONIQUE APPLIQUEE AUX TELECOMMUNICATIONS Hrvé BOEGLEN ELECTRONIQUE APPLIQUEE AUX TELECOMMUNICATIONS PLAN Introduction Ligns d transmission Adaptation n puissanc Abaqu d Smith Amplification HF à transistor bipolair Bruit t non linéarités Introduction

Plus en détail

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que :

11. Automates finis. Langages réguliers. Automates finis. Automate fini. Un automate fini A est la donnée d un quintuplet (S, Q, d, q 0, F) tel que : Langags régulirs Ls langags régulirs sont ls langags ls plus simpls. Ils sont néanmoins très utilisés n informatiqu.. utomats finis Ils sont obtnus à partir ds langags finis n ffctuant la frmtur par ls

Plus en détail

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 2011 ÉPREUVE E4.1. Étude d un système technique industriel. Pré-étude et modélisation

BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 2011 ÉPREUVE E4.1. Étude d un système technique industriel. Pré-étude et modélisation BREVET DE TECHNICIEN SUPÉRIEUR ÉLECTROTECHNIQUE SESSION 20 ÉPREUVE E4. Étud d un systèm tchniqu industril Duré : 4 Hurs Cofficint : 3 CORRIGÉ ET BARÈME Calculatric à fonctionnmnt autonom autorisé conformémnt

Plus en détail

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES Cours t rcics d mathématiqus FONCTIONS EPONENTIELLES EERCICES CORRIGES Ercic n Résoudr dans ls équations suivants + 7 9 4 4 6 + 6 + 7 ln( ln 8 9 ln Ercic n Détrminr ls racins du polynôm + P + 4 En déduir

Plus en détail

TES- Correction BAC Blanc Février Mathématiques

TES- Correction BAC Blanc Février Mathématiques TES- Corrction BAC Blanc Févrir 0 - Mathématiqus EXERCICE 5 points Commun à tous ls candidats Un ntrpris pint ds jouts. Pour cla, ll utilis dux machins M t M. La machin M pint un quart d la production.

Plus en détail

ETUDE D'UN MONOCHROMATEUR

ETUDE D'UN MONOCHROMATEUR Duré: 3H C T.P. comport 5 pags. ETUDE D'UN MONOCHROMATEUR. MATERIEL / LOGICIELS DOCUMENTATION A VOTRE DISPOSITION Monochromatur + Consol - Captur visibl - Amplificatur variabl UDT 0C - Multimètr - Cart

Plus en détail

امتحانات شھادة الثانویة العامة فرع العلوم العامة مسابقة في الفیزیاء المدة: ثلاث ساعات

امتحانات شھادة الثانویة العامة فرع العلوم العامة مسابقة في الفیزیاء المدة: ثلاث ساعات وزارة التربیة والتعلیم العالي المدیریة العامة للتربیة داي رة الامتحانات امتحانات شھادة الثانویة العامة فرع العلوم العامة مسابقة في الفیزیاء المدة: ثلاث ساعات دورة سنة ۲۰۰٥ العادیة الاسم : الرقم : Ctt épruv,

Plus en détail

TS Fonction exponentielle (2)

TS Fonction exponentielle (2) TS Fonction ponntill () I. Limits d la fonction ponntill n + t n ) Comparaison d t On considèr la fonction f : défini sur. f st dérivabl sur comm différnc d fonctions dérivabls sur. f ' Sign d + Variation

Plus en détail

ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY

ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY ANALYSE MATHEMATIQUE DU DOMAINE OSCILLANT DE LA REACTION BRAY-LIEBHAFSKY Rodica Vilcu *, A. Dobrscu abstract: Ctt publication st consacré à l établissmnt d un modèl adéquat du domain oscillant d la réaction

Plus en détail

Electronique Analogique SUPPORT DE COURS SMP (S5) 2015/2016 PR. RACHID EL BOUAYADI

Electronique Analogique SUPPORT DE COURS SMP (S5) 2015/2016 PR. RACHID EL BOUAYADI Unirsité Mohamd Prmir Faculté Pluridisciplinair d Nador Départmnt d physiqu lctroniqu Analogiqu UPPOT D COU MP (5) 5/6 P. ACHID L OUAYADI lctroniqu Analogiqu OMMAI CHAPIT I : FONCTION D TANFT DIAGAMM D

Plus en détail

Concours d entrée Chimie Durée : 1 heure. Premier Exercice (6 points) Coefficient d ionisation; influence de la dilution

Concours d entrée Chimie Durée : 1 heure. Premier Exercice (6 points) Coefficient d ionisation; influence de la dilution oncours d ntré 004-005 himi Duré : hur Prmir Exrcic (6 points) officint d ionisation; influnc d la dilution I- oncntration d un solution d acid éthanoïqu )-Un litr d un solution d acid éthanoïqu, H H,

Plus en détail

Le transistor bipolaire

Le transistor bipolaire L transistor bipolair L'objt d c documnt st d'apportr ls connaissancs t ls méthods nécssairs à la concption d'un étag amplificatur à bas d transistor. On s limitra à l'étud t à l'utilisation du transistor

Plus en détail

Correction du devoir sur les situations de conjectures

Correction du devoir sur les situations de conjectures Corrction du dvoir sur ls situations d conjcturs no 1. n étant un nombr ntir... a. n + 1 b. n - 1 c. n d. n + 1. (n + 1) f. 5n + (5n + 5) g. 4 possibilités : i. n + 1 t n + 11 ii. n - 1 t n + 9 iii. n

Plus en détail

CHAPITRE 3 : AMPLIFICATEUR OPERATIONNEL

CHAPITRE 3 : AMPLIFICATEUR OPERATIONNEL Unirité d Saoi DEUG Scinc t Tchnologi r mtr Elctroniqu t ntrumntation CHPTE 3 : MPLFCTEU OPETONNEL PEMBULE 24 2 DESCPTON 24 2 PESENTTON 24 22 LMENTTON 24 3 MODELE DE L O DEL 25 3 DEFNTON 25 32 EGMES DE

Plus en détail

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017

Corrigé du baccalauréat S Nouvelle-Calédonie mars 2017 Corrigé du baccalauréat S Nouvll-Calédoni mars 7 EXERCICE Commun à tous ls candidats 5 points On considèr la fonction f défini t dérivabl sur [ ; + [ par f (x)= x x. Parti A. On justifi ls informations

Plus en détail

( ) PROBLEME 1 : ASSOCIATION DE CIRCUITS RC. 6 septembre 2014. I Réponse indicielle d un circuit RC PC*1 / PC*2 / PC DEVOIR SURVEILLE DE PHYSIQUE N 1

( ) PROBLEME 1 : ASSOCIATION DE CIRCUITS RC. 6 septembre 2014. I Réponse indicielle d un circuit RC PC*1 / PC*2 / PC DEVOIR SURVEILLE DE PHYSIQUE N 1 P* / P* / P DEVOI SUVEILLE DE PHYSIQUE N 6 sptmbr 4 POBLEME : ASSOIATION DE IUITS On analys, à laid dun oscilloscop, l circuit ci-contr comportant un génératur d tnsion E,r ( ), rprésnté dans l cadr pointillé,

Plus en détail

Exercice 1.sur 10 points Commun à tous les candidats

Exercice 1.sur 10 points Commun à tous les candidats Trminal S Bac Blanc d mathématiqus : duré 4 h Mardi 3 mars 205 Ls calculatrics sont autorisés (mais aucun formulair prsonnl). La qualité d la rédaction, la clarté d la copi,la précision ds raisonnmnts

Plus en détail

, x étant strictement positif. 5ln( x ) + 1

, x étant strictement positif. 5ln( x ) + 1 Lycé Dnis-d-Rougmont Eamn d Maturité Nuchâtl t Flurir Sssion 008 Mathématiqus nivau Problèm (poids 3) 5 a) Résoudr l équation différntill y' + y =, étant strictmnt positif 5ln( ) + On considèr la fonction

Plus en détail

1 ère L Exercices de statistiques

1 ère L Exercices de statistiques 1 èr L Exrcics d statistiqus 1 Détrminr la médian d chacun ds séris suivants n rédigant a) b) x i 8 10 1 15 x i 150 160 140 130 n i 1 4 3 n i 1000 100 1100 1050 Pour chaqu séri indiqué, calculr, sans utilisr

Plus en détail