Le théorème de Pythagore
|
|
|
- Théodore Lussier
- il y a 9 ans
- Total affichages :
Transcription
1 Le théorème de Pythgore représenttion à l thédrle de Chrtres Vu pr Rphel Pythgore mthémtiien gre vers 500 vnt JC
2 Le théorème de Pythgore
3 Voulire Dns un tringle retngle, l hypoténuse est le ôté opposé à l ngle droit. A B [BC] est l hypoténuse C du tringle ABC
4 Démonstrtion On qutre tringles retngles identiques
5 On dispose les qutre tringles retngles dns un rré
6 On otient un nouveu rré J I JOLI O L
7 L ire de JOLI est : J I ² O L
8 On dispose ensuite les qutre tringles retngles dns le même rré d une utre fçon.
9 On otient deux nouveux rrés : A J D E O OCRE JADE R C
10 L ire de OCRE est : A J D E O ² R C
11 L ire de JADE est : A J D E O ² R C
12 J O L I J A D E O C R L ire de JOLI est égle à l somme des ires de OCRE et de JADE ² ² ² +
13 On peut don érire pour le tringle 2 = Cette églité est onnue depuis l ntiquité sous le nom de : théorème de Pythgore
14 Le théorème de Pythgore Si un tringle est retngle, lors le rré de l longueur de l hypoténuse est égl à l somme des rrés des longueurs des deux utres ôtés. hypoténuse
15 Le théorème de Pythgore un utre énoné Si ABC est un tringle retngle A lors BC² = AB² + AC² A B C! Le théorème de Pythgore ne s pplique qu ux tringles retngles.
16 ABC est un tringle retngle en A tel que AB = 3m et AC = 4m. Cluler BC 1) On fit un dessin 2) B 3 A 4 C On un tringle retngle, on onnît 2 longueurs, on herhe l 3ème, on utilise don le théorème de Pythgore
17 ABC est un tringle retngle en A tel que AB = 3m et AC = 4m. Cluler BC 1) On fit un dessin 2) On pplique le théorème de Pythgore : On sit que ABC est un tringle retngle en A don BC² = CA² + AB² (on érit l propriété ve des lettres) BC² = 4² + 3²(on remple les lettres pr les longueurs onnues) BC² = (on lule) BC² = 25 BC = 25 (25 est le rré de 5) BC = 5 m (5 > 4, [BC)] est l hypoténuse, est don le plus grnd ôté, le résultt est vrisemlle) B 3 A (on érit l vleur exte de BC) 4 C
18 DEF est un tringle retngle en D tel que DE = 5m et DF = 6m. Cluler EF 1) On fit un dessin 2) On un tringle retngle, on onnît 2 longueurs, on herhe l 3ème, on utilise don le théorème de Pythgore E 5 D 6 F
19 DEF est un tringle retngle en D tel que DE = 5m et DF = 6m. Cluler EF 1) On fit un dessin 2) On pplique le théorème de Pythgore : On sit que DEF est un tringle retngle en D don EF² = ED² + DF² (on érit l propriété ve des lettres) EF² = 5² + 6²(on remple les lettres pr les longueurs onnues) EF² = (on lule) EF² = 61 (on érit l vleur exte de BC) EF = 61 (61 est le rré du nomre qui s érit 61 7,8) EF ~ 7,8 m ~ (7,8 > 6, [EF] est l hypoténuse, est don le plus grnd ôté, le résultt est vrisemlle) E 5 D 6 F
20 On pplique le théorème de Pythgore : On sit que ABC est un tringle retngle en B don AC² = AB² + BC² AC² = 8² + 6² AC² = AC² = 100 AC = 100 AC = 10 m Ex1 ABC est un tringle retngle en B tel que AB = 8m et BC = 6m. Cluler AC A 8 B 6 C
21 GHI est un tringle retngle en I tel que GI = 2m et GH = 3m. Cluler IH 1) On fit un dessin 2) G I H On un tringle retngle, on onnît 2 longueurs, on herhe l 3ème, on utilise don le théorème de Pythgore 2 3
22 GHI est un tringle retngle en I tel que GI = 2m et GH = 3m. Cluler IH 1) On fit un dessin I H 2) On pplique le théorème de Pythgore : On sit que GHI est un tringle retngle en I don GH² = GI² + IH² (on érit l propriété ve des lettres) 3² = 2² + IH²(on remple les lettres pr les longueurs onnues) 9 = 4 + IH² (on trnsforme l églité pour isoler IH²) IH² = 9-4 (pour trouver IH² il fut soustrire 9 et 4 ) IH² = 5 IH = 5 (5 est le rré du nomre qui s érit 5 ~ 2,2) IH ~ 2,2 m (2,2 < 3, [IH] est l un des ôtés de l ngle droit, il est don plus petit que l hypoténuse, le résultt est vrisemlle) G 2 3
23 On pplique le théorème de Pythgore : T On sit que STU est un tringle retngle en T don SU² = ST² + TU² 6² = 5² + TU² 36 = 25 + TU² TU² = TU² = 11 TU = 11 TU 3,3 m ~ EX 2.STU est un tringle retngle en T tel que ST = 5m et SU = 6m. Cluler TU S 5 6 U
24 à suivre
25 L réiproque du théorème de Pythgore Si, dns un tringle, le rré de l longueur du plus grnd ôté est égl à l somme des rrés des longueurs des deux utres ôtés lors e tringle est retngle et l ngle droit est l ngle opposé u plus grnd ôté.
26 L réiproque du théorème de Pythgore un utre énoné Si, dns un tringle ABC on BC² = AB² + AC² lors le tringle ABC est retngle en A.! à l présenttion des luls
27 Le tringle ABC tel que AB=75m, BC=45m et AC=60m est-il un tringle retngle? 1) On repère le ôté le plus long: est [AB] 2) On lule le rré de l longueur de [AB] AB² = 75² = ) On onstte l églité : AB² = BC² + AC² 3) On lule l somme des rrés des longueurs des 2 utres ôtés BC² + AC² = 45² + 60² 5) On ite l propriété ppliquée pour onlure : = = d près l réiproque du théorème de Pythgore le tringle ABC est retngle en C.
28 Le tringle DEF tel que DE=11m, EF=15m et DF=9m est-il un tringle retngle? 1) On repère le ôté le plus long: est [EF] 2) On lule le rré de l longueur de [EF] EF² = 15² = 225 4) On onstte qu il n y ps églité : 5) On peut ffirmer que : EF² = DE² + DF² 3) On lule l somme des rrés des longueurs des 2 utres ôtés DE² + DF² = 11² + 9² = = 202 le tringle ABC n est ps un tringle retngle.
29 L 7,5m 2) On repère le ôté le plus long: est [EL] 3) On lule le rré de l longueur de [EL] EL² = 8,5² = 72,25 8,5m 4m 5) On onstte l églité : S E 1) On préise le tringle dns lequel on trville : 4) On lule l somme des rrés des longueurs des 2 utres ôtés SE² + SL² = 4² + 7,5² = ,25 = 72,25 EL² = SE² + SL² 6) On ite l propriété ppliquée pour onlure : d près l réiproque du théorème de Pythgore le tringle SEL est retngle en S, lors (SE) (SL). O A-t-on (SE) (SL)? Dns le tringle SEL, SE=4, SL=7,5 et EL=8,5.
30 fin
Techniques d analyse de circuits
Chpitre 3 Tehniques d nlyse de iruits Ce hpitre présente différentes méthodes d nlyse de iruits. Ces méthodes permettent de simplifier l nlyse de iruits ontennt plusieurs éléments. Bien qu on peut résoudre
TOUT CE QU IL FAUT SAVOIR POUR LE BREVET
TOUT E QU IL FUT SVOIR POUR LE REVET NUMERIQUE / FONTIONS eci n est qu un rappel de tout ce qu il faut savoir en maths pour le brevet. I- Opérations sur les nombres et les fractions : Les priorités par
Synthèse de cours (Terminale S) Calcul intégral
Synthèse de cours (Terminle S) Clcul intégrl Intégrle d une onction continue positive sur un intervlle [;] Dns cette première prtie, on considère une onction continue positive sur un intervlle [ ; ] (
Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites
I Droites perpendiculaires Lorsque deux droites se coupent, on dit qu elles sont sécantes Les droites (d 1 ) et (d 2 ) sont sécantes en A Le point A est le point d intersection des 2 droites Lorsque deux
Intégrale et primitives
Chpitre 5 Intégrle et primitives 5. Ojetif On herhe dns e hpitre à onstruire l opérteur réiproue de l opérteur de dérivtion. Les deux uestions suivntes sont lors nturelles. Question : Soit f une pplition
L'algèbre de BOOLE ou algèbre logique est l'algèbre définie pour des variables ne pouvant prendre que deux états.
ciences Industrielles ystèmes comintoires Ppnicol Roert Lycée Jcques Amyot I - YTEME COMBINATOIRE A. Algère de Boole. Vriles logiques: Un signl réel est une grndeur physique en générl continue, on ssocie
Si deux droites sont parallèles à une même troisième. alors les deux droites sont parallèles entre elles. alors
N I) Pour démontrer que deux droites (ou segments) sont parallèles (d) // (d ) (d) // (d ) deux droites sont parallèles à une même troisième les deux droites sont parallèles entre elles (d) // (d) deux
Théorème de Poincaré - Formule de Green-Riemann
Chpitre 11 Théorème de Poincré - Formule de Green-Riemnn Ce chpitre s inscrit dns l continuité du précédent. On vu à l proposition 1.16 que les formes différentielles sont bien plus grébles à mnipuler
Chapitre 2 Le problème de l unicité des solutions
Université Joseph Fourier UE MAT 127 Mthémtiques nnée 2009-2010 Chpitre 2 Le prolème de l unicité des solutions 1 Le prolème et quelques réponses : 1.1 Un exemple Montrer que l éqution différentielle :
Baccalauréat S Asie 19 juin 2014 Corrigé
Bcclurét S Asie 9 jui 24 Corrigé A. P. M. E. P. Exercice Commu à tous les cdidts 4 poits Questio - c. O peut élimier rpidemet les réposes. et d. cr les vecteurs directeurs des droites proposées e sot ps
Le théorème de Thalès et sa réciproque
Le théorème de Thalès et sa réciproque I) Agrandissement et Réduction d une figure 1) Définition : Lorsque toutes les longueurs d une figure F sont multipliées par un même nombre k on obtient une autre
1S Modèles de rédaction Enoncés
Par l équipe des professeurs de 1S du lycée Parc de Vilgénis 1S Modèles de rédaction Enoncés Produit scalaire & Corrigés Exercice 1 : définition du produit scalaire Soit ABC un triangle tel que AB, AC
Autoroute A16. Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) A16- A16+
01 / 24 0 0!( 10 10 20 20 02 / 24 20 20 30 30 40 40 Système de Repérage de Base (SRB) - Localisation des Points de repère (PR) 03 / 24 40 40 50 50 60 60 60 60 04 / 24 70 70 80 80 80 80 Système de Repérage
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé.
Enoncé et corrigé du brevet des collèges dans les académies d Aix- Marseille, Montpellier, Nice Corse et Toulouse en 2000. Énoncé. I- ACTIVITES NUMERIQUES (12 points) Exercice 1 (3 points) On considère
LE PRODUIT SCALAIRE ( En première S )
LE PRODUIT SCALAIRE ( En première S ) Dernière mise à jour : Jeudi 4 Janvier 007 Vincent OBATON, Enseignant au lycée Stendhal de Grenoble ( Année 006-007 ) 1 Table des matières 1 Grille d autoévaluation
Séquence 8. Probabilité : lois à densité. Sommaire
Séquence 8 Proilité : lois à densité Sommire. Prérequis 2. Lois de proilité à densité sur un intervlle 3. Lois uniformes 4. Lois exponentielles 5. Synthèse de l séquence Dns cette séquence, on introduit
STI2D Logique binaire SIN. L' Algèbre de BOOLE
L' Algère de BOOLE L'lgère de Boole est l prtie des mthémtiques, de l logique et de l'électronique qui s'intéresse ux opértions et ux fonctions sur les vriles logiques. Le nom provient de George Boole.
Correction : E = Soit E = -1,6. F = 12 Soit F = -6 3 + 45. y = 11. et G = -2z + 4y G = 2 6 = 3 G = G = -2 5 + 4 11
Correction : EXERCICE : Calculer en indiquant les étapes: (-6 +9) ( ) ( ) B = -4 (-) (-8) B = - 8 (+ 6) B = - 8 6 B = - 44 EXERCICE : La visite médicale Calcul de la part des élèves rencontrés lundi et
2.4 Représentation graphique, tableau de Karnaugh
2 Fonctions binaires 45 2.4 Représentation graphique, tableau de Karnaugh On peut définir complètement une fonction binaire en dressant son tableau de Karnaugh, table de vérité à 2 n cases pour n variables
Planche n o 22. Fonctions de plusieurs variables. Corrigé
Planche n o Fonctions de plusieurs variables Corrigé n o : f est définie sur R \ {, } Pour, f, = Quand tend vers, le couple, tend vers le couple, et f, tend vers Donc, si f a une limite réelle en, cette
I. RACINE CARREE D UN NOMBRE POSITIF : La racine carrée d un nombre positif a est le nombre positif noté a dont le carré est a.
OURS 3 EME RINES RREES PGE 1/1 ONTENUS OMPETENES EXIGILES OMMENTIRES alculs élémentaires sur les radicaux Racine carrée d un nombre positif Savoir que si a désigne un nombre positif, a est le nombre positif
Correction de l épreuve CCP 2001 PSI Maths 2 PREMIÈRE PARTIE ) (
Correction de l épreuve CCP PSI Mths PREMIÈRE PARTIE I- Soit t u voisinge de, t Alors ϕt t s = ϕt ρt s ρs Pr hypothèse, l fonction ϕt ϕt est lorsque t, il en est donc de même de ρt s ρt s ρs cr ρ s est
Chapitre 11 : L inductance
Chpitre : inductnce Exercices E. On donne A πr 4π 4 metn N 8 spires/m. () Selon l exemple., µ n A 4π 7 (8) 4π 4 (,5) 5 µh (b) À prtir de l éqution.4, on trouve ξ ξ 4 3 5 6 6,3 A/s E. On donne A πr,5π 4
AC AB. A B C x 1. x + 1. d où. Avec un calcul vu au lycée, on démontre que cette solution admet deux solutions dont une seule nous intéresse : x =
LE NOMBRE D OR Présentation et calcul du nombre d or Euclide avait trouvé un moyen de partager en deu un segment selon en «etrême et moyenne raison» Soit un segment [AB]. Le partage d Euclide consiste
315 et 495 sont dans la table de 5. 5 est un diviseur commun. Leur PGCD n est pas 1. Il ne sont pas premiers entre eux
Exercice 1 : (3 points) Un sac contient 10 boules rouges, 6 boules noires et 4 boules jaunes. Chacune des boules a la même probabilité d'être tirée. On tire une boule au hasard. 1. Calculer la probabilité
L AIDE AUX ATELIERS D ARTISTES :
RAPPORT DAVID LANGLOIS-MALLET SOUS LA COORDINATION DE CORINNE RUFET, CONSEILLERE REGIONALE D ILE DE FRANCE L AIDE AUX ATELIERS D ARTISTES : PROBLÉMATIQUES INDIVIDUELLES, SOLUTIONS COLLECTIVES? DE L ATELIER-LOGEMENT
Corrigé du baccalauréat S Pondichéry 12 avril 2007
Corrigé du baccalauréat S Pondichéry 1 avril 7 EXERCICE 1 Commun à tous les candidats 4 points 1 a Les vecteurs AB et AC ont pour coordonnées AB ; ; ) et AC 1 ; 4 ; 1) Ils ne sont manifestement pas colinéaires
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
# $!%$!&$'(!(!()! $(! *)#%!"$'!+!%(!**&%',&-#.*!* /!01+'$*2333
!" # $!%$!&$'(!(!()! $(! *)#%!"$'!+!%(!**&%',&-#.*!* #$-*!%-!!*!%!#!+!%#'$ /!1+'$*2333 $!)! $(!*!" /4 5 $." 6 $-*(!% 6 '##$! $ 6 '##$! $ 6,'+%'! $ 6,'+%'! $ +!,'+%'! $ 65 %7- !""!# $ %! & '%! "!# (
Priorités de calcul :
EXERCICES DE REVISION POUR LE PASSAGE EN QUATRIEME : Priorités de calcul : Exercice 1 : Calcule en détaillant : A = 4 + 5 6 + 7 B = 6 3 + 5 C = 35 5 3 D = 6 7 + 8 E = 38 6 3 + 7 Exercice : Calcule en détaillant
* très facile ** facile *** difficulté moyenne **** difficile ***** très difficile I : Incontournable T : pour travailler et mémoriser le cours.
Eo7 Fonctions de plusieurs variables Eercices de Jean-Louis Rouget Retrouver aussi cette fiche sur wwwmaths-francefr * très facile ** facile *** difficulté moenne **** difficile ***** très difficile I
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements
3 ème 2 DÉVELOPPEMENT FACTORISATIONS ET IDENTITÉS REMARQUABLES 1/5 1 - Développements Développer une expression consiste à transformer un produit en une somme Qu est-ce qu une somme? Qu est-ce qu un produit?
FONDATION CLEMENTINE ET MAURICE ANTILLE
FONDATION CLEMENTINE ET MAURICE ANTILLE Règlement d ttriution de ourses et de prêts d études et de formtion du déemre 006 Artile premier Ojet et hmp d pplition Le présent règlement est étli en pplition
LES ESCALIERS. Du niveau du rez-de-chaussée à celui de l'étage ou à celui du sous-sol.
LES ESCALIERS I. DÉF I NIT I O N Un escalier est un ouvrage constitué d'une suite de marches et de paliers permettant de passer à pied d'un niveau à un autre. Ses caractéristiques dimensionnelles sont
Activités numériques [13 Points]
N du candidat L emploi de la calculatrice est autorisé. Le soin, la qualité de la présentation entrent pour 2 points dans l appréciation des copies. Les résultats seront soulignés. La correction est disponible
Algèbre binaire et Circuits logiques (2007-2008)
Université Mohammed V Faculté des Sciences Département de Mathématiques et Informatique Filière : SMI Algèbre binaire et Circuits logiques (27-28) Prof. Abdelhakim El Imrani Plan. Algèbre de Boole 2. Circuits
Algorithmes sur les mots (séquences)
Introduction Algorithmes sur les mots (séquences) Algorithmes sur les mots (textes, séquences, chines de crctères) Nomreuses pplictions : ses de données iliogrphiques ioinformtique (séquences de iomolécules)
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE
CONJUGUÉ D'UN POINT PAR RAPPORT À UN TRIANGLE Jean Luc Bovet, Auvernier L'article de Monsieur Jean Piquerez (Bulletin de la SSPMP No 86), consacré aux symédianes me paraît appeler une généralisation. En
Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa microstructure.
Étude du comportement mécanique du plâtre pris en relation avec sa microstructure Sylvain Meille To cite this version: Sylvain Meille. Étude du comportement mécanique du plâtre pris en relation avec sa
Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire
Étude des formes de pratiques de la gymnastique sportive enseignées en EPS à l école primaire Stéphanie Demonchaux To cite this version: Stéphanie Demonchaux. Étude des formes de pratiques de la gymnastique
MATHEMATIQUES GRANDEURS ET MESURES
FICHE GM.01 Objectif : Choisir la bonne unité de mesure Pour chaque objet, choisis entre les trois propositions celle qui te paraît la plus juste : ta règle ton cahier une coccinelle ta trousse la Tour
Géométrie dans l espace Produit scalaire et équations
Chapitre 11. 2ème partie Géométrie dans l espace Produit scalaire et équations Terminale S Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES 2ème partie Produit scalaire Produit scalaire
EVALUATIONS FIN CM1. Mathématiques. Livret élève
Les enseignants de CM1 de la circonscription de METZ-SUD proposent EVALUATIONS FIN CM1 Mathématiques Livret élève Circonscription de METZ-SUD page 1 NOMBRES ET CALCUL Exercice 1 : Écris en chiffres les
Séquence 2. Repérage dans le plan Équations de droites. Sommaire
Séquence Repérage dans le plan Équations de droites Sommaire 1 Prérequis Repérage dans le plan 3 Équations de droites 4 Synthèse de la séquence 5 Exercices d approfondissement Séquence MA0 1 1 Prérequis
Cours d Analyse. Fonctions de plusieurs variables
Cours d Analyse Fonctions de plusieurs variables Licence 1ère année 2007/2008 Nicolas Prioux Université de Marne-la-Vallée Table des matières 1 Notions de géométrie dans l espace et fonctions à deux variables........
Triangles isométriques Triangles semblables
Triangles isométriques Triangles semblables Les transformations du plan ont permis de dégager des propriétés de figures superposables. Le théorème de Thalès a permis de s initier aux notions de réduction
Influence du milieu d étude sur l activité (suite) Inhibition et activation
Influence du milieu d étude sur l ctivité (suite) Inhibition et ctivtion Influence de l tempérture Influence du ph 1 Influence de l tempérture Si on chuffe une préprtion enzymtique, l ctivité ugmente jusqu
Turbine hydraulique Girard simplifiée pour faibles et très faibles puissances
Turbine hydrulique Girrd simplifiée pour fibles et très fibles puissnces Prof. Ing. Zoltàn Hosszuréty, DrSc. Professeur à l'université technique de Kosice Les sites hydruliques disposnt de fibles débits
Seconde MESURER LA TERRE Page 1 MESURER LA TERRE
Seconde MESURER LA TERRE Page 1 TRAVAUX DIRIGES MESURER LA TERRE -580-570 -335-230 +400 IX - XI siècles 1670 1669/1716 1736/1743 THALES (-à Milet) considère la terre comme une grande galette, dans une
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES
CHAPITRE 2 SYSTEMES D INEQUATIONS A DEUX INCONNUES Exercice 1 Dans un repère orthonormé on donne les points A( 1;2 ), ( 5; 6) et les droites a 3x + 2y = 5 et b 4x 3y + 10 = 0. B, 1 C 5; 2, 1 D 7; 2 1)
La spirale de Théodore bis, et la suite «somme=produit».
Etde d e vrite de l spirle de Théodore, dot issce à e site dot les sommes prtielles sot égles x prodits prtiels. Mots clés : spirle de Théodore, théorème de Pythgore, site, série, polyôme. L spirle de
PARTIE NUMERIQUE (18 points)
4 ème DEVOIR COMMUN N 1 DE MATHÉMATIQUES 14/12/09 L'échange de matériel entre élèves et l'usage de la calculatrice sont interdits. Il sera tenu compte du soin et de la présentation ( 4 points ). Le barème
Les Angles. I) Angles complémentaires, angles supplémentaires. 1) Angles complémentaires. 2 Angles supplémentaires. a) Définition.
Les Angles I) Angles complémentaires, angles supplémentaires 1) Angles complémentaires Deux angles complémentaires sont deux angles dont la somme des mesures est égale à 90 41 et 49 41 49 90 donc Les angles
À travers deux grandes premières mondiales
Les éco-i ovatio s, le ouvel a e st at gi ue d ABG À travers deux grandes premières mondiales - éco-mfp, premier système d impression à encre effaçable - e-docstation, premier système d archivage intégré
Séquence 10. Géométrie dans l espace. Sommaire
Séquence 10 Géométrie dans l espace Sommaire 1. Prérequis 2. Calculs vectoriels dans l espace 3. Orthogonalité 4. Produit scalaire dans l espace 5. Droites et plans de l espace 6. Synthèse Dans cette séquence,
TUBES ET PROFILS CREUX
TUBES GAZ SOUDÉS SÉRIE LÉGÈRE DITS «TARIF 1 et 2» Norme de référene : NF EN 10255 (ex NF A 49-145) Nune : S195T Étt de surfe : noir ou glvnisé ÉPAISSEUR DÉNOMINATION en poues Tubes noirs lisses MASSE LINÉIQUE
Représentation géométrique d un nombre complexe
CHAPITRE 1 NOMBRES COMPLEXES 1 Représentation géométrique d un nombre complexe 1. Ensemble des nombres complexes Soit i le nombre tel que i = 1 L ensemble des nombres complexes est l ensemble des nombres
Déroulement de l épreuve de mathématiques
Dérouleet de l épreuve de thétiques MATHÉMATIQUES Extrit de l ote de service 2012-029 du 24 février 2012 (BOEN 13 du 29-3-2012) Durée de l épreuve : 2 heures Nture de l épreuve : écrite pr le socle cou
Tout ce qu il faut savoir en math
Tout ce qu il fut svoir en mth 1 Pourcentge Prendre un pourcentge t % d un quntité : t Clculer le pourcentge d une quntité pr rpport à une quntité b : Le coefficient multiplicteur CM pour une ugmenttion
Calcul matriciel. Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.
1 Définitions, notations Calcul matriciel Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes. On utilise aussi la notation m n pour le
Chapitre 3: TESTS DE SPECIFICATION
Chapitre 3: TESTS DE SPECIFICATION Rappel d u c h api t r e pr é c é d en t : l i de n t i f i c a t i o n e t l e s t i m a t i o n de s y s t è m e s d é q u a t i o n s s i m u lt a n é e s r e p o
Deux disques dans un carré
Deux disques dans un carré Table des matières 1 Fiche résumé 2 2 Fiche élève Seconde - version 1 3 2.1 Le problème............................................... 3 2.2 Construction de la figure avec geogebra...............................
COACHER VOS COLLABORATEURS
59000 LILLE COCHER VOS COLLBORTEURS Pourquoi POUR coacher LE MONDE vos UTO collaborateurs? 1. Le coaching : de quoi s agit-il? 2. SOLUTIONS Quel RH déroulement pour une action de coaching? 3. Quels comportements
I. Ensemble de définition d'une fonction
Chapitre 2 Généralités sur les fonctions Fonctions de références et fonctions associées Ce que dit le programme : Étude de fonctions Fonctions de référence x x et x x Connaître les variations de ces deux
logiciels Reconnus d Intérêts Pédagogiques, encyclopédies, dictionnaires, manuels scolaires,... ;
Les m od es d u tilisation d e l A ctiv board et d A ctiv stu d io M od e 1 A ctiv board, La palette g raph iq u e et sa sou ris...p2 A ctiv stu d io O u tils et g rand s principes...p3 M od e 2 A ctiv
Corrigé du baccalauréat S Asie 21 juin 2010
Corrigé du baccalauréat S Asie juin 00 EXERCICE Commun à tous les candidats 4 points. Question : Le triangle GBI est : Réponse a : isocèle. Réponse b : équilatéral. Réponse c : rectangle. On a GB = + =
Mathématiques I Section Architecture, EPFL
Examen, semestre d hiver 2011 2012 Mathématiques I Section Architecture, EPFL Chargé de cours: Gavin Seal Instructions: Mettez votre nom et votre numéro Sciper sur chaque page de l examen. Faites de même
1 radian. De même, la longueur d un arc de cercle de rayon R et dont l angle au centre a pour mesure α radians est α R. R AB =R.
Angles orientés Trigonométrie I. Préliminaires. Le radian Définition B R AB =R C O radian R A Soit C un cercle de centre O. Dire que l angle géométrique AOB a pour mesure radian signifie que la longueur
O, i, ) ln x. (ln x)2
EXERCICE 5 points Commun à tous les candidats Le plan complee est muni d un repère orthonormal O, i, j Étude d une fonction f On considère la fonction f définie sur l intervalle ]0; + [ par : f = ln On
Fonctions homographiques
Seconde-Fonctions homographiques-cours Mai 0 Fonctions homographiques Introduction Voir le TP Géogébra. La fonction inverse. Définition Considérons la fonction f définie par f() =. Alors :. f est définie
Exprimez-vous lors du choix de vos pneus:
xprimez-vous lors du choix de vos pneus: xigez des pneus sûrs, ÉnergÉtiquement efficaces et silencieux! 72 d 72 d POUR MILLURS PNUS SUR LS ROUTS SUISSS S exprimer lors du choix des pneus? onner son avis
Comment évaluer la qualité d un résultat? Plan
Comment évaluer la qualité d un résultat? En sienes expérimentales, il n existe pas de mesures parfaites. Celles-i ne peuvent être qu entahées d erreurs plus ou moins importantes selon le protoole hoisi,
Initiation à la Mécanique des Fluides. Mr. Zoubir HAMIDI
Initiation à la Mécanique des Fluides Mr. Zoubir HAMIDI Chapitre I : Introduction à la mécanique des fluides 1 Introduction La mécanique des fluides(mdf) a pour objet l étude du comportement des fluides
Université Paris-Dauphine DUMI2E. UFR Mathématiques de la décision. Notes de cours. Analyse 2. Filippo SANTAMBROGIO
Université Pris-Duphine DUMI2E UFR Mthémtiques de l décision Notes de cours Anlyse 2 Filippo SANTAMBROGIO Année 2008 2 Tble des mtières 1 Optimistion de fonctions continues et dérivbles 5 1.1 Continuité........................................
Plan du cours : électricité 1
Semestre : S2 Module Physique II 1 Electricité 1 2 Optique géométrique Plan du cours : électricité 1 Partie A : Electrostatique (discipline de l étude des phénomènes liés aux distributions de charges stationnaires)
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES
I - PUISSANCE D UN POINT PAR RAPPORT A UN CERCLE CERCLES ORTHOGONAUX POLES ET POLAIRES Théorème - Définition Soit un cercle (O,R) et un point. Une droite passant par coupe le cercle en deux points A et
Problème 1 : applications du plan affine
Problème 1 : applications du plan affine Notations On désigne par GL 2 (R) l ensemble des matrices 2 2 inversibles à coefficients réels. Soit un plan affine P muni d un repère (O, I, J). Les coordonnées
Amphi 3: Espaces complets - Applications linéaires continues
Amphi 3: Espaces complets - Applications linéaires continues Département de Mathématiques École polytechnique Remise en forme mathématique 2013 Suite de Cauchy Soit (X, d) un espace métrique. Une suite
Toyota Assurances Toujours la meilleure solution
Toyot Assurnces Toujours l meilleure solution De quelle ssurnce vez-vous besoin? Vous roulez déjà en Toyot ou vous ttendez s livrison. Votre voiture est neuve ou d occsion. Vous vlez les kilomètres ou
Module 2 : Déterminant d une matrice
L Mth Stt Module les déterminnts M Module : Déterminnt d une mtrice Unité : Déterminnt d une mtrice x Soit une mtrice lignes et colonnes (,) c b d Pr définition, son déterminnt est le nombre réel noté
Exo7. Calculs de déterminants. Fiche corrigée par Arnaud Bodin. Exercice 1 Calculer les déterminants des matrices suivantes : Exercice 2.
Eo7 Calculs de déterminants Fiche corrigée par Arnaud Bodin Eercice Calculer les déterminants des matrices suivantes : Correction Vidéo ( ) 0 6 7 3 4 5 8 4 5 6 0 3 4 5 5 6 7 0 3 5 4 3 0 3 0 0 3 0 0 0 3
CHAPITRE VIII : Les circuits avec résistances ohmiques
CHAPITRE VIII : Les circuits avec résistances ohmiques VIII. 1 Ce chapitre porte sur les courants et les différences de potentiel dans les circuits. VIII.1 : Les résistances en série et en parallèle On
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques
La géométrie du triangle III IV - V Cercles remarquables - Lieux géométriques - Relations métriques III. Cercles 1. Cercle d'euler 2. Droite d'euler 3. Théorème de Feuerbach 4. Milieux des segments joignant
Audit 360. Votre Data Center peut-il vraiment répondre à vos objectifs? À quelles conditions? Avec quelles priorités? Pour quels budgets?
Votre Data Center peut-il vraiment répondre à vos objectifs? À quelles conditions? Avec quelles priorités? Pour quels budgets? Permet de s affranchir d éventuels problèmes liés aux infrastructures techniques,
Electrovanne double Dimension nominale Rp 3/8 - Rp 2 DMV-D/11 DMV-DLE/11
Electrovnne double Dimension nominle 3/8 - DMV-D/11 DMV-DLE/11 7.30 M Edition 11.13 Nr. 223 926 1 6 Technique L électrovnne double DUNGS DMV intère deux électrovnnes dns un même bloc compct : - vnnes d
Plan. 1. La planification d un d 2. Méthodes et techniques de planification 3. Conclusion. D. Leclet - 2006-2007
Plan 1. La planification d un d projet 2. Méthodes et techniques de planification 3. Conclusion 1 1. La planification d un d projet 1.1 Découpage chronologique du projet 1.2 Ordonnancement des tâchest
COMPARAISON MULTIPLICATIVE DE GRANDEURS. schéma CE2 CM1 CM2
référé ou orne supérieure référent ou orne inférieure COMPARAISON MULTIPLICATIVE DE GRANDEURS shém CE2 CM1 CM2 x : x : Il y 5 fois plus e hises à l ntine que ns l lsse. Il y en 25 ns l lsse. Comien y -t-il
Angles orientés et trigonométrie
Chapitre Angles orientés et trigonométrie Ce que dit le programme : CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale.
Philippe-Didier GAUTHIER
-Didier Ingénierie, Management, Administration en Éducation et Formation 1 - Parcours professionnel 2 - Projet professionnel 3 - Missions et interventions Portfolio Numérique : - Didier Parcours professionnel
Exercices de géométrie
Exercices de géométrie Stage olympique de Bois-le-Roi, avril 2006 Igor Kortchemski Exercices vus en cours Exercice 1. (IMO 2000) Soient Ω 1 et Ω 2 deux cercles qui se coupent en M et en N. Soit la tangente
Chapitre 6. Fonction réelle d une variable réelle
Chapitre 6 Fonction réelle d une variable réelle 6. Généralités et plan d étude Une application de I dans R est une correspondance entre les éléments de I et ceu de R telle que tout élément de I admette
LES DIFFERENTS TYPES DE MESURE
LES DIFFERENTS TYPES DE MESURE Licence - Statistiques 2004/2005 REALITE ET DONNEES CHIFFREES Recherche = - mesure. - traduction d une réalité en chiffre - abouti à des tableaux, des calculs 1) Qu est-ce
Chapitre 3. Quelques fonctions usuelles. 1 Fonctions logarithme et exponentielle. 1.1 La fonction logarithme
Chapitre 3 Quelques fonctions usuelles 1 Fonctions logarithme et eponentielle 1.1 La fonction logarithme Définition 1.1 La fonction 7! 1/ est continue sur ]0, +1[. Elle admet donc des primitives sur cet
Quelques contrôle de Première S
Quelques contrôle de Première S Gilles Auriol [email protected] http ://auriolg.free.fr Voici l énoncé de 7 devoirs de Première S, intégralement corrigés. Malgré tout les devoirs et 5 nécessitent l usage
Comment démontrer que deux droites sont perpendiculaires?
omment démontrer que deux droites sont perpendiculaires? Utilisons On sait que (hypothèses) or...(propriété, définition) donc...(conclusion) Réciproque de Pythagore,5 1,5 = + Si dans un triangle le carré
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS
Baccalauréat S Nombres complexes Index des exercices sur les complexes de septembre 1999 à juin 2012 Tapuscrit : DENIS VERGÈS N o Lieu et date Q.C.M. Algébrique Géométrie 1 Asie juin 2012 2 Métropole juin
Rédaction d un Plan d affaires
Rédaction d un Plan d affaires Catherine Raymond 2001 INTRODUCTION Raisons qui ont motivé la rédaction du plan d affaires Personnes ou organismes qui ont collaboré à l élaboration du plan d affaires Sommaire
Cours Fonctions de deux variables
Cours Fonctions de deux variables par Pierre Veuillez 1 Support théorique 1.1 Représentation Plan et espace : Grâce à un repère cartésien ( ) O, i, j du plan, les couples (x, y) de R 2 peuvent être représenté
Wieland-Werke AG, 89070 Ulm, Allemagne Février 2012
Wieln-Werke AG, 89070 Ulm, Allemgne Février 2012 Conitions générles e livrison 1. Conitions ontrtuelles, roit pplile Nous livrons et fournissons es presttions onformément à notre onfirmtion e ommne érite
Mesure d angles et trigonométrie
Thierry Ciblac Mesure d angles et trigonométrie Mesure de l angle de deux axes (ou de deux demi-droites) de même origine. - Mesures en degrés : Divisons un cercle en 360 parties égales définissant ainsi
