Fonctions trigonométriques

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "Fonctions trigonométriques"

Transcription

1 Fonctions trigonométriques Christophe ROSSIGNOL Année scolaire 04/05 Table des matières Rappels de trigonométrie. Définitions, premières propriétés Formules de trigonométrie Fonctions sinus et cosinus 4. Définition Parité Périodicité Étude des fonctions sinus et cosinus 5. Dérivées des fonctions cosinus et sinus Variations, courbe représentative Complément : limite de sin en zéro Table des figures Cosinus et sinus Angles remarquables Cosinus et sinus de Fonction cosinus Fonction sinus Ce cours est placé sous licence Creative Commons BY-SA

2 RAPPELS DE TRIGONOMÉTRIE Rappels de trigonométrie. Définitions, premières propriétés Définition : Soit C le cercle trigonométrique et un réel (voir figure ). On appelle M le point associé au réel sur le cercle trigonométrique. On ( appelle cosinus et sinus de (notés cos et sin ) les coordonnées du point M dans le repère O ; OA ; OB ). cos : abscisse du point M sin : ordonnée du point M. Figure Cosinus et sinus Remarques :. Pour tout réel : cos sin. A ( ; 0) donc : cos (0) = et sin (0) = 0. B (0 ; ) donc : cos ( ) ( = 0 et sin ) =. A ( ; 0) donc : cos () = et sin () = 0. B (0 ; ) donc : cos ( ) ( ) = 0 et sin =.. Le triangle OHM est rectangle en H donc, d après le théorème de Pythagore : OH + HM = OM Or, OM =, OH = (cos ) et HM = (sin ). On a donc : (cos ) + (sin ) = 4. Les cosinus et sinus des angles remarquables sont donnés dans le tableau. Remarque : Pour retenir tous les résultats du tableau, on peut s aider du cercle trigonométrique (voir figure ). Eercices : 50, 5 page 8 page 7 et 5, 5, 54 page 8 6, 8, 9 page 74 [TransMath]. Équations trigonométriques. Inéquations trigonométriques.. Avec un changement de variable.

3 RAPPELS DE TRIGONOMÉTRIE. Formules de trigonométrie 0 6 cos sin Table Valeurs remarquables de cosinus et sinus. Figure Angles remarquables. Formules de trigonométrie Angles associés :. cos ( ) = cos et sin ( ) = sin.. cos ( ) = cos et sin ( ) = sin.. cos ( + ) = cos et sin ( + ) = sin. 4. cos ( ) = sin et sin ( ) = cos. 5. cos ( + ) = sin et sin ( + ) = cos. Formules d addition :. cos (a b)=cos a cos b + sin a sin b. cos (a + b)=cos a cos b sin a sin b. sin (a b)=sin a cos b cos a sin b 4. sin (a + b)=sin a cos b + cos a sin b Formules de duplication :. cos ()=cos sin = cos = sin. sin ()= cos sin. cos = +cos() et sin = cos()

4 FONCTIONS SINUS ET COSINUS Fonctions sinus et cosinus. Définition Définition :. La fonction qui, à tout nombre R, associe cos est appelée fonction cosinus et est notée : cos : cos. La fonction qui, à tout nombre R, associe sin est appelée fonction sinus et est notée : sin : sin Remarque : Les images des fonctions sinus et cosinus sont toujours dans l intervalle [ ; ].. Parité Soit M le point du cercle trigonométrique associé au réel et M le point associé au réel ( ) (voir figure ). Figure Cosinus et sinus de M (cos ; sin ) et M (cos ( ) ; sin ( )). Comme M et M sont symétriques par rapport à l ae des abscisses, on en déduit que : cos ( ) = cos sin ( ) = sin Propriété : La fonction cosinus est paire. Sa courbe représentative est donc symétrique par rapport à l ae des ordonnées. Propriété : La fonction sinus est impaire. Sa courbe représentative est donc symétrique par rapport à l origine du repère.. Périodicité Soit un réel. Le point M associé à sur le cercle trigonométrique est aussi associé à +. Par suite, on a : cos ( + ) = cos sin ( + ) = sin 4

5 ÉTUDE DES FONCTIONS SINUS ET COSINUS Propriété : Les fonctions cosinus et sinus sont périodiques de période. Il suffit donc d étudier ces fonctions sur un intervalle de longueur. On obtient leurs courbes représentatives sur R par des translations de vecteur k ı (avec k Z). Étude des fonctions sinus et cosinus. Dérivées des fonctions cosinus et sinus Théorème (admis) Les fonctions cosinus et sinus sont dérivables sur R et, pour tout R : Remarque : On en déduit donc les résultats suivants : sin () = cos () et cos () = sin (). Une primitive sur R de f () = cos () est F () = sin ().. Une primitive sur R de f () = sin () est F () = cos ().. Si u est une fonction dérivable sur un intervalle I, alors la fonction sin (u) est dérivable sur I et sa dérivée est u cos (u). 4. Si u est une fonction dérivable sur un intervalle I, alors la fonction cos (u) est dérivable sur I et sa dérivée est u sin (u). 5. Si u est une fonction dérivable sur un intervalle I et si f est de la forme u cos (u), alors une primitive de f sur I est sin (u). 6. Si u est une fonction dérivable sur un intervalle I et si f est de la forme u sin (u), alors une primitive de f sur I est cos (u). Eercices : 7, 8, 9, 0,,, 4 page page 8 5 page 0 ; 7 page 04 ; 40 page 08 ; 7 page 7 et 77, 78, 84 page 8 6 [TransMath]. Variations, courbe représentative Étude de la fonction cosinus : La fonction cosinus est périodique de période, on peut donc limiter l étude de cette fonction à un intervalle d amplitude. On prendra l intervalle I = [ ; ]. On note f () = cos. f est dérivable sur I et f () = sin. À l aide du cercle trigonométrique, on a facilement le signe de sin : 0 sin On en déduit le tableau de variations de la fonction cosinus : 0 cos () = sin cos La courbe représentative de la fonction cosinus se trouve sur la figure 4. Étude de la fonction cosinus : La fonction sinus est périodique de période, on peut donc limiter l étude de cette fonction à un intervalle d amplitude. On prendra l intervalle I = [ ; ]. On note g () = sin. g est dérivable sur I et g () = cos. À l aide du cercle trigonométrique, on a facilement le signe de cos : 4. Calculs de dérivées. 5. Tangentes. 6. Primitives, intégrales. 5

6 . Complément : limite de sin en zéro ÉTUDE DES FONCTIONS SINUS ET COSINUS Figure 4 Fonction cosinus sin On en déduit le tableau de variations de la fonction sinus : sin () = cos sin 0 La courbe représentative de la fonction sinus se trouve sur la figure 5. Figure 5 Fonction sinus Eercices :, page 7 ; 4, 5 page 7 ; 4 page 76 ; 58 page page 76 et 60 page page , 7, 74 page 87 0 [TransMath]. Complément : limite de sin Propriété : en zéro sin lim 0 = 7. Étude de fonctions. 8. Suites et fonctions trigonométriques. 9. Vrai-Fau. 0. Type BAC. 6

7 RÉFÉRENCES RÉFÉRENCES Démonstration : Si 0, le tau d accroissement de la fonction sinus entre 0 et est : sin sin 0 0 = sin Or, la fonction sinus est dérivable en zéro, donc la limite de ce tau d accroissement lorsque tend vers zéro est le nombre dérivé en zéro, d où : sin lim 0 = sin (0) = cos (0) = Eercices : 8, 9, 4 page 8 ; 4, 45, 46, 48 page 8 [TransMath] Références [TransMath] TransMATH Term S, Programme 0 (Nathan), 5, 6, 7. Limites de fonctions et de suites. 7

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques I) Rappels 1) Repérage sur le cercle trigonométrique Sur un cercle trigonométrique : - à tout nombre réel t on associe un point M unique ; - si un point M est associé à un nombre

Plus en détail

Cours de Terminale S / Compléments sur les fonctions. E. Dostal

Cours de Terminale S / Compléments sur les fonctions. E. Dostal Cours de Terminale S / Compléments sur les fonctions E. Dostal septembre 013 Table des matières 3 Compléments sur les fonctions 3.1 Fonctions trigonométriques................................... 3.1.1 Définitions

Plus en détail

Applications du produit scalaire

Applications du produit scalaire Applications du produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Relations métriques dans un triangle quelconque 1.1 Quelques notations............................................

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Dans tout le chapitre, le plan est muni d'un repère orthonormé (O ; i ; j ). Les fonctions trigonométriques sont des fonctions dont la variable est une mesure d'angle. Elles

Plus en détail

Chapitre 8 : Fonctions trigonométriques

Chapitre 8 : Fonctions trigonométriques Chapitre 8 : Fonctions trigonométriques I Fonctions cosinus et sinus I. Périodicité Définition Soient f une fonction définie sur R, et T > un nombre strictement positif. n dit que f est périodique de période

Plus en détail

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo.

I- LE RADIAN. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. Activité d introduction : enroulement de la droite numérique sur le cercle trigo. I- LE RADIAN Le radian est, comme le degré ou le grade, une unité de mesure d angles. Sur un cercle de centre O, l angle

Plus en détail

Dérivation et fonctions trigonométriques

Dérivation et fonctions trigonométriques Dérivation et fonctions trigonométriques 1. Compléments sur la dérivation Théorème. Soit une fonction à valeurs positives dérivable sur un intervalle. Alors est dérivable sur et. Soit. La fonction est

Plus en détail

Continuité Compléments de dérivation

Continuité Compléments de dérivation Continuité Compléments de dérivation Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Notion de continuité 1.1 Limite finie en un réel a......................................... 1. Définitions

Plus en détail

Compléments sur la dérivation Fonctions sinus et cosinus

Compléments sur la dérivation Fonctions sinus et cosinus I. Dérivation Compléments sur la dérivation Fonctions sinus et cosinus A faire : revoir notions vues en 1 S, p 384-385 du livre 1) Activité ( à traiter sur feuille annexe ) Soient la fonction définie sur

Plus en détail

FONCTIONS NUMÉRIQUES : DÉRIVATION

FONCTIONS NUMÉRIQUES : DÉRIVATION FONCTIONS NUMÉRIQUES : DÉRIVATION Ph DEPRESLE 30 septembre 05 Table des matières Dérivée en un point Continuité et dérivabilité 3 Fonction dérivée 4 Sens de variation d une fonction dérivable 3 5 Dérivées

Plus en détail

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie

2 cos x =. 0 ;2π l équation sin x =. Corrigés des exercices de trigonométrie Corrigés des eercices de trigonométrie I. Résoudre algébriquement des équations, des inéquations Pour les eercices suivants, on utilisera le cercle trigonométrique Eercice 1 Résoudre dans l intervalle

Plus en détail

TRIGONOMETRIE. Il en découle que nous pourrons effectuer les conversions de mesure à l aide d un tableau de proportionnalité :

TRIGONOMETRIE. Il en découle que nous pourrons effectuer les conversions de mesure à l aide d un tableau de proportionnalité : TRIGONOMETRIE I. LE RADIAN Définition : On appelle radian (rad) l angle au centre qui intercepte, sur un cercle de rayon R, un arc de longueur R Il en découle que nous pourrons effectuer les conversions

Plus en détail

Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA

Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA Terminale S Trigonométrie 1.0 OLIVIER LÉCLUSE CREATIVE COMMON BY-NC-SA Octobre 2013 Table des matières Objectifs 5 Introduction 7 I - Définition - dérivabilité 9 A. Construction Sinus et Cosinus...9 B.

Plus en détail

étude de fonctions trigonométriques 5) Calculer les limites aux bornes de cet ensemble d étude. Y a-t-il une asymptote?

étude de fonctions trigonométriques 5) Calculer les limites aux bornes de cet ensemble d étude. Y a-t-il une asymptote? Chapitre Eercice : étude de fonctions trigonométriques Terminale S sin Le but est d étudier et de représenter la fonction tangente définie par : tan = cos ) Déterminer l ensemble de définition de la fonction

Plus en détail

Fonctions exponentielles

Fonctions exponentielles Fonctions exponentielles Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Fonctions x q x, avec q > 0 2 1.1 Fonction exponentielle de base q.................................... 2 1.2

Plus en détail

Chapitre 3. Compléments sur les fonctions numériques

Chapitre 3. Compléments sur les fonctions numériques Capitre 3 Compléments sur les fonctions numériques 24 ) Compléments sur la dérivation - ) Dérivées des fonctions u et u n, n Z Téorème : Si u est une fonction strictement positive, dérivable sur un intervalle

Plus en détail

FONCTIONS CIRCULAIRES

FONCTIONS CIRCULAIRES ère STI Ch : Fonctions circulaires /7 FONCTIONS CIRCULAIRES Table des matières I Le radian II Cercle trigonométrique III Angles orientés III. Mesure d un arc ou d angle orienté de vecteurs........................

Plus en détail

Correction : Les fonctions sinus et cosinus

Correction : Les fonctions sinus et cosinus Correctioneercices mars Correction : Les fonctions sinus et cosinus Rappels Eercice ) 5 ) 5) 7) 9) ) ) ) 8) Eercice ) sin = sin =sin ) = + k = 5 k Z + k 5 ) cos = cos =cos ) 5 5 + k = 5 k Z + k 5 5 ) cos)=cos

Plus en détail

Chapitre 2 : Fonctions cosinus et sinus

Chapitre 2 : Fonctions cosinus et sinus Chapitre 2 : Fonctions cosinus et sinus I) Rappels sur les fonction cosinus et sinus Dans un repère orthonormée (O,I,J), tout réel x admet un unique point M sur le cercle trigonométrique (cercle d'origine

Plus en détail

Fonctions de référence 1

Fonctions de référence 1 Fonctions de référence Les fonctions sinus et cosinus. Définitions Le plan étant muni d un repère orthonormé (O; I, J), on peut associer à tout réel x un unique point M sur le cercle trigonométrique. (voir

Plus en détail

Chapitre 11. Fonctions sinus et cosinus

Chapitre 11. Fonctions sinus et cosinus I. Rappels Chapitre. Fonctions sinus et cosinus (rappels et compléments) On rappelle ici les principau résultats en trigonométrie établis dans les classes précédentes. ) Enroulement de l ae réel sur le

Plus en détail

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015

Produit scalaire. Christophe ROSSIGNOL. Année scolaire 2014/2015 Produit scalaire Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Différentes expressions du produit scalaire 1.1 Norme d un vecteur........................................... 1. Définition

Plus en détail

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b).

En enroulant l'axe des réels chaque réel «b» marque sur le cercle un point unique B. B est le point associé au réel «b» et on le note alors M(b). Angles et Trigonométrie I º] Rappels : repérage d'un point sur le cercle trigonométrique Le sens direct est aussi appelé sens trigonométrique ou sens positif Un cercle trigonométrique est un cercle de

Plus en détail

mathématiques. (Joseph Fourier) Discours préliminaire à la théorie analytique de la chaleur.

mathématiques. (Joseph Fourier) Discours préliminaire à la théorie analytique de la chaleur. 1 Niveau : Titre Cours : Terminale S Chapitre 04 Compléments sur les fonctions. Fonctions trigonométriques et dérivabilité. Jospeh Fourier (21 mars 1768-16 mai 1830) Année : 2014-2015 Citation du moment

Plus en détail

I. MESURE D UN ANGLE EN RADIANS

I. MESURE D UN ANGLE EN RADIANS www.mathsenligne.com STID - N - FNCTINS TRIGNMETRIQUES CURS (/6) PRGRAMMES CAPACITES ATTENDUES CMMENTAIRES Fonctions circulaires Éléments de trigonométrie : cercle trigonométrique, radian, mesure d un

Plus en détail

Les fonctions cosinus et sinus

Les fonctions cosinus et sinus TS Les fonctions cosinus et sinus ) Application à la dérivée de la composée d une fonction affine suivie de la fonction sinus ou cosinus Rappel I. Dérivées des fonctions cosinus et sinus ) Formules (admises

Plus en détail

I. COSINUS ET SINUS J M. On munit le cercle trigonométrique d un repère orthonormé (O, OI, OJ ) et d un sens (le «sens direct») O x A

I. COSINUS ET SINUS J M. On munit le cercle trigonométrique d un repère orthonormé (O, OI, OJ ) et d un sens (le «sens direct») O x A www.mathsenligne.com STI - N4 - FNCTINS TRIGNMETRIQUES CURS (/5) PRGRAMMES Etude des fonctions ï sin et ï cos : dérivée, sens de variation. Equations cos = α et sin = α. CMMENTAIRES n s aidera de l interprétation

Plus en détail

CORRECTION DM8. = - sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire. = - f(x)

CORRECTION DM8. = - sin x( 1 + cos x) car la fonction sinus est impaire et la fonction cosinus est paire. = - f(x) ORRETION DM8 EXERIE : Etude d une fonction trigonométrique f est la fonction définie sur R par : f(x) sin x ( + cosx) ) a) i) Pour tout x R, (x + ) R ii) Pour tout x R, f(x + ) sin(x + )( +cos(x + ) sin

Plus en détail

Fonctions sinus et cosinus.

Fonctions sinus et cosinus. . Rappels de trigonométrie... P. Variations et représentations graphiques des fonctions sinus et cosinus... p8. Compléments... p0 Copyright meilleurenmaths.com. Tous droits réserwidevec{}vés . Rappels

Plus en détail

Le but de cet exercice est de tracer la courbe de la fonction cosinus et d en étudier quelques propriétés

Le but de cet exercice est de tracer la courbe de la fonction cosinus et d en étudier quelques propriétés Capitre 7 Fonctions trigonométriques I Eercices 7.1 Le but de cet eercice est de tracer la courbe de la fonction cosinus et d en étudier quelques propriétés 1. Tracer à l écran de la calculatrice la représentation

Plus en détail

Fonctions d'une variable réelle (M-1.1)

Fonctions d'une variable réelle (M-1.1) Fonctions d'une variable réelle (M-.) I. Fonctions définies par morceaux Définition des fonctions en escalier : une fonction en escalier est une fonction constante par intervalles. Sa représentation graphique

Plus en détail

La trigonométrie. I Le cercle trigonométrique 1 1 Associer un point à un réel Valeurs particulières... 2

La trigonométrie. I Le cercle trigonométrique 1 1 Associer un point à un réel Valeurs particulières... 2 Table des matières I Le cercle trigonométrique Associer un point à un réel........................................ Valeurs particulières............................................ II Angles orientés Mesures

Plus en détail

Cas particulier des fonctions trigonométriques

Cas particulier des fonctions trigonométriques Dans ce chapitre, nous continuons le travail sur les fonctions usuelles et nous redéfinissons les fonctions trigonométriques. Si celles sont définies à partir de la géométrie euclidienne, elles permettent

Plus en détail

; et un sens direct (sens positif, au

; et un sens direct (sens positif, au I- Angles dans un cercle I- 1 : Cercle trigonométrique Définition 1: Un cercle trigonométrique, est un cercle orienté de centre O et de rayon 1, auquel, on associe un repère orthogonal direct, ( O i, j

Plus en détail

Chapitre 6. Fonctions trigonométriques

Chapitre 6. Fonctions trigonométriques Chapitre 6 Fonctions trigonométriques Corrigés des exercices-tests Vrai La hauteur issue de M dans le triangle OIM est également médiane Donc le triangle OIM est isocèle en M Étant aussi isocèle en O,

Plus en détail

BTS Maintenance industrielle - Les fonctions

BTS Maintenance industrielle - Les fonctions de référence. en escaliers Une fonction en escaliers est une fonction constante par intervalles. Eemple. la fonction f définie sur [,[ - 5 6 7 8. affines Une fonction affine f est définie sur par où a

Plus en détail

Rappels de trigonométrie

Rappels de trigonométrie r cos(α) cos(α) Rappels de trigonométrie Définition des fonctions trigonométriques Le cercle trigonométrique (cercle de rayon ) est la situation de base permettant de définir les fonctions sinus et cosinus

Plus en détail

Trigonométrie. I. Le cercle trigonométrique

Trigonométrie. I. Le cercle trigonométrique I. Le cercle trigonométrique Définition. Dans le plan rapporté à un repère orthonormal ( ), le cercle trigonométrique est le cercle de centre O et de raon sur lequel on choisit une orientation : le sens

Plus en détail

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE

FONCTIONS DE REFERENCE FONCTIONS DE REFERENCE Seconde 4 006/007 Lycée de Bouwiller Introduction Dans ce chapitre, nous allons étudier les fonctions usuelles (linéaires, affines, carré, inverse, cosinus et sinus). Nous commencerons par des rappels

Plus en détail

Angles orientés et coordonnées polaires

Angles orientés et coordonnées polaires 1 Angles orientés et coordonnées polaires Table des matières 1 Angles orientés 1.1 Définition................................. 1. Mesure d un angle orienté........................ 1. Propriétés.................................

Plus en détail

Etude des fonctions usuelles

Etude des fonctions usuelles Etude des fonctions usuelles 1. Introduction Soit f une fonction réelle de la variable réelle, on a vu que ces fonctions sont souvent définies par des formules, c est-à-dire définies par des epressions

Plus en détail

Fonctions Affines Problèmes du premier degré

Fonctions Affines Problèmes du premier degré Fonctions Affines Problèmes du premier degré Christophe ROSSIGNOL Année scolaire 2016/2017 Table des matières 1 Fonctions Affines 2 1.1 Définition Représentation graphique.................................

Plus en détail

Chapitre : Trigonométrie

Chapitre : Trigonométrie Chapitre : Trigonométrie Dans tout le chapitre, le plan est muni d un repère orthonormé ;, I. Cercle trigonométrique 1) Repérage sur le cercle trigonométrique Définition : Le cercle trigonométrique C est

Plus en détail

TRIGONOMÉTRIE. Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre.

TRIGONOMÉTRIE. Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre. 1 sur 8 TRIGONOMÉTRIE I. Le cercle trigonométrique Définition : Sur un cercle, on appelle sens direct, sens positif ou sens trigonométrique le sens contraire des aiguilles d une montre. Définition : Dans

Plus en détail

FONCTIONS CIRCULAIRES

FONCTIONS CIRCULAIRES BTS DOMOTIQUE Fonctions circulaires 8- FONCTIONS CIRCULAIRES Table des matières I Fonctions circulaires I. Définitions............................................... I. Valeurs remarquables.........................................

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques ère STID I - Cercle trigonométrique - Mesure des angles orientés Définition Dans le plan muni d un repère ; i, j, le cercle trigonométrique est le cercle de centre et de rayon

Plus en détail

par les vecteurs unitaires OI et OA tel que ( ) α rapport à (OI), on définit par les vecteurs unitaires OI et OB, l angle orienté ( OI, OB) tel que.

par les vecteurs unitaires OI et OA tel que ( ) α rapport à (OI), on définit par les vecteurs unitaires OI et OB, l angle orienté ( OI, OB) tel que. I- Angles orientés I- : Déinitions Déinition : À tout point A du cercle trigonométrique, on associe l angle orienté ( OI, OA) déini OI, OA et si B est le symétrique du point A par par les vecteurs unitaires

Plus en détail

I) A quoi sert une fonction circulaire?

I) A quoi sert une fonction circulaire? FCHE METHODE sur les FONCTONS CRCULARES ) A quoi sert une fonction circulaire? a) Exemples :. Un triangle a deux cotés de cm et l angle entre ces cotés est de x! Comment varie son aire en fonction de l

Plus en détail

Chapitre 12 Trigonométrie

Chapitre 12 Trigonométrie Chapitre Trigonométrie I. Enroulement de la droite numérique ) Cercle trigonométrique Définition : Dans un repère orthonormé (O ; I, J), on appelle cercle trigonométrique le cercle c de centre O et de

Plus en détail

Trigonométrie. I] Cercle trigonométrique et radians

Trigonométrie. I] Cercle trigonométrique et radians I] Cercle trigonométrique et radians Dans le plan muni d un repère orthonormé, on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on définit un sens de parcours appelé sens

Plus en détail

Fonctions puissances Croissances comparées

Fonctions puissances Croissances comparées Fonctions puissances Croissances comparées Christophe ROSSIGNOL Année scolaire 200/20 Table des matières Puissances réelles 2. Définition Premières propriétés.................................... 2.2 Propriétés

Plus en détail

Continuité sur un intervalle

Continuité sur un intervalle Continuité sur un intervalle Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Continuité : une approche graphique 2 2 Théorème des valeurs intermédiaires 3 2.1 Cas des fonctions continues.......................................

Plus en détail

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle

Trigonométrie. 1 Une nouvelle unité de mesure des angles. 2 Rappel - Trigonométrie dans le triangle rectangle. 2.1 Rappels sur le triangle rectangle Trigonométrie 1 Une nouvelle unité de mesure des angles On considère un cercle de centre O et de rayon r. B θ r A Exercice 1. 1. Quelle est la circonférence de ce cercle? L aire du disque associé? O. Exprimer,

Plus en détail

Trigonométrie (Méthodes et objectifs)

Trigonométrie (Méthodes et objectifs) Trigonométrie (Méthodes et objectifs) G. Petitjean Lycée de Toucy 28 janvier 2009 G. Petitjean (Lycée de Toucy) Trigonométrie (Méthodes et objectifs) 28 janvier 2009 1 / 45 1 Repérer un point ou un ensemble

Plus en détail

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées

Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Capacité travaillée: Utiliser le cercle trigonométrique pour déterminer le cosinus et sinus d angles associées Contenu: Radian; Cercle trigonométrique; Mesure d un angle orienté; Mesure principale. Mevel

Plus en détail

Angles orientés de vecteurs Trigonométrie

Angles orientés de vecteurs Trigonométrie Angles orientés de vecteurs Trigonométrie Christophe ROSSIGNOL Année scolaire 014/015 Table des matières 1 Mesures d angles orientés de vecteurs 1.1 Cercle trigonométrique mesures d arcs orientés...........................

Plus en détail

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique.

Programme de colle - Semaine 4. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Programme de colle - Semaine 4 Fonctions circulaires. Bijections, fonctions circulaires réciproques. Fonctions puissances, logarithmes, exponentielles ; cosinus et sinus hyperbolique. Démonstrations du

Plus en détail

Dérivation Continuité

Dérivation Continuité Dérivation Continuité Christophe ROSSIGNOL Année scolaire 2009/2010 Table des matières 1 Nombre dérivé Fonction dérivé 2 1.1 Nombre dérivé.......................................... 2 1.2 Fonction dérivée.........................................

Plus en détail

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique

Trigonométrie. Chapitre Enroulement de la droite des réels Le cercle trigonométrique Chapitre 4 Trigonométrie 4. Enroulement de la droite des réels 4.. Le cercle trigonométrique Dénition. On se place dans le plan repéré par le repère orthonormé (O; u; v). Le cercle trigonométrique est

Plus en détail

8 Fonctions trigonométriques

8 Fonctions trigonométriques 8 Fonctions trigonométriques Rappel Voici le grape de la fonction sinus : 6 3 On rappelle quelques propriétés de la fonction sinus démontrées aux exercices.6 et.9 : ) elle est définie sur l ensemble des

Plus en détail

Révisions de Mathématique

Révisions de Mathématique Révisions de Mathématique Chapitre I Chapitre II Chapitre III Algèbre Trigonométrie Analyse Chapitre I Algèbre 1 Opérations élémentaires sur les nombres réels................ I 3 1.1 Les ensembles IN,

Plus en détail

Chapitre 3 : Trigonométrie

Chapitre 3 : Trigonométrie Chapitre : Trigonométrie PTSI B Lycée Eiffel septembre Quel est le comble pour un cosinus? Attraper une sinusite! Pour compléter le chapître précédent consacré au fonctions usuelles, un chapître à part

Plus en détail

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6)

CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 3D2 LMRL CHAPITRE 1 : Trigonométrie (EM4 : chapitre 2 et chapitre 6) 1 Rappels - classe de quatrième Théorème de Pythagore : Dans un triangle rectangle, le carré de l hypoténuse est égal à la somme des

Plus en détail

Chapitre 13 Fonctions trigonométriques

Chapitre 13 Fonctions trigonométriques Capitre 13 Fonctions trigonométriques I. Définitions 1) Enroulement On considère le repère du plan (O; i, j), c le cercle trigonométrique, A le point de coordonnées (1; 0) et d la droite orientée munie

Plus en détail

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013

Fonctions convexes. Christophe ROSSIGNOL. Année scolaire 2012/2013 Fonctions convexes Christophe ROSSIGNOL Année scolaire 2012/2013 Table des matières 1 Convexité Point d inflexion 2 1.1 Notion de convexité, de concavité.................................... 2 1.2 Point

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

Équations et inéquations trigonométriques avec des cosinus et des sinus (2) 1 ère S. 2 ) Égalité de deux sinus. a et b sont deux réels.

Équations et inéquations trigonométriques avec des cosinus et des sinus (2) 1 ère S. 2 ) Égalité de deux sinus. a et b sont deux réels. ère S Équations et inéquations trigonométriques avec des cosinus et des sinus () ) Égalité de deu sinus a et b sont deu réels. bjectifs du chapitre : - étudier la résolution trigonométriques dans (et non

Plus en détail

Corrigé du Brevet de technicien supérieur session 2010 Géomètre topographe

Corrigé du Brevet de technicien supérieur session 2010 Géomètre topographe Corrigé du Brevet de technicien supérieur session 00 Géomètre topographe A. P. M. E. P. Exercice 8 points Partie A. Soit t un réel quelconque. On a : xt+=t+ sint+=t+ sint car sin est périodique. Donc xt+

Plus en détail

Institut Galilée. Mathématiques pour les sciences. Premier semestre. Département de Mathématiques. Sciences et technologies. Licence 1 re année

Institut Galilée. Mathématiques pour les sciences. Premier semestre. Département de Mathématiques. Sciences et technologies. Licence 1 re année Institut Galilée Sciences et technologies Licence 1 re année Mathématiques pour les sciences Premier semestre Département de Mathématiques www.math.univ-paris13.fr/depart c INSTITUT GALILEE, 99 avenue

Plus en détail

1. Généralités sur les fonctions et fonctions polynômes

1. Généralités sur les fonctions et fonctions polynômes Comment faire pour Généralités sur les fonctions et fonctions polnômes86 Repérage 88 Dérivation90 Comportements asmptotiques et étude de fonctions9 5 Calcul vectoriel et barcentre 96 6 Produit scalaire

Plus en détail

TRIGONOMETRIE. I. Radian et cercle trigonométrique

TRIGONOMETRIE. I. Radian et cercle trigonométrique TRIGONOMETRIE I Radian et cercle trigonométrique ) Le radian Soit un cercle C de centre O et de rayon On appelle radian, noté rad, la mesure de l'angle au centre qui intercepte un arc de longueur du cercle

Plus en détail

Correction du baccalauréat S La Réunion juin 2007

Correction du baccalauréat S La Réunion juin 2007 Durée : 4 heures Correction du baccalauréat S La Réunion juin 007 EXERCICE Commun à tous les candidats y ln a. a. Aa ; ln a.mx ; y A T x a = a y = x ln a. a b. P0 ; y T y = ln a. P0 ; ln a. Longueur PQ

Plus en détail

Résumé du cours. Fonction dérivable

Résumé du cours. Fonction dérivable Résumé du cours Fonction dérivable Nombre dérivé et fonction dérivée Soit f une fonction définie sur un intervalle ouvert I contenant a. On dit que f est dérivable en a et de nombre dérivé f (a) si Définition

Plus en détail

( ) Trigonométrie - équations. Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STI2D. 1. unité d angle : le radian

( ) Trigonométrie - équations. Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STI2D. 1. unité d angle : le radian Lycée Jules Siegfried - Le Havre - Marc Bizet - Classe de Première STID Trigonométrie - équations 1. unité d angle : le radian Dans un cercle de rayon r, on définit un angle AOB de 1 radian si la longueur

Plus en détail

LES FONCTIONS DE REFERENCE

LES FONCTIONS DE REFERENCE I. Les fonctions affines : LES FONCTIONS DE REFERENCE Définition : On appelle fonction affine toute fonction définie sur IR, ou sur un intervalle de IR, par f : a + b avec a et b deu nombres réels. Propriétés

Plus en détail

TRIGONOMÉTRIE REPÉRAGE POLAIRE

TRIGONOMÉTRIE REPÉRAGE POLAIRE TRIGNMÉTRIE REPÉRAGE PLAIRE I Angles orientés Remarque n considère le cercle de centre et de rayon, que l'on appelle cercle trigonométrique. Le périmètre de ce cercle est. n considère la droite graduée

Plus en détail

CHAPITRE 6 : PRODUIT SCALAIRE

CHAPITRE 6 : PRODUIT SCALAIRE CHPITRE 6 : PRODUIT SCLIRE I. Produit scalaire de deux vecteurs dans le plan 1. Généralités Définition : Soit u et v deux vecteurs du plan non nuls, et, B, C trois points du plan tels que Le produit scalaire

Plus en détail

Dérivation : Exercices. , et M le point du cercle. ( h)

Dérivation : Exercices. , et M le point du cercle. ( h) Amerinsa - Ecole d été Dérivation : Eercices Eercice : Nombre dérivé de fonctions de base Soit 0 un réel. Pour chacune des fonctions suivantes, préciser à quel intervalle doit appartenir 0 pour que la

Plus en détail

Équations de droites

Équations de droites Équations de droites Christophe ROSSIGNOL Année scolaire 2015/2016 Table des matières 1 Équations de droites 2 1.1 Rappels sur les fonctions affines..................................... 2 1.2 Équations

Plus en détail

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire

DERNIÈRE IMPRESSION LE 12 février 2016 à 12:24. Le produit scalaire DERNIÈRE IMPRESSION LE 1 février 016 à 1: Le produit scalaire Table des matières 1 Définition et propriétés 1.1 Définition par la norme.......................... 1. Définition analytique...........................

Plus en détail

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance

Activités d approche. ACTIVITÉ 1 Vers de nouvelles formules de dérivation. Partie A : Fonction sous radical. Partie B : Fonction en puissance Dérivation. Fonctions cosinus et sinus ANALYSE Connaissances nécessaires à ce chapitre Calculer la dérivée d une fonction f Déterminer certaines caractéristiques de f à partir de f Utiliser le cercle trigonométrique,

Plus en détail

REVISIONS POUR LES VACANCES. Généralités sur les fonctions

REVISIONS POUR LES VACANCES. Généralités sur les fonctions Année 2016-2017 PCSI ( Baggio ) REVISIONS POUR LES VACANCES Vous devez connaître parfaitement tous les résultats donnés ici sur les généralités de fonctions, sur les fonctions exponentielles et logarithmes

Plus en détail

Trigonométrie Approfondissement

Trigonométrie Approfondissement Trigonométrie Approfondissement Le 5--05 Linéariser : mettre la définition Notions de base I. Le cercle trigonométrique On se place dans le plan orienté, c est-à-dire que l on a décidé d un sens de parcours

Plus en détail

Chapitre 2 - Trigonométrie

Chapitre 2 - Trigonométrie Cours de Mathématiques Classe de Première STID - Chapitre - Trigonométrie Chapitre - Trigonométrie A) Rappels compléments ) Le cercle trigonométrique a) Définitions On appelle cercle trigonométrique le

Plus en détail

Fonctions trigonométriques

Fonctions trigonométriques Fonctions trigonométriques Jérôme Germoni Novembre 2 Première étude : par équation différentielle.. Définition On s inspire de la définition de l exponentielle vue en terminale. Théorème (admis) Il existe

Plus en détail

Dérivées : Rappels et compléments

Dérivées : Rappels et compléments Dérivées : Rappels et compléments I) Rappels ) Dérivabilité en un point Soit f une fonction définie sur un intervalle I contenant le nombre réel a, soit (C) sa courbe représentative dans un repère ( O;

Plus en détail

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako

Fonctions Numériques Site MathsTICE de Adama Traoré Lycée Technique Bamako Fonctions Numériques Site MathsTICE de Adama Traoré Lcée Technique Bamako A- / Ensemble de définition d une fonction : - / Définition : Soit f : A B une fonction. On appelle ensemble de définition D f

Plus en détail

Chapitre 7 : Trigonométrie

Chapitre 7 : Trigonométrie Chapitre : Trigonométrie I. Longueur d arc de cercle Par cœur : Le périmètre d un cercle de rayon R : R L aire d un disque de rayon R : R Savoir-faire : calculer la longueur d un arc de cercle Le cercle

Plus en détail

Cours - Méthodes. 1. Repérage sur le cercle trigonométrique. A. Enroulement de la droite numérique. B. Le radian. DÉFINITION : Cercle trigonométrique

Cours - Méthodes. 1. Repérage sur le cercle trigonométrique. A. Enroulement de la droite numérique. B. Le radian. DÉFINITION : Cercle trigonométrique Dans ce chapitre, on munit le plan du repère orthonormé ;,.. Repérage sur le cercle trigonométrique A. Enroulement de la droite numérique DÉFNTN : Cercle trigonométrique Le cercle trigonométrique C est

Plus en détail

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions

CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions CHAPITRE 2 : Continuité, dérivabilité et étude de fonctions 1 Langage de la continuité... 2 1.1 Définition... 2 1.2 Illustration grapique... 2 1.3 Fonctions usuelles... 2 2 Téorème des valeurs intermédiaires...

Plus en détail

cosinus - mathématiques. 1 PRÉSENTATION

cosinus - mathématiques. 1 PRÉSENTATION cosinus - mathématiques. 1 PRÉSENTATION cosinus, fonction trigonométrique, complémentaire de la fonction sinus, introduites toutes deux dans la définition de la mesure d un angle en géométrie euclidienne.

Plus en détail

Sujets de bac : Exponentielle

Sujets de bac : Exponentielle Sujets de bac : Exponentielle Sujet : Polynésie septembre 2002 On considère la fonction définie sur par ) Etudier la parité de. 2) Montrer que pour tout,. 3) Déterminer les ites de en et en. Donner l interprétation

Plus en détail

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M "pour x assez grand"

Terminale S Chapitre 2 «Fonctions : limites, continuité et dérivabilité» Page 1. si pour tout M > 0, on a f x < M pour x assez grand Terminale S Capitre «Fonctions : ites, continuité et dérivabilité» Page I) Limites ) Limites à l infini a) Limite finie Définition : Etant donnée une fonction f et un réel α, on dira quelle tend vers α

Plus en détail

I- Cercle trigonométrique, Radian

I- Cercle trigonométrique, Radian er S TRIGONOMETRIE Objectifs : Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Déterminer les cosinus et les sinus d angles associés. Résoudre dans les équations d inconnue

Plus en détail

Les nombres complexes

Les nombres complexes Les nombres complexes Christophe ROSSIGNOL Année scolaire 015/016 Table des matières 1 Généralités 1.1 Définitions................................................. 1. Règles de calcul dans C.........................................

Plus en détail

Fonctions Exponentielles

Fonctions Exponentielles Fonctions Exponentielles Christophe ROSSIGNOL Année scolaire 2011/2012 Table des matières 1 Définition Premières propriétés 2 1.1 Définition................................................. 2 1.2 Premières

Plus en détail

RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE

RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE RELATIONS TRIGONOMETRIQUE DANS UN TRIANGLE RECTANGLE Le triangle A est rectangle en A. C hypoténuse côté opposé à l'angle A B côté adjacent à l'angle A est un triangle donc : B + A + B = 80. A est un triangle

Plus en détail

Fonctions numériques : dérivation

Fonctions numériques : dérivation Fonctions numériques : dérivation Table des matières I Notion de tangente à une courbe Soit f une fonction définie sur un intervalle I de courbe représentative C f et soit A un point fixe de C f. Soit

Plus en détail

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment

CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES. Utiliser le cercle trigonométrique, notamment Chapitre 6 Trigonométrie CONTENUS CAPACITÉS ATTENDUES COMMENTAIRES Trigonométrie Cercle trigonométrique. Radian. Mesure d un angle orienté, mesure principale. Utiliser le cercle trigonométrique, notamment

Plus en détail

Baccalauréat S Métropole La Réunion 21 juin 2012

Baccalauréat S Métropole La Réunion 21 juin 2012 Baccalauréat S Métropole La Réunion juin 0 EXERCICE Commun à tous les candidats 4 points. Sur l intervalle [ 3, ], tous les points de la courbe ont une ordonnée négative. VRAIE. Sur l intervalle ] ; [,

Plus en détail