¾

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimension: px
Commencer à balayer dès la page:

Download "¾"

Transcription

1 ÖÚ Ñ ÒØ Ð Ò Ö ÅÓ Ð Ø ÓÒ Ð Ñ ÒØ Ö Ö Ò ÊÇÍ ÀÁ Ê ¾½ Ñ Ö ¾¼¼

2 ¾

3 Ì Ð Ñ Ø Ö ½ Ò Ö Ð Ø ½º½ ÆÓØ ÓÒ Ý Ø Ñ ÖÚ º¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º½ Ä Ø Ð ÓÑÑ Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º¾ Ä Ö ÙÐ Ø ÙÖ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½º½º Ä ÖÚ Ñ ÒØ ÓÙ Ý Ø Ñ ÖÚ º º º º º º º º º º º º º º º º º º º º º º º º ½º¾ Ä Ð Ñ ÒØ ÖÚ Ñ ÒØ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ Ê ÔÖ ÒØ Ø ÓÒ ÓÑÔÐ Ü ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ º ¾º½ ÁÒØÖÓ ÙØ ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º¾ È Ø Ø Ö ÔÔ Ð Ñ Ø Ñ Ø ÕÙ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾º Ä ÓÒØ ÓÒÒ ÐÐ Ö ÔÖ ÒØ Ø ÓÒ ÓÑÔÐ Ü ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ º º º º º º º º ½¼ ¾º ÒÓÖÑ ÔÖÓ Ð Ñ ÒÓØ Ø ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½½ ¾º Ü ÑÔÐ ØÓÙØ ÑÔÐ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½½ ¾º ÔÖÓÔÓ Ð ÒÓØ ÓÒ ³ ÑÔ Ò ÓÑÔÐ Ü º º º º º º º º º º º º º º º º º º º º º º º º º ½¾ ¾º ÈÖÓ Ù Ø ÙÜ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ Ñ Ñ ÔÙÐ Ø ÓÒ º º º º º º º º º º º º ½ ÌÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ ½ º½ Ò Ø ÓÒº º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º¾ ÐÙÐ ÕÙ ÐÕÙ ØÖ Ò ÓÖÑ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º¾º½ ÐÓÒ ÙÒ Ø º¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º¾º¾ ÁÑÔÙÐ ÓÒ ÙÒ Ø º¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º¾º ÓÒØ ÓÒ Ð Ò Ö Ù Ø ÑÔ º¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º ÈÖÓÔÖ Ø Ð ØÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ º º º º º º º º º º º º º º º º º º º º º º º º º ½ º º½ Ø ÓÒº¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º º¾ Ö Ú Ø ÓÒ f(t)º¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º º ÁÒØ Ö Ø ÓÒ f(t)º¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º º Ì ÓÖ Ñ Ð Ú Ð ÙÖ Ò Ð º¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ ÓÒØ ÓÒ ØÖ Ò ÖØ ³ÙÒ Ð Ñ ÒØ ÓÙ ³ÙÒ Ý Ø Ñ ½ º½ ÁÒØÖÓ ÙØ ÓÒº º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º¾ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ØÖ Ò ÓÖÑ Ä ÈÄ º º º º º º º º º º º º º º º º º º º º º º ½ º ÓÒØ ÓÒ ØÖ Ò ÖØ Ò Ö Ñ ÖÑÓÒ ÕÙ º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º Ö ÑÑ Ç j.ω/ω 0 º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾¼ º Ö ÑÑ Ç 1 + j.ω/ω 0 º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾½ º Ö ÑÑ Ç [1 + j.2.s.ω/ω 0 + (j.ω/ω 0 ) 2 ] 1 º º º º º º º º º º º º º º º º º º º º ¾½ º Ö ÒØ ÓÒØ ÓÒ ØÖ Ò ÖØ ³ÙÒ Ý Ø Ñ ÖÚ º º º º º º º º º º º º º º º º º º º º º ¾ º º½ ÓÒØ ÓÒ ØÖ Ò ÖØ ³ Ð Ñ ÒØ Ò Ö º¹ º º º º º º º º º º º º º º º º º º º º º º º ¾ º º¾ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÓÙÚ ÖØ ³ÙÒ Ý Ø Ñ ÖÚ º¹ º º º º º º º º º º º º ¾ º º ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÖÑ ³ÙÒ Ý Ø Ñ ÖÚ º¹ º º º º º º º º º º º º ¾ º º Ó Ð Ý Ø Ñ ÙÒ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò Ð Ò Ö ØÓÙÖº¹ º º º º º º ¾ º º ÓÒ Ø ÓÒ ³ ÖÚ Ñ Òغ¹ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾

4 Ì Ä Ë Å ÌÁ Ê Ë ËØ Ð Ø ÖÚ Ñ ÒØ ¾ º½ ÁÒØÖÓ ÙØ ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º¾ Ö Ø Ö Ø Ð Ø ÑÔÐ Ò Ð Ö ÑÑ Ç º º º º º º º º º º º º º º º º º º º ¾ º ØÙ ³ÙÒ Ö Ù Ú Ò Ô º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º ÔÔÐ Ø ÓÒ Ù ÑÔÐ Ø ÙÖ Ð ÑÔ Ú Ö ØÖÓ Ø ÓÒº º º º º º º º º º º º º º º º ¾ º ÔÔÐ Ø ÓÒ Ù ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð º º º º º º º º º º º º º º º º º º º º º º ¾ º ÅÓ Ð ÑÔРг ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð ÓÑÔ Ò Ò Ö ÕÙ Ò º º º º º º º º º º º ¾ º ÉÙ ÐÕÙ ÔÔÐ Ø ÓÒ ÑÔÐ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º º½ ÑÔÐ Ø ÙÖ Ò Ò Ñ ÒØ Ò º¹ º º º º º º º º º º º º º º º º º º º º º º º ¾ º º¾ ÑÔÐ Ø ÙÖ Ú Ò Ñ ÒØ Ò º¹ º º º º º º º º º º º º º º º º º º º º º º º ¼ ÖÖ ÙÖ ¹ ÈÖ ÓÒ ½ º½ ÁÒØÖÓ ÙØ ÓÒº º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º¾ ÖÖ ÙÖ Ù ÔÖ Ñ Ö ÓÖ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ½ º ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ º Ê Ð Ø ÓÒ ÒØÖ ÖÖ ÙÖ Ù ÔÖ Ñ Ö Ø Ù ÓÒ ÓÖ Ö º º º º º º º º º º º º º º º º º º º º º º º Ñ ÒÙØ ÓÒ ³ÙÒ ÖÖ ÙÖ Ò º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ÓÖÖ Ø ÓÒ Ô Ö ÓÙÐ Ö ØÓÙÖº º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ÊÐ Ö ÙÐ Ø ÙÖ Ù Ý Ø Ñ ÖÚ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ÁÒ Ù Ò Ð Ö Ø Ò ÓÖØ Ð³ ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð ÙÖ Ð Òº º º º º º º º º Ñ Ð ÓÖ Ø ÓÒ Ð ØÖ Ò Ñ ÓÒ Ò ÙÜ Ð ØÖ ÕÙ Ð ÐÓÒ ³ÙÒ Ð Ò º º º º º º º º º º

5 Ô ØÖ ½ Ò Ö Ð Ø ½º½ ÆÓØ ÓÒ Ý Ø Ñ ÖÚ º¹ Ä Ò Ø ÓÑÑ Ò Ö Ø Ò Ø Ò ÓÖ ØÓÙØ ÓÒØÖÐ ÙÑ Ò Ð Ú Ö Ø ÓÒ ÓÙ Ð ÓÒ Ø Ò µ ³ÙÒ Ö Ò ÙÖ Ô Ý ÕÙ ÓÒ Ù Ø Ð Ø Ò Ò Ñ Ò Ö ³ ÒÒÓÑ Ö Ð ÔÓ Ø º ÇÒ Ô ÙØ Ð Ö Ý Ø Ñ Ò ØÖÓ Ö Ò ÖÓÙÔ º ½º½º½ Ä Ø Ð ÓÑÑ Ò º ÐÐ Ô ÖÑ ØØ ÒØ ÔÖÓ Ù Ö Ø Ò ÙÒ Ú Ö Ø ÓÒ ³ÙÒ Ö Ò ÙÖ ÕÙ ÐÓÒÕÙ ÕÙ Ô ÙØ ØÖ Ñ ¹ Ò ÕÙ Ð ØÖ ÕÙ Ø ÖÑ ÕÙ Ø ººº ÇÒ Ô ÙØ Ø Ö ÓÑÑ Ü ÑÔÐ ØÓÙ Ð Ð Ú Ö Ð ØÖ Ò Ñ ÓÒ Ô Ö Ð Ö ÓÙ ÓÙÔÐ Ø Ý Ø Ñ ÔÐÙ Ð ÓÖ ÒØ ÒØ ÖÚ Ò Ö Ô ÖØ Ð ØÖÓÑ Ò ÕÙ ÓÙ Ð ØÖÓÒ ÕÙ Ø Ð ÕÙ Ð ÓÑÑ Ò ÑÓ Ð Ö Ù Ø Ô Ö Ö Óº ÌÓÙ ÔÓ Ø Ö Ø Ö ÒØ Ô Ö ÙÒ Ò ³ Ø ÓÒ Ö Ø ÕÙ Ô ÙØ ÓÙÖÒ Ö Ó Ò Ø Ð³ Ò Ö Ø ÓÒ ÑÔÐ Ö Ð³ Ø ÓÒ Ô ÖØºÅ Ð Ò Ô ÖÑ ØØ ÒØ Ô ÚÓ Ö Ð Ö Ò ÙÖ ÓÑÑ Ò¹ Ò ÔÖ Ð Ú Ð ÙÖ ÓÖÖ Ø º ÈÖ ÒÓÒ ÙÒ Ü ÑÔÐ ÑÔÐ Ð ÚÓÐ ÒØ ³ÙÒ ÚÓ ØÙÖ Ô ÖÑ Ø ÑÓ Ö Ð Ö ÕÙ ÖÓÙ Ð Ý ÙÒ Ö Ð Ø ÓÒ ÒØÖ Ð³ Ò Ð ÓÒØ ÓÒ ØÓÙÖÒ ÚÓÐ ÒØ Ø Ð³ Ò Ð ÓÒØ ØÓÙÖÒ ÒØ Ð ÖÓÙ º ÁÐ Ñ Ð Ö Ø ÓÒ ÕÙ³ÙÒ Ú Ù Ð ÔÙ ÓÒ Ù Ö ÙÒ ÚÓ ØÙÖ ÓÒ Ø ÓÒ ÓÒÒ ØÖ Ð Ö ÝÓÒ ÓÙÖ ÙÖ ØÓÙ Ð Ú Ö Ø Ð³ Ò Ð ÓÒÒ Ö Ù ÚÓÐ ÒØ ÔÓÙÖ Ö Ð Ö ÙÒ ÖÓØ Ø ÓÒ ÓÖÖ Ø º ÇÖ ÒÓÙ ÚÓÒ ØÓÙ ÕÙ³ Ð Ú ÙØ Ñ ÙÜ Ý ÚÓ Ö ÔÓÙÖ ÓÒ Ù Ö ÙÒ Ú ÙÐ Ö Ð Ö Ð Ø ÓÒ ÒØÖ ÖÓØ Ø ÓÒ Ù ÚÓÐ ÒØ Ø ÖÓØ Ø ÓÒ ÖÓÙ Ô ÙØ Ú Ö Ö Ô Ö Ü ÑÔÐ Ð Ý Ù Ù Ò Ð Ô Ñ Ò ÕÙ ÓÙ ÙÒ ÕÙ ³ Ù Ð Ú ÒØ Ö Ö Ô Ö Ð ÚÓ ØÙÖ º Ä Ø Ð ÓÑÑ Ò ÓÒØ ÓÒ Ý Ø Ñ Ð Ö Ñ ÒØ Ò Ù ÒØ Ö Ð Ñ Ò ÒØ ÙÒ ÓÒØÖÐ ÜØ Ö ÙÖ Ð ÙÖ Ô Ö ÓÖÑ Ò º ½º½º¾ Ä Ö ÙÐ Ø ÙÖ º ÓÒØ ÔÔ Ö Ð Ø Ò Ñ ÒØ Ò Ö ÓÒ Ø ÒØ ÙÒ Ö Ò ÙÖº ÁÐ ÔÓ ÒØ ÙÒ ÒØ ÐÐ Ò ÔÐÙ Ö Ò ÕÙ Ð Ø Ð ÓÑÑ Ò Ö Ð Ó Ú ÒØ ÔÓÙÚÓ Ö ÔÔÖ Ö Ð Ö Ò ÙÖ ÕÙ³ Ð ÓÑÑ Ò ÒØ Ð Ú Ð ÙÖ ÚÓÙÐÙ ÓÙ ÒÓÒº ØÓÒ ÓÑÑ Ü ÑÔÐ Ð Ö ÙÐ Ø ÓÒ Ø ÑÔ Ö ØÙÖ Ô Ö Ø ÖÑÓ Ø Ø Ð Ö ÙÐ Ø ÙÖ ÓÙÐ Ð Ð Ñ ÒØ Ø ÓÒ Ö ÙРغºº ÇÒ Ô ÙØ Ö ÙÒ Ñ ÔÓÙÖ Ö ÔÖ ÒØ Ö ÓÒ Ò Ö Ð Ð ÓÒØ ÓÒÒ Ñ ÒØ Ø Ð ÔÓ Ø º Ø ÐÓÒ Ø Ø ÙÖ ³ ÖØ Ò Ö ÑÔÐ Ö Ò ÙÖ ÓÖØ Ä Ø Ø ÙÖ ³ ÖØ ÓÑÔ Ö Ð Ö Ò ÙÖ ÓÖØ Ð³ Ø ÐÓÒº Ò Ð ³ÙÒ Ø ÖÑÓ Ø Ø Ð Ñ Ð³ Ø ¹ ÐÓÒ Ø ÙÒ ÔÓ Ø ÓÒ Ù Ð Ñ Ü Ô Ö ÙÒ Ú ÔÐ Ø Ò ºË Ð Ø ÑÔ Ö ØÙÖ Ø ØÖÓÔ ÓÖØ Ð ÓÒØ Ø Ò

6 À ÈÁÌÊ ½º Æ Ê ÄÁÌ Ë Ø Ô Ð Ù Ø ÓÙÔ Ð Ø ÑÔ Ö ØÙÖ Ø ØÖÓÔ Ð Ð ÓÒØ Ø Ø Ñ Ð Ù ÓÒØ ÓÒÒ º ÇÒ ÓÒ ÙÒ ÓÒØ ÓÒÒ Ñ ÒØ ÒØ ÖÑ ØØ ÒØ ÓÒ Ø ÒÓÖ Ô Ö ØÓÙØ ÓÙ Ö Òº ÁÐ Ü Ø ³ ÙØÖ Ö ÙÐ Ø ÙÖ ÓÑÑ Ð Ð Ñ ÒØ Ø ÓÒ Ö ÙÐ ÕÙ ÓÒØ ÙÒ ÓÒØ ÓÒÒ Ñ ÒØ ÓÒØ ÒÙº ½º½º Ä ÖÚ Ñ ÒØ ÓÙ Ý Ø Ñ ÖÚ º ÇÒ ÔÓÙÖÖ Ø ÔÖ ÕÙ Ö ÕÙ³ Ð Ö Ð ÒØ Ð ÝÒØ ÙÜ ØÝÔ ÔÖ ÒØ º ÓÒØ Ø Ð Óѹ Ñ Ò Ö ÙÐ ³ Ø Ö ÕÙ³ Ð Ô ÖÑ ØØ ÒØ Ö Ú Ö Ö Ø Ò ÙÒ Ö Ò ÙÖ Ô Ö Ö Ö Ò ÙÒ Ö Ò ÙÖ ÓÒÒ Ø ÕÙ³ ÕÙ Ò Ø ÒØ ÙÒ ÔÓ Ø Ô ÖÑ Ø Ñ ÙÖ Ö Ð³ ÖØ ÒØÖ Õ٠гÓÒ Ð ÓÖØ Ø Õ٠гÓÒ ÚÖ Ø ÚÓ Öº ÍÒ ÖÚ Ñ ÒØ Ø ÓÒ Ö Ø Ö Ô Ö Ð³ Ü Ø Ò ³ÙÒ Ò ÕÙ Ö Ñ Ò Ð³ ÒØÖ Ð Ñ ÙÖ ÕÙ³ Ð Ý Ð ÓÖØ º ³ Ø ÙÒ Ý Ø Ñ ÓÙÐ ÙÖ ÐÙ ¹Ñ Ñ Ö Ò ÙÖ Ø Ø ÙÖ ³ ÖØ ³ ÒØÖ Ò Ö ÑÔÐ Ö Ò ÙÖ ÓÖØ Ò Ô ÖØ ÙÐ Ö ØÓÙ Ð Ø ÚÓÐÓÒØ Ö Ù Ý Ø Ñ Ò ÖÚ ÙÜ Ô ÙÚ ÒØ ØÖ Ñ Ð Ù Ö ÙÐØ Ø ³ÙÒ Ý Ø Ñ ÖÚ ºÄ ÖÚ Ù ÓÑÑ Ò Ð Ñ Ò ÔÖ Ò Ö ÙÒ Ó Ø Ð³ Ò ÙÜ Ò ÖÚ ÙÜ Ô ÖØ Ú Ö Ð Ñ Ò Ü Ø Ð ÑÙ Ð ÕÙ ÓÒØ Ð³ÓÖ Ò ÑÔÐ Ø ÙÖ ÕÙ ÓÙÖÒ Ø Ð³ Ò Ö ÑÙ ÙÐ Ö Ô٠г Ð Ø Ð Ò Ø ÓÒ Ø Ø Ð Ù ÒØ Ð³ ÖØ ÒØÖ Ð³ Ø ÚÓÙÐÙ Ø Ð³ Ø Ö Ð Ø Ð ÖÚ Ù ÓÖÖ Ö Ò ÓÒ ÕÙ Ò Ð ÓÑÑ Ò Ð Ñ Òº Ò Ð Ø Ò ÕÙ ØÙ ÐРгÙØ Ð Ø ÓÒ ÖÚ Ñ ÒØ Ö ØÖÓÙÚ Ô ÖØÓÙØ Ø ÓÙ ÙÜ ÓÖÑ Ð Ø Ò ÕÙ Ò ÐÓ ÕÙ Ð ÔÐÙ Ò ÒÒ µ Ø Ð Ø Ò ÕÙ ÒÙÑ Ö ÕÙ Ð Ù Ú ÐÓÔÔ Ñ ÒØ Ð³ Ò ÓÖÑ ¹ Ø ÕÙ º Ò Ô Ø Ø Ñ ÒÙ Ð ÒÓÙ ÒÓÙ ÒØ Ö ÖÓÒ ÙÒ ÕÙ Ñ ÒØ Ù Ò ÐÓ ÕÙ ³ÙÒ ÖÚ Ñ ÒØ ØÖ Ø ÒØ ³ÙÒ ÙÐ Ö Ò ÙÖ ³ ÒØÖ Ø ³ÙÒ ÙÐ Ö Ò ÙÖ ÓÖØ º ÁÐ ³ Ø ÓÒ ³ÙÒ Ø ÓÖ ØÖ Ð Ñ ÒØ Ö ÕÙ ÓÒÒ ÙÒ ÓÒÒ ÔÓÙÖ ÔÔÐ Ø ÓÒ ÔÐÙ ÓÑÔÐ ÕÙ º ½º¾ Ä Ð Ñ ÒØ ÖÚ Ñ ÒØ º ÆÓÙ ÒÓÙ ÔÖÓÔÓ ÓÒ ³ ØÙ Ö Ò ÓÙÖ Ð Ð Ñ ÒØ Ø ÓÖ ÕÙ Ò Ö ÔÓÙÖ ÓÑÔÖ Ò Ö Ð ÓÒØ ÓÒÒ Ñ ÒØ ÖÚ Ñ ÒØ ÓÒ Ø Ù Ý Ø Ñ ÖÚ ÓÙ ÖÚÓÑ Ò Ñ Ò ÓÐÓ Ñ Ø Ö Ð Ð ØØ Ö ØÙÖ Ò ÐÓ¹ ÜÓÒÒ ÖÚÓÑ Ò Ñ ÕÙ Ò Ð ØØ Ö Ð Ñ ÒØ Ý Ø Ñ ÖÚ µº ÍÒ Ñ Ø Ó ÓÑÑÓ ÓÒ Ø ÐÐ Ö Ù ÔÐÙ ÑÔÐ Ù ÔÐÙ ÓÑÔÐ ÕÙ º ÆÓÙ ÓÑÑ Ò ÖÓÒ Ô Ú Ö Ð Ý Ø Ñ Ò Ð Ñ ÒØ Ò Ö ÒØ Ô Ð ÙÒ ÙÖ Ð ÙØÖ Ø ÐÐ ÓÖØ ÕÙ ÒÓÙ ÔÓÙÖÖÓÒ ØÙ Ö Ð ÔÖÓÔÖ Ø Ð Ñ ÒØ Ô Ö Ñ ÒØ Ú ÒØ Ð Ò Ö Ö Ò Ð³ Ò Ñ Ð º ÌÖ ÖÓ Ö Ñ ÒØ ÓÑÑ ÒØ ÔÖ ÒØ Ö Ð ØÖÙØÙÖ ³ÙÒ Ð Ñ ÒØ ³ Ø ÙÒ Ý Ø Ñ ÕÙ ÙÖ ÙÒ ÓØ ÒØÖ Ø ÙÒ ÓØ ÓÖØ º Ò Ð Ø ÓÖ Ð Ñ ÒØ Ö ÕÙ ÒÓÙ ÔÖÓÔÓ ÓÒ Ð Ý ÙÖ ÙÒ ÙÐ Ö Ò ÙÖ Ô Ý Õ٠г ÒØÖ Ø ÙÒ ÙÐ Ö Ò ÙÖ Ô Ý ÕÙ Ð ÓÖØ º Ö Ò ÙÖ ÖÓÒØ ÓÒØ ÓÒ Ù Ø ÑÔ Ø Ö Ø Ö Ø ÕÙ Ù Ý Ø Ñ º Ö Ò ÙÖ ³ ÒØÖ Ð Ñ ÒØ Ö Ò ÙÖ ÓÖØ ÆÓÙ ÓÑÑ ÒÓÖ Ò ÙÒ ØÖ Ö Ò Ò Ö Ð Ø Ù ÔÓ ÒØ ÚÙ Ñ Ø Ñ Ø ÕÙ Ø ÒÓÙ ÐÐÓÒ Ö ÙÒ ÝÔÓØ ØÖ Ö ØÖ Ø Ú ÙÖ Ð ÓÑÔÓÖØ Ñ ÒØ Ð Ñ ÒØ º

7 ½º¾º Ä Ë Ä Å ÆÌË Ë ËË ÊÎÁËË Å ÆÌ˺ ÆÓÙ ÒÓÙ ÓÖÒ ÖÓÒ ØÙ Ö Ð Ð Ñ ÒØ Ø Ô Ö Ù Ø Ð Ý Ø Ñ µ Ð Ò Ö º ÓÑÑ ÒØ Ò Ö Ø Ð Ð Ñ ÒØ ËÙÔÔÓ ÓÒ ÕÙ³ ÙÒ Ö Ò ÙÖ ³ ÒØÖ E 1 ÓÖÖ ÔÓÒ ÙÒ Ö Ò ÙÖ ÓÖØ S 1 Ñ Ñ ÕÙ³ E 2 ÓÖÖ ÔÓÒ S 2 º ÆÓÙ ÖÓÒ ÕÙ Ð Ý Ø Ñ Ø Ð Ò Ö ÙÒ ÒØÖ E 1 + E 2 ÓÖÖ ÔÓÒ Ð ÓÖØ S 1 + S 2 º Ù ÔÓ ÒØ ÚÙ Ñ Ø Ñ Ø ÕÙ Ð ÑÔÐ ÕÙ ÕÙ Ð ÕÙ Ø ÓÒ Ö ÒØ ÐÐ ÕÙ Ö ÒØ Ð Ý Ø Ñ Ó ÒØ ÕÙ Ø ÓÒ Ö ÒØ ÐÐ Ð Ò Ö Ó ÒØ ÓÒ Ø ÒØ º Ð Ð Ñ Ø ÓÖØ Ñ ÒØ Ð ÑÓ Ð Ø ÓÒ Ð Ñ ÒØ Ñ ÕÙ Ø ÓÒ ÓÒØ Ð ÙÐ Õ٠гÓÒ Ö ÓÙ Ö Ö Ð Ø Ú Ñ ÒØ Ð Ñ Òغ ÇÒ ÔÓÙÖÖ ÓÒ ÓÒ Ö Ö ÕÙ Ð ÖÚ Ñ ÒØ Ð Ò Ö Ö ÔÖ ÒØ ÒØ ÙÒ ÑÓ Ð Ð Ñ ÒØ Ö Ý Ø Ñ ÖÚ Ò ÐÓ ÕÙ º ÁÐ Ø Ò Ú ÒØ ÕÙ Ð Ý Ø Ñ ÒÙÑ Ö ÕÙ Ò Ö ÒØÖ ÒØ Ô Ò ØØ Ø ÓÖ º ÈÓÙÖ Ö ÔÐ Ö Ð³ ÙØ ÙÖ ÕÙ Ò Ò ÙÖØÓÙØ Ð ÖÚ Ñ ÒØ Ò ÖÓØ Ø ÓÒ ÙØ Ð Ò Ð Ö Ö ÒÓÙ Ò ÖÓÒ Ô Ö θ e (t) Ð Ö Ò ÙÖ ³ ÒØÖ Ø Ô Ö θ s (t) Ð Ö Ò ÙÖ ÓÖØ º ÍÒ ÕÙ Ø ÓÒ Ö ÒØ ÐÐ Ù ØÝÔ ÔÖ ÒØ Ô ÙØ ÓÒ ³ Ö Ö A m. dm θ e dt m A 1. dθ e dt + A 0.θ e = B n. dn θ s dt n B 1. dθ s dt + B 0.θ Ä Ö ÓÐÙØ ÓÒ Ò Ö Ð ³ÙÒ Ø ÐÐ ÕÙ Ø ÓÒ Ø Ñ Ð Ö ØÓÙØ ÓÑÔÐ ÕÙ Ø Ð Ô Ý Ò ÔÓÙÖ ÑÔÐ Ö Ð Ú ÙØ Ð ÓÒØ ÓÒ Ø Ø ÔÐÙ ÑÔÐ ÕÙ ÓÒ Ù ÖÓÒØ ÕÙ Ø ÓÒ Ð Ö ÕÙ Ù Ð Ù ³ ÕÙ Ø ÓÒ Ö ÒØ ÐÐ º Ä ÓÒØ ÓÒ Ð ÔÐÙ ÑÔÐ ÓÒØ Ð ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ Ø Ð ÔÙ ÙÒ Ø ÑÔ ÕÙ Ò Ò º ÐÐ ÓÒØ Ò Ô Ö Ð ÙÖ ÑÔÐ ØÙ Ø Ð ÙÖ ÔÙÐ Ø ÓÒ Ø ÓÒ ÙÜ Ö Ò ÙÖ Ù ÒØ Ð Ö Ø Ö Öº ÆÓÙ Ú ÖÖÓÒ Ù Ô ØÖ Ù Ú ÒØ ÓÑÑ ÒØ Ö º ³ÙÒ ÔÓ ÒØ ÚÙ ÔÖ Ø ÕÙ ØÓÙØ Ý Ø Ñ ÙÒ ÔÓ ÒØ Ô ÖØ Ò Ð Ø ÑÔ Ø Ð ÙØ ØÙ Ö Ð Ö Ñ ØÖ Ò ØÓ Ö ÓÙØ ÒØ Ù Ö Ñ Ô ÖÑ Ò Òغ ÇÒ ÓÒ Ö ÓÒ ÓÒØ ÓÒ Ù Ø ÑÔ ÒÙÐÐ Ú ÒØ Ð³ Ò ¹ Ø ÒØ 0 Ø Ú Ö ÒØ Ô Ö Ð Ù Ø º Ä ÙÖ ØÙ Ø Ð Ø Ô Ö Ð Ñ Ø Ó Ð ØÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ ÕÙ ÕÙ ÒÓÙ Ú ÖÖÓÒ ÔÐÙ ÐÓ Òº

8 À ÈÁÌÊ ½º Æ Ê ÄÁÌ Ë

9 Ô ØÖ ¾ Ê ÔÖ ÒØ Ø ÓÒ ÓÑÔÐ Ü ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ º ¾º½ ÁÒØÖÓ ÙØ ÓÒ Ä Ô Ý ÕÙ Ø Ð Ò Ò Ò Ö Ðµ ÔÖÓÔÓ ÑÓ Ð Ö ÔÖ ÒØ Ø ÓÒ Ù ÑÓÒ ÕÙ ÒÓÙ ÒØÓÙÖ º ÑÓ Ð ÓÒØ ÙÖ Ð³Ó ÖÚ Ø ÓÒ Ø Ð³ ÜÔ Ö Ò ºÈÓÙÖ Ò Ø Ö Ö ÓÒ ÕÙ Ò ÙØ Ð Ð Ð ÙØ Ö Ñ ÙÖ Ø Ú Ö Ö ÕÙ³ ÐÐ ÓÒØ Ó Ö ÒØ ÒØÖ ÐÐ º Ä Ñ Ø Ñ Ø ÕÙ Ú ÒÒ ÒØ ÙÒ ÓÙØ Ð ÒÓÒØÓÙÖÒ Ð ÔÓÙÖ Ð ºÄ Ö ÙÐØ Ø ³ÙÒ Ñ ÙÖ Ø ÙÒ ÒÓÑ Ö Ù Ò Ð Ö µ Ø Ð Ö Ð Ø ÓÒ ÒØÖ ÒÓÑ Ö ÓÒ Ø ØÙ Ð Ø ÓÖ ÓÒØ ÓÒ ÒÙÑ Ö ÕÙ Ú Ð Ò Ø ÓÒ ÓÒØ ÓÒ Ö Ú ÕÙ ÓÒØ Ð ØÓÙØ ÓÖÑÙÐ Ô Ý ÕÙ º Ä ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÓÒØ ØÖ ÙØ Ð ÔÓÙÖ Ö Ö Ð Ö Ø ÓÒ ³ÙÒ Ý Ø Ñ ÙÒ Ü¹ Ø Ø ÓÒ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙ ÙÒ Ø ÑÔ Ò Ò ÓÙ ÔÖ ÕÙ µº Ò Ø ÐÐ ÓÒØ Ò Ò Ñ ÒØ Ö Ú Ð º Ä ÔÖÓ Ð Ñ Ø ÕÙ Ð ÙÖ Ö ØÙÖ Ø ÐÓÙÖ Ø ÓÒ Ö ÐÐ Ö Ð ÐÙÐ º ÈÓÙÖ Ð ÓÒ ÒÐ Ú Ð Ó ØÙÑ ÔÓÙÖ Ò ÓÒ ÖÚ Ö ÕÙ Ð ÕÙ Ð ØØ º ¾º¾ È Ø Ø Ö ÔÔ Ð Ñ Ø Ñ Ø ÕÙ º Ä ÒÓÑ Ö ÒØ Ö ÔÙ Ð Ö Ø ÓÒÒ Ð Ø Ò Ò Ð ÖÖ Ø ÓÒÒ Ð ÓÒ Ø ØÙ ÒØ Ð³ Ò Ñ Ð Ö Ð ºÁÐ Ô ÖÑ ØØ ÒØ Ñ ÙÖ Ö ÙÒ Ö Ò ÙÖ Ô Ö ÙÒ ÙÐ ÒÓÑ Ö º ÇÖ ÒÓÑ Ö Ù Ö Ò ÙÖ ÓÑÑ Ð Ú Ø ÙÖ µ Ñ Ò ÒØ Ù ÑÓ Ò ØÖÓ ÒÓÑ Ö º ÇÒ ÓÒ Ø Ò Ù Ð ÒÓØ ÓÒ ÒÓÑ Ö ÑÔÐ ÙÒ Ù Ø ÓÖ ÓÒÒ Ò ÒÓÑ Ö Õ٠гÓÒ ÔÔ ÐÐ Ò¹ÙÔÐ Ø º Ä ÔÐÙ ÑÔÐ Ù Ø ÓÒ Ø ØÙ Ð ¾¹ÙÔÐ Ø ÕÙ³ ØÓÖ ÕÙ Ñ ÒØ ÓÒ ÔÔ ÐÐ ÒÓÑ Ö ÓÑÔÐ Ü Ô ÓÑÔÐ Ü ÕÙ Ö Ð ÑÔÐ ÒØ Ò ÐÙÐ ÓÑÑ ÒÓ٠г ÐÐÓÒ ÚÓ Öµº ÓÒ Ø ÓÒ Ò Ö ÑÙÒ Ö Ø Ò Ñ Ð Ð³ÓÔ Ö Ø ÓÒ ÑÙÐØ ÔÐ Ø ÓÒ ÙÜ ÒÓÑ Ö ÓÑÔÐ Ü ÓÒ Ó Ø Ò Ö Ð ÓÖÔ ÓÑÔÐ Ü º ÎÓÝÓÒ Ñ ÒØ Ò ÒØ ÕÙ ÐÕÙ Ò Ø ÓÒ Ä³ ÔÔÐ Ø ÓÒ ÕÙ ÙÒ ÒÓÑ Ö Ù Ò Ð Ö µ ÔÖ Ò ÙÒ Ò Ñ Ð ÒÓÑ Ö Ø ÓÖÖ ÔÓÒ Ö ÙÒ ÓÙ ÔÐÙ ÙÖ µ ÒÓÑ Ö ³ÙÒ ÙØÖ Ò Ñ Ð ÒÓÑ Ö ³ ÔÔ ÐÐ ÙÒ ÓÒØ ÓÒ ÒÙÑ Ö ÕÙ º ij ÔÔÐ Ø ÓÒ ÕÙ ÙÒ ÓÒØ ÓÒ ÒÓÙ Ò³ Ö ÖÓÒ ÔÐÙ ÒÙÑ Ö ÕÙ ÕÙ Ö ÓÙ ÒØ Ò Ùµ ÔÖ Ò ÙÒ Ò Ñ Ð ÓÒØ ÓÒ Ø ÓÖÖ ÔÓÒ Ö ÙÒ ÓÙ ÔÐÙ ÙÖ µ ÒÓÑ Ö ÔÖ Ò ÙÒ Ò Ñ Ð ÒÓÑ Ö ³ ÔÔ ÐÐ ÙÒ ÓÒØ ÓÒÒ ÐÐ º ÉÙ Ò ÒÓÙ ÐÙÐÓÒ ÙÒ ÒØ Ö Ð Ò ÒÓÙ ÓÒ ÙÒ ÓÒØ ÓÒÒ ÐÐ º ij ÔÔÐ Ø ÓÒ ÕÙ ÙÒ ÓÒØ ÓÒ ÔÖ Ò ÙÒ Ò Ñ Ð ÓÒØ ÓÒ Ø ÓÖÖ ÔÓÒ Ö ÙÒ ÙØÖ ÓÒØ ÓÒ ÔÖ Ò ÙÒ ÙØÖ ÓÙ Ð Ñ Ñ µ Ò Ñ Ð ÓÒØ ÓÒ ³ ÔÔ ÐÐ ÙÒ ÓÔ Ö Ø ÙÖ º ÆÓÙ ÓÒÒ ÓÒ ØÓÙ Ð Ö Ú Ø ÓÒ ÕÙ ÓÙÖÒ Ø Ð ÓÒØ ÓÒ Ö Ú ÕÙ Ò ÐÐ Ü Ø µ ³ÙÒ ÓÒØ ÓÒº Ä ÐÓ Ð Ô Ý ÕÙ ÕÙ Ò ÓÒØ Ò Ø ÕÙ Ð Ö ÙÐØ Ø ³ÙÒ ÑÓ Ð Ø ÓÒ ÓÙÑ ÑÓ Ø ÓÒ ÙÐØ Ö ÙÖ ÓÒØ ÙÒ Ö Ò Ù Ö Ú Ò ÓÙ Ö ÚÓ Ö ÐÐ Ü Ø Òغ Ð ÓÒ Ù Ø ËÇ ÇÄ Î Ø Ä ÙÖ ÒØ Ë ÀÏ ÊÌ Ð Ý ÙÒ ÓÒ Ñ Ð Ø Ð Ö Ð Ø ÓÖ ØÖ ÙØ ÓÒ ÙÖ ÙÒ ÓÒØ ÓÒÒ ÐÐ Ð Ò Ö ÙÖ Ð³ Ò Ñ Ð ÓÒØ ÓÒ ϕ(x) ÔÖÓÔÖ Ø Ò Ò ÓÒØ ÒØÖ ÙØÖ Ð Ö Ú Ð Ø Ð³ Ò Ò ºÄ ØÖ ÙØ ÓÒ Ò Ò ÓÒØ ÐÓÖ Ò Ò Ñ ÒØ Ö Ú Ð ÕÙ Ø Ò ÓÑÑÓ ÔÓÙÖ Ð³ Ö ØÙÖ ÕÙ Ø ÓÒ Ö ÒØ ÐÐ º

10 ½¼ À ÈÁÌÊ ¾º Ê ÈÊ Ë ÆÌ ÌÁÇÆ ÇÅÈÄ Ë ÇÆ ÌÁÇÆË ËÁÆÍËÇ Ä Ë Í Ì ÅÈ˺ Ä Ö ÔÖ ÒØ Ø ÓÒ ÓÑÔÐ Ü ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ Ø ÙÖ Ð Ñ Ñ ÔÖÓ Ù ÙÒ ÐÐ ÔÐÙ ÑÓ Ø º ÆÓÙ Ò ÓÒ ÙÒ ÓÒØ ÓÒÒ ÐÐ Ð Ò Ö ÙÖ Ð³ Ò Ñ Ð ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙй Ø ÓÒ ω Ü º Ò Ø Ð ÕÙ Ø ÓÒ Ö ÒØ ÐÐ Ö ÒÓÒØÖ Ò Ô Ý ÕÙ ÓÒØ Ð ÔÐÙ ÓÙÚ ÒØ Ð Ò Ö ÓÒØ Ð ÙÐ ÕÙ ÐÕÙ Ü ÔØ ÓÒ ÔÖ Õ٠гÓÒ Ö ÓÙ Ö º ÕÙ Ø ÓÒ ÓÒØ ÙÒ ÓÒ Ñ Ñ Ö Õ٠гÓÒ Ô ÙØ ÓÒ Ö Ö ÓÑÑ Ð³ Ø ÓÒ Ø ÙÒ ÔÖ Ñ Ö Ñ Ñ Ö Ö ÙÐØ Ø ØØ Ø ÓÒº ij Ø ÓÒ Ô ÙØ ÔÖ Ò Ö Ú Ö ÓÖÑ Ñ Ø Ñ Ø ÕÙ Ñ Ð ÔÐÙ ÑÔÐ Ø Ð ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ Ö ÐÐ Ø Ò Ò Ñ ÒØ Ö Ú Ð Ø Ð Ñ ÒØ Ö Ð Ð Ù Ð ÓÖ ØÓ Ö Ò Ö Ø ÙÖ ÓÙ À ÔÓØ Ú Ö Òغºººµº ÔÐÙ ØÓÙØ ÓÒØ ÓÒ Ô Ö Ó ÕÙ Ù Ø ÑÔ Ô ÙØ ÓÑÔÓ Ö Ò ÙÒ Ö ÇÍÊÁ Ê ÓÑÑ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ º ¾º Ä ÓÒØ ÓÒÒ ÐÐ Ö ÔÖ ÒØ Ø ÓÒ ÓÑÔÐ Ü ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ º ÓÑÑ ÒÓÒ Ô Ö Ð ÔÐÙ ÑÔÐ º ËÓ Ø ÙÒ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ x = X m. cos(ωt + ϕ) ÓÒ ÓÒÒ Ø ω Ø t ØØ ÓÒØ ÓÒ Ø ÒØ Ö Ñ ÒØ Ò Ô Ö Ð ÓÒÒ Ò ÓÒ ÑÔÐ ØÙ X m Ø Ô ϕ ÓÒ Ô Ö ÙÜ ÒÓÑ Ö º ÇÒ Ô ÙØ Ö ÔÖ ÒØ Ö ØØ ÓÒØ ÓÒ ÓÑÑ Ð ÔÖÓ Ø ÓÒ ÙÖ Ð³ Ü ÓÖ Ò ³ÙÒ Ú Ø ÙÖ ØÓÙÖÒ ÒØ ÐÓÒ Ù ÙÖ X m ³ÓÖ Ò Ð³ÓÖ Ò Ü Ø ³ Ò Ð Ú Ð³ Ü ÓÖ Ò ωt + ϕº X m ωt + ϕ Ü ÓÖ Ò Ë ÓÒ ÓÒ Ö ÕÙ ÔÐ Ò Ø Ð ÔÐ Ò ÓÑÔÐ Ü Ú Ø ÙÖ ÔÓÙÖ Ü X m.e j(ωt+ϕ) Ó j 2 = 1 Ù Ú ÒØ Ð ÒÓØ Ø ÓÒ Ô Ý Ò ºÄ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ Ø ÐÓÖ R[X m.e j(ωt+ϕ) ] ÇÖ ÔÓÙÖ ØÓÙØ Ð ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙÐ Ø ÓÒ ω Ð Ø ÖÑ Ò e jωt Ø Ð Ñ Ñ º ÁÐ Ø ÓÒ ÒÙØ Ð Ð³ Ö Ö Ø Ð ÓÒØ ÓÒ Ø ÒØ Ö Ñ ÒØ Ø ÖÑ Ò Ô Ö Ð ÒÓÑ Ö ÓÑÔÐ Ü X m.e jϕ º È Ö ÔÖÓ ÒÓÙ ÓÒ ÓÖÖ ÔÓÒ Ö ÙÒ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙÐ Ø ÓÒ ω ÙÒ ÒÓÑ Ö ÓÑÔÐ Ü ÕÙ Ð Ò Ø ÒØ Ö Ñ Òغ ÆÓÙ ÚÓÒ Ò ÙÒ ÓÒØ ÓÒÒ ÐÐ Ô ÖÑ ØØ ÒØ Ô Ö ³ÙÒ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙй Ø ÓÒ ω ÙÒ ÒÓÑ Ö ÓÑÔÐ Ü º Ë ÓÒ ÑÙÐØ ÔÐ Ð ÓÒØ ÓÒ ÒÙ Ó Ð Ô Ö ÙÒ ÓÒ Ø ÒØ k Ð ÒÓÑ Ö ÓÑÔÐ Ü Ø ÐÙ ¹Ñ Ñ ÑÙÐØ ÔÐ Ô Ö kº Ë ÓÒ Ø Ð ÓÑÑ ÙÜ ÓÙ ÔÐÙ µ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙÐ Ø ÓÒ ω Ð ÒÓÑ Ö ÓÑÔÐ Ü Ö ÔÖ ÒØ ÒØ ØØ ÓÑÑ Ø Ð ÓÑÑ ÒÓÑ Ö ÓÑÔÐ Ü Ö ÔÖ ÒØ ÒØ ÙÒ ³ ÐÐ º ÇÒ Ô ÙØ ÓÒ Ö ÕÙ Ð ÓÒØ ÓÒÒ ÐÐ Ò Ò Ø ÙÒ ÓÒØ ÓÒÒ ÐÐ Ð Ò Ö º ÎÓÝÓÒ Ñ ÒØ Ò ÒØ Ð ÔÖÓ Ð Ñ Ð Ö Ú Ø ÓÒ Ô Ö Ö ÔÔÓÖØ Ù Ø ÑÔ dx dt = ωx m. sin(ωt + ϕ) d dt [X m.e j(ωt+ϕ) ] = jω.x m e j(ωt+ϕ)

11 ¾º º ÆÇÊÅ ÈÊÇ Ä Å ÆÇÌ ÌÁÇÆ ½½ R[jωX m.e j(ωt+ϕ) ] = ωx m. sin(ωt + ϕ) ÇÒ Ö ØÖÓÙÚ Ò Ð Ñ Ñ Ö ÙÐØ Øº Ä Ö Ú Ô Ö Ö ÔÔÓÖØ Ù Ø ÑÔ Ð ÓÒØ ÓÒ x = X m. cos(ωt + ϕ) Ø Ö ÔÖ ÒØ Ô Ö Ð ÑÙÐØ ÔÐ Ø ÓÒ Ô Ö jω Ù ÒÓÑ Ö ÓÑÔÐ Ü Ð Ö ÔÖ ÒØ Òغ ÆÓÙ ÔÔ ÐÐ ÖÓÒ ÓÑ Ò ÑÔÐ ØÙ ÓÑÔÐ Ü Ð³ Ò Ñ Ð ÒÓÑ Ö ÓÑÔÐ Ü Ö ÔÖ ÒØ ÒØ Ð ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙÐ Ø ÓÒ ωº ÆÓÙ Ö Ñ ÖÕÙÓÒ ØÓÙØ Ù Ø ÕÙ ØØ ÓÒØ ÓÒÒ ÐÐ Ø ÒØ Ð Ò Ö Ò Ô ÙØ Ô Ö ÔÖ ÒØ Ö ÔÖÓ Ù Ø ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ Ñ Ñ ÔÙÐ Ø ÓÒº ÆÓÙ Ú ÖÖÓÒ ÔÐÙ ÐÓ Ò ÓÑÑ ÒØ ÓÒØÓÙÖÒ Ö ÔÖÓ Ð Ñ º ÇÒ Ô ÙØ Ö ÙÑ Ö ØÓÙØ Ð Ò Ð Ø Ð Ù Ù Ú ÒØ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÑÔÐ ØÙ ÓÑÔÐ Ü x = X m. cos(ωt + ϕ) X m.e jϕ = X k.x = k.x m cos(ωt + ϕ) k.x m.e jϕ = k.x x 1 + x 2 X m1 e jϕ 1 + X m2 e jϕ 2 = X 1 + X 2 jωx m.e jϕ = jω.x dx dt ¾º ÒÓÖÑ ÔÖÓ Ð Ñ ÒÓØ Ø ÓÒ ÈÓÙÖ Ö ÔÖ ÒØ Ö Ð ÑÔÐ ØÙ ÓÑÔÐ Ü ÓÒ ØÖÓÙÚ Ò Ð Ð ØØ Ö ØÙÖ ØÓÙØ ÓÖØ ÒÓØ Ø ÓÒ x x X X Ä Ð ØØÖ Ñ Ù ÙÐ Ñ Ð ÒØ Ñ Ð Ö ØÓÙØ ØÖ Ð ÔÐÙ ÒÓÑ Ö Ù º Å Ò Ð ØÖÓ Ò Ø ÕÙ Ð Ð ØØÖ V Ø I ÓÒØ ÒÓÖÑ Ð Ô Ö Ð³ ÆÇÊ ÔÓÙÖ Ò Ö Ð Ú Ð ÙÖ ³ÙÒ Ø Ò ÓÒ Ø ³ÙÒ ÓÙÖ ÒØ ÒÙ Ó Ð ÙÖ Ð ÔÔ Ö Ð Ð ØÖ ÕÙ Ù ÓÑÑ Ö º ÇÒ ÓÒ ÙØ Ð Ð ÓÙÐ Ò ÓÙ Ð ÙÖÐ Ò ÔÓÙÖ Ò Ö Ð³ ÑÔÐ ØÙ ÓÑÔÐ Ü º ÕÙ Ó Õ٠гÓÒ Ø ÙÒ ÐÙÐ ÙÖ Ð ÑÔÐ ØÙ ÓÑÔÐ Ü ÓÒ ÔÖ Ò Ð³ ØÙ Ö ÓÙ ³ Ö Ö µ Ô ÓÒ Ò Ð ÓÑ Ò ÑÔÐ ØÙ ÓÑÔÐ Ü ÓÒ ÕÙ ØØ Ð ÓÑ Ò ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÓÙÖ ÒØÖ Ö Ò Ð ÓÑ Ò Ð ÙÖ Ö ÔÖ ÒØ Ø ÓÒ ÕÙ Ò³ ÔÐÙ Ö Ò ÚÓ Ö Ú Ð³ ÆÇʺ ij ÙØ ÙÖ ÔÖÓÔÓ ÓÒ Õ٠гÓÒ Ò Ô Ö ÙÒ ÑÔÐ Ð ØØÖ Ñ Ù ÙÐ Ð Ö ÔÖ ÒØ Ø ÓÒ ÓÑÔÐ Ü ³ÙÒ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ º È Ö Ü ÑÔÐ Ð Ø Ò ÓÒ v(t) = V m. cos(ωt + ϕ) = V 2. cos(ωt + ϕ) ÔÓÙÖÖ Ø ØÖ Ö ÔÖ ÒØ Ô Ö Ð Ð ØØÖ V = V m.e jϕ = V eff 2.e jϕ º Ò Ø Ð Ú Ð ÙÖ Ñ Ü Ñ Ð V m µ ÓÙ V eff µ Ò³ ÔÔ Ö ÒØ ÕÙ³ÙÒ ÙÐ Ó Ð Ò Ù ÐÙк ÁÐ Ò³Ý ÓÒ ÙÙÒ Ñ Ù Ø ÔÓ Ð º ÁÐ ÙØ Ò ÒÓØ Ö ÕÙ ÕÙ Ò ÓÒ Ö ÙÒ Ø ÜØ ÒØ ÕÙ Ò Ä Ì Ð ÓÙÐ Ò Ñ ÒØ Ñ Ò ÙÒ ÓÑÑ Ò ÙÒ ÖÐ Ò ÕÙ Ö Ô Ø ÔÐÙ ÙÖ Ó Ú ÒØ Ð ÐÓÒ Ù Ô Ò Ð º Ò ÙÒ Ñ Ñ ÓÖ Ö ³ ÓÒ Ô ÙØ Ö Ñ ÖÕÙ Ö Õ٠г ØÙ Ò ÐÓ¹ ÜÓÒÒ Ö ÔÖ ÒØ Ö Ò Ð Ð ÚÖ Ô Ö Ö Ø Ö Ö Ð vecteurs Ò³ Ø Ô ØÖ ÙÖ Ù º ij ÙØ ÙÖ Ò³ Ñ ÚÙ ÙÒ ÓÐÐ Ù Ö Ù Ö Ö ÙÒ Ö Ø Ö Ö Ù Ø Ð Ùº Ä ÙÖÐ Ò Ô Ö ÙÒ Ø Ò ØØ Ñ ÒØ ÔÐÙ ÑÔÐ º ÉÙ Ò Ð Ö Ò ÙÖ ÒÙ Ó Ð Ö ÔÖ ÒØ Ö Ø ÐÐ ¹Ñ Ñ ÙÒ Ú Ø ÙÖ Ò Ð ØØÖ Ñ Ù ÙÐ Ð Ò³Ý ÙÙÒ ÒÓÒÚ Ò ÒØ ÓÒ ÖÚ Ö Ð Ñ Ñ ÒÓØ Ø ÓÒ ÓÒ Ø ÓÒ Ò ÔÖ Ö Ð ÓÒØ ÜØ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÓÙ ÑÔÐ ØÙ ÓÑÔÐ Ü º ¾º Ü ÑÔÐ ØÓÙØ ÑÔÐ ÒÚ ÓÒ Ð ³ÙÒ ÖÙ Ø Ô Ò Ð ØÖÓ Ò Ø ÕÙ Ò Ð³ ÔÔÖÓÜ Ñ Ø ÓÒ Ö Ñ ÕÙ Ø ¹ Ø ÓÒÒ Ö º ÖØ Ò ÔÖ Ö ÒØ Ö ºÊºÉºËº Ð Ö Ð Ú Ù Ô ÒØ Ñ Ð ÔÐÙ ÔÙÖ Ñ Ð ÙÖ Ø ÔÐ Ö ÈÓÙÖ ÙÒ Ö Ø Ò ÓÙ ÙÒ Ö ØÓÖ ÓÒ ÔÖ Ö µ ÓÒ Ô ÙØ Ö Ö ÔÓÙÖ ÙÒ ÓÒØ ÓÒ Ù Ø ÑÔ ÕÙ ÐÓÒÕÙ v R = R.i

12 ½¾ À ÈÁÌÊ ¾º Ê ÈÊ Ë ÆÌ ÌÁÇÆ ÇÅÈÄ Ë ÇÆ ÌÁÇÆË ËÁÆÍËÇ Ä Ë Í Ì ÅÈ˺ Ú Ð Ð ÓÒ ÔÓÙÖ ÙÒ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ º ÈÓÙÖ ÙÒ Ó Ò ³ Ò ÙØ Ò ÔÖÓÔÖ L ÓÒØ ÓÒ Ò Ð Ð Ö Ø Ò ÓÒ v L = L. di dt Ø ÔÓÙÖ ÙÒ ÓÒ Ò Ø ÙÖ Ð ÓÙÖ ÒØ i Ø Ð ÓÙÖ ÒØ ³ Ñ Ò Ö ÙÖ Ð ÖÑ ØÙÖ º ÓÙÖ ÒØ Ò ØÖ Ú Ö Ô Ð ÓÒ Ò Ø ÙÖ ÕÙ ÓÒØ ÒØ ÙÒ ÓÐ ÒØ ÒØÖ Ð ÖÑ ØÙÖ i = dq dt = C. dv C dt ÇÒ ÚÓ Ø ÕÙ ÒÓÙ ÚÓÒ Ð Ö ÙÜ Ö Ú Ô Ö Ö ÔÔÓÖØ Ù Ø ÑÔ Ð Ø ÓÒ ÓÑÑÓ ³ÙØ Ð Ö Ð ÑÔÐ ØÙ ÓÑÔÐ Ü ÔÓÙÖ Ð ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙÐ Ø ÓÒ ωº ËÙÔÔÓ ÓÒ ÕÙ Ð ØÖÓ Ð Ñ ÒØ Ó ÒØ Ò Ö Ø ÕÙ Ð ÓÙÖ ÒØ Ó Ø Ð Ñ Ñ ÔÓÙÖ ØÓÙ º È ÓÒ Ò Ð ÓÑ Ò ÑÔÐ ØÙ ÓÑÔÐ Ü º ÒÓÒ Ô Ö I г ÑÔÐ ØÙ ÓÑÔÐ Ü Ù ÓÙÖ ÒØ Ô Ö V R г ÑÔÐ ØÙ ÓÑÔÐ Ü Ð Ø Ò ÓÒ ÙÜ ÓÖÒ Ð Ö Ø Ò Ô Ö V L г ÑÔÐ ØÙ ÓÑÔÐ Ü Ð Ø Ò ÓÒ ÙÜ ÓÖÒ Ð Ó Ò Ø Ô Ö V C г ÑÔÐ ØÙ ÓÑÔÐ Ü Ð Ø Ò ÓÒ ÙÜ ÓÖÒ Ù ÓÒ Ò Ø ÙÖº ÈÓÙÖ Ð Ö Ø Ò ÓÒ Ö Ø V R = R.I ÔÓÙÖ Ð Ó Ò V L = jlωi Ø ÔÓÙÖ Ð ÓÒ Ò Ø ÙÖ I = jcωv C º ³ Ø Ð Õ٠гÓÒ ÚÓ Ø Ð³ ÒØ Ö Ø ØØ ÒÓØ Ø ÓÒ Ö ÔÓÙÖ Ð Ð Ñ ÒØ Ò Ö ÓÒ ÓÙØ Ð Ø Ò ÓÒ ÓÒ Ð ÙÖ ÑÔÐ ØÙ ÓÑÔÐ Ü Ø Ð Ò³Ý ÔÐÙ Ö Ú Ø V C = I/jCωº ÓÖØ ÕÙ Ð Ø Ò ÓÒ ØÓØ Ð V ÙÜ ÓÖÒ Ù ÖÙ Ø ³ Ö Ø V = R.I + jlωi + I jcω V = (R + jlω + 1 jcω )I ÇÒ Ò Ø ÐÓÖ Ð Ö ÔÔÓÖØ V/I = Z ÑÔ Ò ÓÑÔÐ Ü Ù Ö٠غ Ä ÒÓÖ ÖØ Ò ÔÖ Ö ÒØ Ö Ö Z ÔÓÙÖ Ð Ø Ò Ù Ö Ð³ ÑÔ Ò Ö ÐÐ Õ٠гÓÒ ÙØ Ð Ø Ð Ý ÙÒ Ñ Ð ÕÙ Ò Ð ÒÓÑ Ö ÓÑÔÐ Ü Ò³ Ø ÒØ Ô Ù ÔÖÓ Ö ÑÑ Ì ÖÑ Ò Ð ÒØ ÕÙ º ij Ò ÒÒ ÑÔ Ò Ö ÐÐ Ø Ò Ø Ð ÑÓ ÙРг ÑÔ Ò ÓÑÔÐ Ü º ÁÐ ÙØ ÚÓ Ö Ú ÚÖ Ú ÓÒ Ø ÑÔ Ø Ò ÓÒÒ Ö Ú ÙÜ ÓÙØ Ð ÕÙ Ò Ð ÓÙØ Ð ØÙ Ð ÓÒØ ÔÐÙ Ô Ö ÓÖÑ ÒØ º ÉÙ ÖØ ÒÓÖ ³ÙÒ Ö Ð ÐÙÐ ¾º ÔÖÓÔÓ Ð ÒÓØ ÓÒ ³ ÑÔ Ò ÓÑÔÐ Ü ÓÑÑ ÒÓÙ Ú ÒÓÒ Ð ÚÓ Ö ÙÖ ÙÒ Ü ÑÔÐ ÑÔÐ Ð ÒÓØ ÓÒ ³ ÑÔ Ò ÓÑÔÐ Ü Ò³ Ø Ò ÕÙ Ò Ð ÓÑ Ò ÑÔÐ ØÙ ÓÑÔÐ Ü ÕÙ Ø Ð Ö ÙÐØ Ø ³ÙÒ ÓÒØ ÓÒÒ ÐÐ Ð Ò Ö º Ð ÙÔÔÓ ÓÒ ÕÙ Ð ÓÒ Ø ÒØ ÙØ Ð Ò Ð ÐÙÐ Ð Ó ÒØ Ø Ú Ñ Òغ Ò Ö Ð Ø Ð Ò³ Ò Ø Ö Òº Ä Ö Ø Ò Ó Ñ ÕÙ ³ÙÒ ÓÒ ÙØ ÙÖ Ô Ò Ð Ø ÑÔ Ö ØÙÖ Ø ÓÒ Ù ÓÙÖ ÒØ ÕÙ Ð ØÖ Ú Ö º Ä ÐÙÐ Ø Ò Ð ÙÔÔÓ ÒØ ÓÒ Ø ÒØ Ò³ Ø ÕÙ³ ÔÔÖÓ º ÓÑÑ Ò ØÓÙ Ð ÑÓ Ð Ð Ý ÙÒ Ô ÖØ ³ Ò ÖØ ØÙ Ø Ð Ò ÙØ Ô ÔÖ Ò Ö Ð Ö ÙÐØ Ø ÐÙÐ ÔÓÙÖ ÙÒ Ú Ö Ø ÒØ Ò Ð º Ñ Ñ ÔÓÙÖ ÙÒ Ó Ò Ú ÒÓÝ Ù Ñ Ò Ø Õ٠г Ò ÙØ Ò ÔÖÓÔÖ ÕÙ Ò ÓÒ Ô ÙØ ÒÓÖ Ð Ò Ö Ô Ò Ù ÓÙÖ ÒØ ÕÙ Ð ØÖ Ú Ö º Ä Ð ØÖ ÕÙ ÓÒ Ò Ø ÙÖ Ò ÓÒØ Ô Ô Ö Ø Ñ ÒØ Ð Ò Ö Ø Ô Ò ÒØ Ð Ø Ò ÓÒ ÙÜ ÓÖÒ º Ò Ð Ú Ð ÙÖ C Ô ÙØ Ú Ö Öº ij ÔÔÖÓÜ Ñ Ø ÓÒ ÕÙ Ø ÓÒ Ö ÒØ ÐÐ Ð Ò Ö Õ٠гÓÒ Ø Ò Ö ÓÙ Ö Ó Ø ÓÒ ØÖ Ø ÑÔ ¹ Ö Ô Ö Ð Ø ÕÙ Ð ÓÒ Ø ÒØ ÕÙ ³Ý ØÖÓÙÚ ÒØ Ò Ð ÓÒØ Ô ØÓÙØ Øº Ð Ò Ó Ø Ö Ò ÔÖ Ú Ò Ö ÒÓ Ð Ú Ø Ø Ø Ø Ø Ð ÙÖ Ò Ð Ö Õ٠г ØÙ Ô ÒÓÑ Ò ÒÓÒ Ð Ò Ö Ø Ò ÔÐ Ò ÜÔ Ò ÓÒ Ø Ó Ö ÙÒ ÓÑ Ò Ö Ö ØÖ Ú Ø º Ë Ð ÒÓØ ÓÒ ³ ÑÔ Ò ÓÑÔÐ Ü ÙÒ Ö Ò ÒØ Ö Ø ØÓÖ ÕÙ Ø ÔÖ Ø ÕÙ Ò Ð ØÖÓ Ò Ø ÕÙ ÓÙÖ ÒØ ÒÙ Ó ÙÜ Ð Ò³ Ò Ø Ô Ñ Ñ Ò ³ ÙØÖ ÓÑ Ò Ð Ô Ý ÕÙ º Ò Ô ÖØ ÙÐ Ö Ò Ð Ô ØÖ ÙÖ Ð ÓÒ ÓÒÓÖ Ò Ð Ù Ð ÔÖÓ Ö ÑÑ È Ñ Ò Ò Ö Ð³ ÑÔ Ò ÓÙ Ø ÕÙ ÐÓÖ ÕÙ ØØ ÒÓØ ÓÒ Ò³ ÙÙÒ ÔÔÐ Ø ÓÒ ÔÖ Ø ÕÙ º Ò ÔÐÙ Ð Ò Ø ÓÒ ÕÙ Ò Ø ÓÒÒ Ò Ø Ô ÔÔ Ð ÙÜ ÑÔÐ ØÙ ÓÑÔÐ Ü ÐÐ Ø Ò Ð Ý ÔÐÙ ³ÙÒ Ñ Ð Ð³ ÔÓÕÙ Ó Ð Ò ÐÓ Ð ØÖ ÕÙ ¹Ñ Ò ÕÙ Ú ÒØ Ð Ú ÙÖ ÒØ ÕÙ ÕÙ Ò ÓÒ Ú Ø Ô ÑÓÝ Ò ÐÙÐ Ù ÔÙ ÒØ ÕÙ³ Ù ÓÙÖ ³ Ù º ÍÒ Ø ÐÐ Ö Ò ÙÖ Ò³ ³ ÒØ Ö Ø ÕÙ ÐÐ Ø ÓÒ Ø ÒØ ÙÖ ØÓÙØ Ð ÓÑ Ò Ñ ÙÖ º Ò ½ г ÙØ ÙÖ ÔÙ ÑÓÒØÖ Ö ÕÙ Ð Ñ ÙÖ ÔÓ ÒØ Ô Ö ÔÓ ÒØ Ù ÑÓ ÙРг ÑÔ Ò ÓÙ Ø ÕÙ ³ÙÒ Ñ Ø Ö Ù

13 ¾º º ÈÊÇ ÍÁÌ Í ÇÆ ÌÁÇÆË ËÁÆÍËÇ Ä Ë Í Ì ÅÈË Å Å ÈÍÄË ÌÁÇÆ ½ ÔÐ Ò ÔÐ Ò ÙÒ ÑÔ ÓÒÓÖ Ò ÓÒ ÔÐ Ò Ú Ö Ø Þ ÓÖØ Ñ ÒØ ³ÙÒ ÔÓ ÒØ ÙÒ ÙØÖ º ÕÙ Ù ÓÒ Ö Ø ÙÖ Ê Ö ÕÙ Ô Ö Ø ÙÒ Ú Ð ÙÖ ÓÒ Ø ÒØ ÒØÖÓ Ù Ö ÓÑÑ ÓÒ Ø ÓÒ ÙÜ Ð Ñ Ø Ò Ð ÕÙ Ø ÓÒ ÔÖÓÔ Ø ÓÒº Å Ð Ö ÙÐØ Ø Ò Ø ÓÒØ ÙÓÙÔ Ô Ò Ö Ô Ò Ö Ò Ð ÓÑÑÙÒ ÙØ ÒØ ÕÙ º ÇÒ ÔÓÙÖÖ Ø ÙÔÔÖ Ñ Ö ØØ ÒÓØ ÓÒ Ù ÔÖÓ Ö ÑÑ Ò ÕÙ ØÓÙØ Ð Ò ÐÓ Ð ØÖ ÕÙ ¹Ñ Ò ÕÙ ÕÙ Ò Ô ÙÚ ÒØ ÕÙ ØÖÓÙ Ð Ö Ð³ ÔÖ Ø ÒÓ Ð Ú º Ò³ Ø Ô Ô Ö ÕÙ Ô ÒÓÑ Ò Ö ÒØ ÓÒØ ÑÓ Ð Ô Ö Ð Ñ Ñ ÕÙ Ø ÓÒ ÕÙ³ Ð ÓÒØ Ò ÐÓ Ù ³ Ø ÑÔÐ Ñ ÒØ Õ٠гÓÒ Ò³ Ô ³ ÙØÖ ÕÙ Ø ÓÒ ÔÖÓÔÓ Öº ¾º ÈÖÓ Ù Ø ÙÜ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ Ñ Ñ ÔÙÐ Ø ÓÒ ÆÓÙ Ú ÒÓÒ ÚÓ Ö ÕÙ Ð ÓÒØ ÓÒÒ ÐÐ Ð Ò Ö Ò Ô ÖÑ Ø Ô ØÖ Ø Ö Ò Ò Ö Ðº ÇÒ Ô ÙØ Ñ Ð Ö ØÓÙØ ³Ý Ö ØØ Ö Ò Ð ÐÙÐ ³ÙÒ ÔÖÓ Ù Ø ÑÓÝ Ò ÙÖ ÙÒ Ô Ö Ó Ð ³ Ø Ð ³ÙÒ ÐÙÐ ³ ÒØ Ö Ð Ò ÕÙ ÓÒÒ ÔÓÙÖ Ö ÙÐØ Ø ÙÒ ÒÓÑ Ö º ÈÓÙÖ ÐÐÙ ØÖ Ö Ð ÒÚ ÓÒ Ð ÐÙÐ Ð ÔÙ Ò ÑÓÝ ÒÒ Ò ÙÒ ÖÙ Ø Ð ØÖ ÕÙ ØÖ Ú Ö Ô Ö ÙÒ ÓÙÖ ÒØ i(t) = I m cos ωt Ú ÙÒ Ø Ò ÓÒ ÙÜ ÓÖÒ v(t) = V m cos(ωt + ϕ)º Ä ÔÙ Ò ÑÓÝ ÒÒ ÙÖ ÙÒ Ô Ö Ó Ø Ò Ô Ö P moy = 1 T P moy = V mi m T T 0 T 0 v(t).i(t).dt = V mi m T cos(2ωt + ϕ) + cos ϕ dt 2 ÁÐ Ö Ø P moy = V mi m cos ϕ 2 V eff.i eff Ø Ð ÔÙ Ò ÔÔ Ö ÒØ º Ê Ú ÒÓÒ ÙÜ ÑÔÐ ØÙ ÓÑÔÐ Ü T 0 cos(ωt + ϕ). cos ωt.dt T 0 = V eff I eff cos ϕ V = V m.e jϕ I = I m.e j.0 cos(2ωt + ϕ).dt = 0 Ä ÔÖÓ Ù Ø ÙÜ ÓÒÒ V m.i m.e jϕ º ÈÓÙÖ Ó Ø Ò Ö Ð ÔÙ Ò ÑÓÝ ÒÒ Ð Ù Ø ÔÖ Ò Ö Ð Ô ÖØ Ö ÐÐ ÔÖÓ Ù Ø Ú Ô Ö 2 P moy = R( V.I 2 ) Å ÒÓÙ Ø ÓÒ Ð Ò ÙÒ Ô ÖØ ÙÐ Ö Ó Ð ÓÙÖ ÒØ Ø Ø Ð³ÓÖ Ò Ô º Ë Ñ ÒØ Ò ÒØ Ð³ÓÖ Ò Ô Ø Ø ÕÙ ÐÓÒÕÙ ÔÓÙÖ Ð ÓÙÖ ÒØ Ó Ø ϕ Ð ÐÙÐ Ú Ð ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÖ ÒØ ÓÒÒ Ö Ø P moy = V m.i m cos(ϕ ϕ ) 2 Ò Ö Ú Ò ÒØ ÙÜ ÑÔÐ ØÙ ÓÑÔÐ Ü I = I m.e jϕ Ð ÔÖÓ Ù Ø V.I = V m.i m.e j(ϕ+ϕ ) Ò ÓÒÚ ÒØ Ô Ö Ð ÙØ ÙÒ Ò Ò Ð Ô Ö ÒØ º ÁÐ Ù Ø ÔÖ Ò Ö Ð ÓÑÔÐ Ü ÓÒ Ù Ù I ÕÙ ÒÓÙ ÒÓØ ÖÓÒ I = I m.e jϕ ÓÒ Ö ÑÔÐ j Ô Ö j)º ÐÓÖ V.I = V m.i m.e j(ϕ ϕ ) P moy = R( V.I 2 ) ÇÒ Ô ÙØ Ö Ñ ÖÕÙ Ö ÕÙ Ð Ö ÙÐØ Ø Ò Ð ÓÒØ ÒØ cos(ϕ ϕ ) ÕÙ Ð Ñ Ñ Ú Ð ÙÖ ÕÙ cos(ϕ ϕ) ÓÖØ ÕÙ P moy = R( V.I 2 ) = R(V.I 2 ) ÓÒ ÔÐÙ Ò Ö Ð Ð Ú Ð ÙÖ ÑÓÝ ÒÒ Ù ÔÖÓ Ù Ø ÙÜ ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ ÔÙÐ Ø ÓÒ ω Ø Ð Ð ÑÓ Ø Ð Ô ÖØ Ö ÐÐ Ù ÔÖÓ Ù Ø Ð³ ÑÔÐ ØÙ ÓÑÔÐ Ü Ð³ÙÒ Ô Ö Ð ÓÑÔÐ Ü ÓÒ Ù Ù Ð³ ÙØÖ º Ò Ô ÖØ ÙÐ Ö ÓÒ Ö ØÖÓÙÚ ØÖ Ð Ñ ÒØ Ð ÒÓØ ÓÒ Ú Ð ÙÖ ÕÙ Ø Ð Ö Ò ÖÖ Ù ÖÖ ÑÓÝ Ò ÊÓÓØ Å Ò ËÕÙ Ö Ò Ò Ð ÓÙ ÊÅ˵ I 2 eff = R( I.I 2 ) = I2 max 2 I eff = I max 2

14 ½ À ÈÁÌÊ ¾º Ê ÈÊ Ë ÆÌ ÌÁÇÆ ÇÅÈÄ Ë ÇÆ ÌÁÇÆË ËÁÆÍËÇ Ä Ë Í Ì ÅÈ˺

15 Ô ØÖ ÌÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ º½ Ò Ø ÓÒº Ä ØÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ Ø ÓÖÖ ÔÓÒ Ö ÙÒ ÓÒØ ÓÒ f Ù Ø ÑÔ t ÒÙÐÐ ÔÓÙÖ t < 0 ÙÒ ÓÒØ ÓÒ F Ð Ú Ö Ð p Ô Ö Ó ÔÔ Ð ÔÙÐ Ø ÓÒ ÓÑÔÐ Ü p = α + j.ω µ Ô Ö Ð³ ÒØ Ö Ð F(p) = 0 f(t). exp( p.t).dt ÓÑÑ Ð Ò ³ Ø Ô ³ÙÒ ÓÙÖ Ñ Ø Ñ Ø ÕÙ ÒÓÙ ÔØ ÖÓÒ ÕÙ Ò ØÓÙ Ð Ó ÒÓÙ Ò ÙÖÓÒ Ó Ò ØØ ÒØ Ö Ð ÓÒÚ Ö º ÓÑÑ ÔÓÙÖ Ð Ö ÔÖ ÒØ Ø ÓÒ ÓÑÔÐ Ü ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ Ð Ø ÓÑÑÓ ÓÒÚ Ò Ö ÕÙ Ð Ð ØØÖ Ñ ÒÙ ÙÐ Ö ÔÖ ÒØ ÒØ ÓÒØ ÓÒ Ù Ø ÑÔ Ø ÕÙ Ð Ð ØØÖ Ñ Ù ÙÐ Ö ÔÖ ÒØ ÒØ Ð ÓÒØ ÓÒ Ð Ú Ö Ð pº ÇÒ ÒÓØ ÓÙÚ ÒØ Ð ØÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ Ô Ö Ð ÝÑ ÓÐ F = L(f) Ó ÕÙ Ø ÔÐÙ ÓÙÔÐ Ô Ö F(p) f(t) Ø ÓÒ Ð Ø F(p) Ñ f(t)º Ð Ñ Ñ ÓÒ ÓÒ Ô ÙØ Ö Ö f(t) F(p) f(t) ÓÖ Ò Ð F(p)º ÆÓØ ÓÒ ÙØ Ð Ô Ö Ó Ð ØÖ Ò ÓÖÑ Ø ÓÒ ÊËÇÆ¹Ä ÈÄ ÕÙ ³ Ö Ø F(p) = p. 0 f(t). exp( pt).dt ËÓÒ ÙÐ Ú ÒØ Ø ÓÒ ÖÚ Ö Ð Ò ØÙÖ Ô Ý ÕÙ Ö Ò ÙÖ Ô Ö Ü ÑÔÐ ÙÒ ÐÓÒ Ù ÙÖ Ö Ø ÙÒ ÐÓÒ Ù ÙÖ Ñ ÐÐ ³ ÙØÖ ÒÓÒÚ Ò ÒØ º Ò ÓÙÖ ÒÓÙ ÙØ Ð ÖÓÒ ÜÐÙ Ú Ñ ÒØ Ð ØÖ Ò ÓÖÑ ¹ Ø ÓÒ Ä ÈÄ º º¾ ÐÙÐ ÕÙ ÐÕÙ ØÖ Ò ÓÖÑ º º¾º½ ÐÓÒ ÙÒ Ø º¹ ÇÒ Ð³ ÔÔ ÐÐ ÒÓÖ ÓÒØ ÓÒ À Î ËÁ ³ Ø ÙÒ ÓÒØ ÓÒ ÒÙÐÐ ÔÓÙÖ t < 0 Ò Ú ÑÑ Òص Ø Ð 1 ÔÓÙÖ t > 0 1 f t ÐÙÐÓÒ ØÖ Ò ÓÖÑ 0 exp( p.t).dt = [ exp( p.t) p ] 0 F(p) = 1 p º ÇÒ ÑÓÒØÖ Ð Ñ Ñ ÓÒ ÕÙ Ð ØÖ Ò ÓÖÑ ³ÙÒ ÓÒØ ÓÒ ÒÙÐÐ ÔÓÙÖ t < 0 Ø Ð k ÔÓÙÖ t > 0 Ú ÙØ k/pº ½

16 ½ À ÈÁÌÊ º ÌÊ ÆË ÇÊÅ ÌÁÇÆ Ä ÈÄ º¾º¾ ÁÑÔÙÐ ÓÒ ÙÒ Ø º¹ ÁÐ ³ Ø Ò Ø Ð ØÖ ÙØ ÓÒ ÁÊ Ð Ñ Ø ÕÙ Ò ε 0 Ð ÓÒØ ÓÒ ÕÙ Ú ÙØ 1/ε ÕÙ Ò 0 < t < εº ÐÙÐÓÒ ³ ÓÖ Ð ØÖ Ò ÓÖÑ Ù Ö Ò Ù F(p) = exp( p.ε). exp( pt).dt = ε p.ε exp( p.ε) 1 p.ε ÉÙ Ò ε 0 Ôµ Ø Ò Ú Ö 1º Ø ÓÒ ÑÙÐØ ÔÐ Ð Ö Ò Ù Ô Ö k F(p) Ø Ò Ú Ö kº f t º¾º ÓÒØ ÓÒ Ð Ò Ö Ù Ø ÑÔ º¹ ³ Ø ÙÒ ÓÒØ ÓÒ Ð ÓÖÑ f(t) = a.t Ó a Ø ÙÒ ÓÒ Ø ÒØ Ø ÕÙ Ø ÒÙÐÐ ÔÓÙÖ t < 0º f ØØ ÓÒØ ÓÒ Ô ÙØ ØÖ ÓÒ Ö ÓÑÑ ÙÒ ÓÒØ ÓÒ Ú Ø ÓÒ Ø ÒØ Ò ÙÒ ÖÚ Ñ ÒØ Ñ ¹ Ò ÕÙ º ÐÙÐÓÒ ØÖ Ò ÓÖÑ Ä ÈÄ t F(p) = 0 a.t.exp( pt).dt = [a.t. exp( p.t) ] 0 p 0 a. exp( pt).dt p F(p) = 0 + [a. exp( pt) p 2 ] 0 = a p 2 Ò ÒØ Ö ÒØ Ô Ö Ô ÖØ º º ÈÖÓÔÖ Ø Ð ØÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ º º º½ Ø ÓÒº¹ ij ÒØ Ö Ø ÓÒ Ø ÒØ ÙÒ ÓÔ Ö Ø ÓÒ Ð Ò Ö Ð ØÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ Ø Ù Ð Ò Ö º Ð ÓÖØ ÓÒ ÓÒ ÔÓÙÖÖ Ö Ö F 1 (p) f 1 (t) F 2 (p) f 2 (t) F 1 (p) + F 2 (p) f 1 (t) + f 2 (t) F(p) f(t) k.f(p) k.f(t)

17 º º ÈÊÇÈÊÁ Ì Ë Ä ÌÊ ÆË ÇÊÅ ÌÁÇÆ Ä ÈÄ º ½ º º¾ Ö Ú Ø ÓÒ f(t)º¹ ËÓ Ø Ö Ö Ö Ð ØÖ Ò ÓÖÑ f (t) = df/dtº ËÙÔÔÓ ÓÒ ÕÙ F(p) Ó Ø Ð ØÖ Ò ÓÖÑ f(t) Ø ÐÙÐÓÒ Ð ØÖ Ò ÓÖÑ df/dt 0 df dt. exp( p.t).dt = 0 exp( pt).df = [exp( pt).f(t)] 0 + p. f(t). exp( pt).dt 0 ÌÓÙ ÓÙÖ Ò ÒØ Ö ÒØ Ô Ö Ô ÖØ º ÁÐ Ö Ø ÐÓÖ L(f ) = f(0) + p.f(p)ºä ÓÒØ ÓÒ Ø ÒØ ÒÙÐÐ Ú ÒØ 0 Ð ØÖ Ò ÓÖÑ Ð Ö Ú Ú ÒØ p.f(p)º Ê Ð ÔÖ Ø ÕÙ ÕÙ Ò ÓÒ Ö Ú ÙÒ ÓÒØ ÓÒ Ò Ð ÓÑ Ò Ø ÑÔÓÖ Ð Ð Ö Ú ÒØ ÑÙÐØ ÔÐ Ö Ô Ö p ÓÒ Ñ Ò Ð ÓÑ Ò ØÖ Ò ÓÖÑ Ä ÈÄ º ÇÒ Ö ØÖÓÙÚ Ð ÙÒ Ö ÙÐØ Ø Ò ÐÓ Ù ÐÙ ÑÔÐ ØÙ ÓÑÔÐ Ü ÓÒØ ÓÒ ÒÙ Ó Ð Ù Ø ÑÔ º º º ÁÒØ Ö Ø ÓÒ f(t)º¹ ÇÒ ÑÓÒØÖ Ù Ð Ñ ÒØ ÕÙ F(p) f(t) ÐÓÖ F(p) p t 0 f(t).dt Ä Ø ÖÑ 1/p Ò Ø ÙÖ Ò Ð ÓÑ Ò ØÖ Ò ÓÖÑ Ä ÈÄ Ò ÕÙ ÙÒ ÒØ Ö Ø ÓÒ Ò Ð ÓÑ Ò Ù Ø ÑÔ º º º Ì ÓÖ Ñ Ð Ú Ð ÙÖ Ò Ð º¹ ËÓ Ø F(p) f(t) Ë ÕÙ Ò t f(t) Ø Ò Ú Ö ÙÒ Ð Ñ Ø λ ÓÒ Ô ÙØ ÑÓÒØÖ Ö ÕÙ p.f(p) Ø Ò Ú Ö Ð Ñ Ñ Ð Ñ Ø ÕÙ Ò p 0 Ø Ö ÔÖÓÕÙ Ñ Òغ lim[f(t)] t = lim[p.f(p)] p 0 lim[f(t)] t 0 = lim[p.f(p)] p

18 ½ À ÈÁÌÊ º ÌÊ ÆË ÇÊÅ ÌÁÇÆ Ä ÈÄ

19 Ô ØÖ ÓÒØ ÓÒ ØÖ Ò ÖØ ³ÙÒ Ð Ñ ÒØ ÓÙ ³ÙÒ Ý Ø Ñ º½ ÁÒØÖÓ ÙØ ÓÒº Ä ÙÜ Ô ØÖ ÔÖ ÒØ ÒÓÙ ÓÒØ ÓÙÖÒ ÙÜ Ñ Ø Ó ³ ØÙ ÕÙ Ø ÓÒ Ö ÒØ ÐÐ Ð Ò Ö Ó ÒØ ÓÒ Ø ÒØ º Ò Ð ÙÜ ÓÒ Ö Ñ Ò ÙÒ ÕÙ Ø ÓÒ Ö ÒØ ÐÐ ÙÒ ÕÙ Ø ÓÒ Ð Ö ÕÙ ÔÐÙ Ð Ñ Ò ÔÙÐ Öº Ò Ð ÓÑ Ò ÑÔÐ ØÙ ÓÑÔÐ Ü ÓÒ Ö ÑÔÐ Ð ÝÑ ÓÐ d/dt Ô Ö ÙÒ ÑÙÐØ ÔÐ Ø ÓÒ Ô Ö j.ω Ò Ð ÓÑ Ò ØÖ Ò ÓÖÑ Ä ÈÄ ÓÒ Ö ÑÔÐ Ð ÝÑ ÓÐ d/dt Ô Ö ÙÒ ÑÙÐØ ÔÐ Ø ÓÒ Ô Ö pº ÇÒ Ô ÓÒ ÓÖÑ ÐÐ Ñ ÒØ ³ÙÒ ÓÑ Ò Ð³ ÙØÖ Ò Ö ÑÔÐ ÒØ p Ô Ö j.ω Ó٠г ÒÚ Ö º ³ÙÒ ÔÓ ÒØ ÚÙ ÓÖÑ Ð Ð Ø ÔÐÙ Ð ³ Ö Ö p ÕÙ j.ω ÒÓÙ ÐÐÓÒ ÓÒ ÓÑÑ Ò Ö Ô Ö ØÙ Ö Ð ÔÖÓ Ð Ñ Ò Ð ÓÑ Ò ØÖ Ò ÓÖÑ Ä ÈÄ Ø Ó Ò Ø ÒÓÙ Ô ÖÓÒ Ò Ð ÓÑ Ò ÑÔÐ ØÙ ÓÑÔÐ Ü º ÆÓÙ ÚÓÒ ÕÙ Ð ÓÒØ ÓÒ Ù Ø ÑÔ Ö ÒØ Ö ÔÖ ÒØ Ô Ö Ð ØØÖ Ñ ÒÙ ÙÐ º Ò ÑÔÐ ØÙ ÓÑÔÐ Ü ÓÙ Ò ØÖ Ò ÓÖÑ Ä ÈÄ ÒÓÙ ÓÔØ ÖÓÒ Ð Ð ØØÖ Ñ Ù ÙÐ º ËÓ Ø ÓÒ ÙÒ Ð Ñ ÒØ ÓÙ ÙÒ Ý Ø Ñ µ ÓÒØ Ð Ö Ò ÙÖ ³ ÒØÖ Ø θ e (t) Ø Ð Ö Ò ÙÖ ÓÖØ θ s (t)º ij ÕÙ Ø ÓÒ Ö ÒØ ÐÐ Ð Ò Ö Ó ÒØ ÓÒ Ø ÒØ ÕÙ Ò Ö Ø Ð ÓÑÔÓÖØ Ñ ÒØ Ô ÙØ ³ Ö Ö A m. dm θ e dt m A 1. dθ e dt + A 0.θ e = B n. dn θ s dt n B 1. dθ s dt + B 0.θ s º¾ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ØÖ Ò ÓÖÑ Ä ÈÄ º ÆÓÙ Ò ÖÓÒ Ô Ö Θ e (p) Ð ØÖ Ò ÓÖÑ Ä ÈÄ θ e (t) Ø Ô Ö Θ s (p) Ð ØÖ Ò ÓÖÑ Ä ÈÄ θ s (t)º ij ÕÙ Ø ÓÒ Ö ÒØ ÐÐ ÔÖ ÒØ ØÖ Ò ÓÖÑ Ò Ð³ ÕÙ Ø ÓÒ Ð Ö ÕÙ Ù Ú ÒØ [A m.p m A 1.p + A 0 ]Θ e = [B n.p n B 1.p + B 0 ]Θ s Ð ÓÖØ ÒÓÙ ÔÓÙÖÖÓÒ Ö Ö Ð Ö ÔÔÓÖØ Ð ØÖ Ò ÓÖÑ Ð Ö Ò ÙÖ ÓÖØ Ð ØÖ Ò ÓÖÑ Ð Ö Ò ÙÖ ³ ÒØÖ ÓÙ Ð ÓÖÑ Θ s Θ e = A m.p m A 1.p + A 0 B n.p n B 0.p + B 0 = W(p) W(p) Ø ÔÔ Ð Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ò Ð ÓÑ Ò ØÖ Ò ÓÖÑ Ä ÈÄ Ð³ Ð Ñ ÒØ ÓÙ Ù Ý Ø Ñ µº ÇÒ ÓÒ Ø Ø ÕÙ ØØ ÓÒØ ÓÒ ØÖ Ò ÖØ Ø ÙÒ Ö Ø ÓÒ Ö Ø ÓÒÒ ÐÐ Ð Ú Ö Ð p Ö ÔÔÓÖØ ÙÜ ÔÓÐÝÒÑ ÓÒØ Ð Ó ÒØ ÓÒØ ÓÒ Ø ÒØ º ÇÖ ÒÓÙ ÚÓÒ ÕÙ ØÓÙØ ÔÓÐÝÒÑ ³ÙÒ Ú Ö Ð ÓÖÑ ÐÐ p Ô ÙØ ÓÑÔÓ Ö Ò ÙÒ ÔÖÓ Ù Ø Ø ÙÖ Ù ÔÖ Ñ Ö ÓÙ Ù ÓÒ Ö Ò p ÙÔÔÓ ÔÓÙÖ Ð³Ó ÓÒ Ö Ðº Ä Ø ÖÑ Ù ÔÖ Ñ Ö Ö ÔÓÙÖÖ ³ Ö Ö τ.p ÓÙ (1 + τ.p) Ð Ú Ú ÒØÙ ÐÐ Ñ ÒØ ÙÒ ÔÙ Ò ÒØ Ö º Ä Ø ÖÑ Ù ÓÒ Ö ³ Ö Ö (1 + 2.S.τ.p + τ 2.p 2 ) ÐÙ Ö ØÖ Ö Ö Ñ ÒØ Ð Ú ÙÒ ÔÙ Ò ÒØ Ö º ÇÒ Ö Ñ ÖÕÙ Ö ÕÙ p Ð Ñ Ò ÓÒ ³ÙÒ ÔÙÐ Ø ÓÒ Ò s 1 τ Ð Ñ Ò ÓÒ ³ÙÒ Ø ÑÔ Ò s Ø S Ø ÙÒ ÒÓÑ Ö Ò Ñ Ò ÓÒº Ä Ø ÙÖ Ò Ö Ø ÓÒØ ÐÓÖ Ò Ñ Ò ÓÒ ÕÙ ÙÔÔÓ ÕÙ³ Ò Ø ÙÖ ØÖÓÙÚ ÙÒ ÓÒ Ø ÒØ Ý ÒØ Ð Ñ Ò ÓÒ Ð Ö Ò ÙÖ ØÙ º ½

20 ¾¼ º À ÈÁÌÊ º ÇÆ ÌÁÇÆ ÌÊ ÆË ÊÌ ³ÍÆ Ä Å ÆÌ ÇÍ ³ÍÆ Ë ËÌ Å ÓÒØ ÓÒ ØÖ Ò ÖØ Ò Ö Ñ ÖÑÓÒ ÕÙ º ÁÐ Ù Ø Ö ÑÔÐ Ö p Ô Ö j.ω Ø ÒÓÙ Ó Ø ÒÓÒ Ð Ö ÔÔÓÖØ ÙÜ ÔÓÐÝÒÑ Ð Ú Ö Ð j.ωº Ä ÔÖÓ Ù Ø ÑÓÒÑ ÓÙ ØÖ ÒÑ ÔÖ ÒØ ³ Ö ÖÓÒØ Ð Ö Ñ ÒØ Ö ÑÑ ÒØ ÔÓÙÖ ÓÒ ÓÖÑ Ö Ð³Ù º Ò τ.p Ú ÒØ j.ω/ω τ.p Ö 1 + j.ω/ω 0 Ø Ð ØÖ ÒÑ S.j.ω/ω 0 + (j.ω/ω 0 ) 2 º Ä Ö Ñ ÖÑÓÒ ÕÙ ÓÒÒ ÔÐÙ Ð Ñ ÒØ Ð Ù ÙÒ Ö ÔÖ ÒØ Ø ÓÒ Ö Ô ÕÙ ÕÙ Ð ØÖ Ò ÓÖÑ Ä ÈÄ º ÍÒ ÒÓÑ Ö ÓÑÔÐ Ü Ø Ö Ø Ö Ô Ö ÓÒ ÑÓ ÙÐ Ø ÓÒ Ö ÙÑ ÒØ ÕÙ ÓÒØ ÓÒØ ÓÒ ωº Ò ÙÒ ÔÖÓ Ù Ø ÒÓÑ Ö ÓÑÔÐ Ü Ð³ Ö ÙÑ ÒØ Ù ÔÖÓ Ù Ø Ø Ð ÓÑÑ Ö ÙÑ ÒØ Ø ÖÑ Ù ÔÖÓ Ù Ø ÕÙ ÑÔÐ Ö Ð³ Ø ÓÒ ÙÖ ÙÒ Ö Ô ÕÙ º Å Ð ÑÓ ÙÐ Ù ÔÖÓ Ù Ø Ø Ð ÔÖÓ Ù Ø ÑÓ ÙÐ ÕÙ Ö ÔÐÙ Ð ØÖ Ö ÙÖ ÙÒ Ö Ô ÕÙ º ÇÒ Ô ÓÒ Ù ÔÖÓ Ù Ø Ð ÓÑÑ Ò ÙØ Ð ÒØ Ð ÐÓ Ö Ø Ñ º ij ØÙ Ø ÔÖ ³ÙØ Ð Ö Ð Ð ÕÙ ÓÒØ Ü Ó Ð ÐÓ Ö Ø Ñ Ñ Ð ³ÙÒ Ö ÔÔÓÖØ ÔÙ Ò ÓÙ Ú Ò Ø Ó Ð ÐÓ Ö Ø Ñ Ñ Ð Ù Ö ÔÔÓÖØ ÙÜ Ö Ò ÙÖ ÓÒØ Ð ÖÖ Ø ÔÖÓÔÓÖØ ÓÒÒ Ð ÙÒ ÔÙ Ò º ÇÒ Ò ÖÖ Ú Ò Ð Ö ÔÖ ÒØ Ø ÓÒ Ö Ô ÕÙ Ç º ÇÒ ØÖ ÙÜ Ö Ô Õ٠гÙÒ Ö ÔÖ ÒØ ÒØ 20. log Ò ÓÒØ ÓÒ k.log ω ÐÐ ÐÓ Ö Ø Ñ ÕÙ Ò ωµ Ø Ð³ ÙØÖ Ö ÔÖ ÒØ ÒØ Ð³ Ö ÙÑ ÒØ ϕ Ò ÓÒ¹ Ø ÓÒ k.log ωº ËÙÖ Ð³ ÐÐ ÐÓ Ö Ø Ñ ÕÙ ω ÓÒ Ò Ø ÙÜ ÒØ ÖÚ ÐÐ ÙÒ ÓØ Ú ÕÙ Ø Ð Ø Ò ÒØÖ ω Ø 2.ω Ø Ð ÕÙ Ø Ð Ø Ò ÒØÖ ω Ø 10.ωº º Ö ÑÑ Ç j.ω/ω 0 ÇÒ ÓÑÑ Ò Ò Ú ÑÑ ÒØ Ô Ö Ð ÔÐÙ ÑÔÐ º ÒÓÑ Ö Ø ÙÒ Ñ Ò Ö ÔÙÖ ÓÒ Ö ÙÑ ÒØ Ú ÙØ ÓÒ π/2º ÇÒ Ò ÓÙÚ ÒØ Ô Ö G = 20. log = 20. log(ω/ω 0 ) ÕÙ Ø Ð Ò Ò Ð Ð ØÖÓÒ Ò º ij ÐÐ ÐÓ Ö Ø Ñ ÕÙ ÔÙÐ Ø ÓÒ Ø Ö Ù Ö Ø Ñ ÒØ Ò Ú Ð ÙÖ ÐÐ ¹ ÔÓÙÖ ÑÔÐ Öº Ë ÙÖ Ð³ Ü ÓÖ ÞÓÒØ Ð x = k.log ω ÐÓÖ 20. log ω = 20.x/kº G Ø ÓÒ Ö ÔÖ ÒØ Ô Ö ÙÒ ÖÓ Ø Ô ÒØ Ô Ö ω = ω 0 G = 0 Ø ÓÒ Ø ω = 2.ω G = 6 db Ð Ô ÒØ Ø 6 db/octave ÓÙ Ò 20 db/décadeº G +6 db/octave ω 0 k.log ω +20 db/décade ϕ π/2 k.log ω ÇÒ ÚÙ ÕÙ ØÓÙØ ÔÓÐÝÒÑ ÔÓÙÚ Ø Ñ ØØÖ ÓÙ Ð ÓÖÑ ³ÙÒ ÔÖÓ Ù Ø ÑÓÒÑ ÒÑ Ø ØÖ ¹ ÒÑ Ú ÒØÙ ÐÐ Ñ ÒØ ÙÒ ÔÙ Ò ÒØ Ö º Ò Ð ³ÙÒ Ö Ø ÓÒ Ö Ø ÓÒÒ ÐÐ Ð Ý ÙÒ ÔÓÐÝÒÑ Ù ÒÙÑ Ö Ø ÙÖ Ø ÙÒ ÔÓÐÝÒÑ Ù ÒÓÑ Ò Ø ÙÖº ÇÒ Ô ÙØ ÓÒ Ö Ö ÕÙ Ð ÒÓÑ Ò Ø ÙÖ Ô ÙØ Ô Ö Ù ÒÙÑ Ö Ø ÙÖ Ú ÙÒ ÔÙ Ò ÒØ Ö Ò Ø Ú º ÇÒ ÙÖ ÓÒ ØÖ Ø Ö ÙÒ ÕÙ Ñ ÒØ ÙÒ ÔÖÓ Ù Ø Ø ÙÖ Ú ÔÙ Ò ÒØ Ö ÔÓ Ø Ú Ø Ò Ø Ú º È Ö Ü ÑÔÐ Ð ÑÓÒÑ j.ω/ω 0 ØÖÓÙÚ ÓÙÚ ÒØ Ù ÖÖ Ù ÒÙÑ Ö Ø ÙÖº ÁÐ Ø ÐÓÖ Ö ÔÖ ÒØ ÙÖ Ð ÓÙÖ Ù Ò Ô Ö ÙÒ ÖÓ Ø Ô ÒØ +12 db/octave Ô ÒØ Ô Ö ω = ω 0 Ø Ô Ö ÙÒ Ô

21 º º Á Ê ÅÅ Ç 1 + J.ω/ω 0 º ¾½ ϕ = π ÙÖ Ð ÓÙÖ Ô º Ñ Ñ ÑÓÒÑ Ô ÙØ Ù ØÖÓÙÚ Ö Ù ÒÓÑ Ò Ø ÙÖ Ø ÓÒ Ð Ö Ñ Ò Ù ÒÙÑ Ö Ø ÙÖ Ð ÔÖ Ò Ð ÓÖÑ [j.ω/ω 0 ] 1 º ÁÐ Ø ÐÓÖ Ö ÔÖ ÒØ ÙÖ Ð ÓÙÖ Ò Ô Ö ÙÒ ÖÓ Ø Ô ÒØ 6 db/octave Ô ÒØ Ô Ö Ð ÔÓ ÒØ ω = ω 0 Ø Ô Ö ÙÒ Ô ϕ = π/2 ÙÖ Ð ÓÙÖ Ô º º Ö ÑÑ Ç 1 + j.ω/ω 0 º ÇÒ Ú ÓÑÑ Ò Ö Ô Ö Ö Ö Ö Ð ÝÑÔØÓØ Ù Ö ÑÑ Òº ÉÙ Ò ω << ω 0 Ð Ú Ð ÙÖ Ð ÓÒØ ÓÒ Ø ÔÖ Ø ÕÙ Ñ ÒØ Ð Ð³ÙÒ Ø ÓÖØ ÕÙ G = 20. log(1) = 0º ij ÝÑÔØÓØ ÔÓÙÖ ω < ω 0 Ö ÓÒ Ð³ Ü ωº ÈÓÙÖ ω >> ω 0 ÓÒ ÔÓÙÖÖ Ò Ð Ö 1 Ú ÒØ j.ω/ω 0 Ø ÓÒ Ö ØÓÑ ÙÖ Ð ÓÒØ ÓÒ ØÙ ÔÐÙ Ùغ Ô ÖØ Ö ω 0 г ÝÑÔØÓØ Ø Ð Ñ ¹ ÖÓ Ø Ô ÒØ 6 db/octave Ô ÒØ Ô Ö Ð ÔÓ ÒØ ω = ω 0 º ÁÐ ÒÓÙ Ù Ø ÔÐ Ö ÙÒ ÔÓ ÒØ Ô Ö Ö ÔÔÓÖØ ÙÜ ÝÑÔØÓØ ÔÓÙÖ ØÖ Ö Ð ÓÙÖ º Ä ÔÐÙ ÑÔÐ Ø Ó Ö ω = ω 0 º ÐÓÖ G = 20. log 1 + j = 20. log (2) = 3 dbº Ð Ñ Ñ ÓÒ ÓÒ Ö Ð ÝÑÔØÓØ Ð ÓÙÖ Ô º ÈÓÙÖ ω << ω 0 ÓÒ ÚÓ Ø Ñ ÒØ ÕÙ ϕ = 0º ij ÝÑÔØÓØ Ø Ð Ñ ¹ ÖÓ Ø ÙÖ Ð³ Ü ω Ø ÖÑ Ò ÒØ Ò ω 0 º ÈÓÙÖ ω ØÖ Ö Ò ÓÒ Ö ØÓÑ ÙÖ Ð ÓÒØ ÓÒ ÚÙ ÔÐÙ ÙØ Ø ϕ = π/2º ÁÐ Ö Ø ÐÙÐ Ö Ð³ Ö ÙÑ ÒØ ÔÓÙÖ ω = ω 0 Ó Ø Ð³ Ö ÙÑ ÒØ 1 + j ÕÙ Ú ÙØ π/4º ÓÒ Ô ÙØ ÐÓÖ ØÖ Ö Ð ÓÙÖ Ù Ú ÒØ G 3 db ω 0 k.log ω ϕ π/2 π/4 ω 0 k.log ω Ë Ñ ÒØ Ò ÒØ ÓÒ ÒÚ Ð Ñ Ñ ÒÑ Ð ÔÙ Ò 1 Ó Ø Ù ÒÓÑ Ò Ø ÙÖµ ÓÒ Ó Ø ÒØ Ð³ ÝÑÔ¹ ØÓØ ÔÓÙÖ ω >> ω 0 Ô ÒØ 6 db/octave Ø ³ Ö ÙÑ ÒØ π/2º ÆÓÙ Ð ÓÒ Ù Ð Ø ÙÖ Ð Ó Ò Ö Ð Òº Ä ÓÙÖ Ò Ó Ø ÒÙ ÓÖÖ ÔÓÒ ÒØ ÙÒ ÐØÖ Ô ¹ Ù ÔÖ Ñ Ö ÓÖ Ö º Ë ÓÒ ÑÙÐØ ÔÐ Ô Ö j.ω/ω 0 Ð ÓÒØ ÓÒ ÔÖ ÒØ Ð Ð Ø ÙÖ ØÖÓÙÚ Ö ØÖ Ð Ñ ÒØ Õ٠гÓÒ ÙÒ ÐØÖ Ô ¹ ÙØ Ù ÔÖ Ñ Ö ÓÖ Ö º º Ö ÑÑ Ç [1 + j.2.s.ω/ω 0 + (j.ω/ω 0 ) 2 ] 1 º ÆÓÙ ÚÓÒ Ó ØØ Ó ¹ Ð ØÖ ÒÑ Ù ÓÒ Ö Ù ÒÓÑ Ò Ø ÙÖ Ö ³ Ø Ð Ð ÔÐÙ Ö ÕÙ Òغ ÁÐ ÓÖÖ ÔÓÒ Ù ÐØÖ Ô ¹ Ù ÓÒ ÓÖ Ö º Ò ÔÐÙ Ð ÔÙÐ Ø ÓÒ ω 0 ÒÓÙ ÚÓÒ ÙÒ Ó ¹ ÒØ S Ò Ñ Ò ÓÒ Õ٠гÓÒ ÔÔ ÐÐ Ó ÒØ ³ ÑÓÖØ Ñ Òغ ÁÐ Ø ÙØ Ð ÐÓÖ Õ٠гÓÒ ³ ÒØ Ö ÙÜ ÖÚ Ñ ÒØ º Ò Ð ÒÒ 1920 ÓÒ ÙØ Ð Ø Q = 1/(2.S) ÔÔ Ð Ø ÙÖ ÙÖØ Ò ÓÒ Ö Ð ÖÙ Ø Ð ØÖ ÕÙ Ø ÒØ ÙÖØÓÙØ ÙØ Ð ÓÑÑ ÐØÖ Ô ¹ Ò Ò ØÖÓ Ø º ÈÓÙÖ Ð ÖÚ ¹ Ñ ÒØ ÒÓÙ Ò ÓÒÒ ÖÓÒ ØØ ÒÓØ Ø ÓÒº ÈÓÙÖ ÑÔÐ Ö Ð³ Ö ØÙÖ ÐÙÐ Ð Ø ÓÑÑÓ Ô Ö Ò ÑÓ Ö Ù Ø Ò ÓÒ Ò Ö Ô Ö

22 ¾¾ À ÈÁÌÊ º ÇÆ ÌÁÇÆ ÌÊ ÆË ÊÌ ³ÍÆ Ä Å ÆÌ ÇÍ ³ÍÆ Ë ËÌ Å ν = ω/ω 0 Ð ÔÙÐ Ø ÓÒ Ö Ù Ø Ò Ñ Ò ÓÒµ Ø Ð ØÖ ÒÑ Ú ÒØ [1 + 2.S.j.ν ν 2 ] 1 = [1 ν S.j.ν] 1 ÐÙÐÓÒ ³ ÓÖ Ð ÝÑÔØÓØ º ÈÓÙÖ ν ØÖ Ô Ø Ø Ð ÓÒØ ÓÒ Ú ÙØ 1 Ð Ò G = 0 db Ø Ð³ Ö ÙÑ ÒØ ϕ = 0º ÈÓÙÖ ν ØÖ Ö Ò Ð³ ÝÑÔØÓØ Ù Ò Ø ÙÒ ÖÓ Ø Ô ÒØ 12 db/octave Ô ÒØ Ô Ö ω = ω 0 Ø Ð³ ÝÑÔØÓØ Ð³ Ö ÙÑ ÒØ Ú ÙØ πº ÈÓÙÖ ν = 1 г Ö ÙÑ ÒØ Ú ÙØ π/2 Ø ØÓÙØ Ð ÓÙÖ Ô Ô ÖÓÒØ Ô Ö ÔÓ Òغ ÈÓÙÖ Ð Ò Ð ÐÙÐ Ø ÙÒ Ô Ù ÔÐÙ ÓÑÔÐ ÕÙ Ò Ø Ð Ú ÙØ G = 20. log [1 ν 2 ] S 2.ν 2 = 10. log[1 + 2.(2.S 2 1)ν 2 + ν 4 ] ÆÓÙ Ó Ø ÒÓÒ ÙÒ ØÖ ÒÑ ÖÖ Ò ν 2 ÔÓ ÓÒ ν 2 = X > 0 Ð ØÖ ÒÑ Ú ÒØ 1+2.(2.S 2 1).X +X 2 º Ä ÔÖ Ñ Ö Ó ÒØ Ø ÒØ ÔÓ Ø Ð Ô Ö Ô Ö ÙÒ Ñ Ò ÑÙÑ ÔÓÙÖ X = 1 2.S 2 º ÇÖ Ð ÙØ X > 0 ÓÒ 2.S 2 < 1 ÓÙ S < 1/ 2º ØÖ ÒÑ Ø ÒØ Ù ÒÓÑ Ò Ø ÙÖ Ð Ò Ô Ö Ô Ö ÙÒ Ñ Ü ÑÙÑ ÔÓÙÖ S < 1/ 2º È Ö ÐÐ ÙÖ Ð Ö Ñ Ò ÒØ Ù ØÖ ÒÑ Ú ÙØ (2.S 2 1) 2 1 = 4.S 4 4.S 2 = 4.S 2 (S 2 1)ºÁÐ Ò³ Ø ÔÓ Ø ÕÙ ÔÓÙÖ S > 1 S > 0º Ò ÓÒ Ø ÓÒ Ð ØÖ ÒÑ ÙÜ Ö Ò Ö ÐÐ Ø Ô ÙØ Ñ ØØÖ ÓÙ Ð ÓÖÑ ³ÙÒ ÔÖÓ Ù Ø ÙÜ ÒÑ Ù ÔÖ Ñ Ö Ö º È Ö Ü ÑÔÐ ÔÓÙÖ S = 1 Ð ÓÒØ ÓÒ ³ Ö Ö Ø [1 + j.ν] 2 º ÇÒ ÚÓ Ø ÓÒ ÕÙ ÔÓÙÖ S > 1 ÓÒ Ø Ö Ñ Ò ÙÒ ÔÐÙ ÑÔÐ ÕÙ ÒÓÙ Ð ÖÓÒ ÓØ º ÁÐ ÒÓÙ ÙØ ÐÙÐ Ö Ð Ú Ð ÙÖ Ù Ò ÔÓÙÖ ν = 1 Ó Ø G = 20. log(2.s)º ÇÒ ÚÓ Ø ÕÙ ÔÓÙÖ S = 1/2 G = 0 db ÔÓÙÖ S = 1/ 2 G = 3 db Ø ÔÓÙÖ S = 1 G = 6 dbº ÇÒ Ö ÔÔ ÐÐ ÕÙ log(2) = 0, 30103º ÈÓÙÖ S = 1/ 2 Ð Ú Ð ÙÖ X ÔÓÙÖ Ð Ñ Ü ÑÙÑ Ø X = 0 ÓÒ Ð Ñ Ü ÑÙÑ Ø ÙÖ Ð³ ÝÑÔØÓØ ÓÖ ¹ ÞÓÒØ Ð º ÈÓÙÖ S = 1/2 X = 1/2 Ø ω m = ω 0 / 2 Ø Ð Ò Ú ÙØ G = 10. log(3/4) = 1, 2 dbº Ú Ú Ð ÙÖ ÒÓÙ ÔÓÙÖÖÓÒ ØÖ Ö ØÖÓ ÓÙÖ ÒØ Ö ÒØ ÔÓÙÖ S = 1/2 S = 1/ 2 S = 1º G db S = 1/2 ω 0 k.log ω 3 6 S = 1 ϕ ω 0 k.log ω π/2 S = 1 π S = 1/2 Ä ÓÙÖ ÕÙ ÒÓÙ Ú ÒÓÒ ØÖ Ö ÚÓÒØ ÒÓÙ Ô ÖÑ ØØÖ Ö ÓÒÒ Ò Ú ÙÜ ØÝÔ ÐØÖ ØÖ Ö Ô Ò Ù º ÆÓÙ ÒÓÙ Ð Ñ Ø ÖÓÒ Ù ÙØ Ù ÐØÖ Ô ¹ ³ÓÖ Ö Ùܺ ÄÓÖ ÕÙ S = 1/ 2 ÒÓÙ ÚÓÒ ÚÙ ÕÙ ÔÓÙÖ ω Ô Ø Ø Ð ÓÙÖ Ò Ø Ø ÔÖÓ Ð³ Ü ÔÙÐ Ø ÓÒ Ù ÕÙ ØÖ Ñ ÓÖ Ö ÔÖ º ØÝÔ ÐØÖ Ø ÔÔ Ð ÐØÖ ÍÌÌ ÊÏÇÊÌÀº Ä Ò ÔÓÙÖ Ð³ÓÖ Ö ÙÜ ³ Ö Ø G db = 10. log[1 + (ω 2 /ω 2 0 )2 ] ÈÓÙÖ S = 1 Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ú ÒØ Ð ÖÖ ³ÙÒ ÒÑ [1 + jω/ω 0 ] 2 Ø Ð Ò Ú ÙØ

23 º º Á Ê ÆÌ Ë ÇÆ ÌÁÇÆË ÌÊ ÆË ÊÌ ³ÍÆ Ë ËÌ Å ËË ÊÎÁº ¾ G db = 10. log[1 + ω 2 /ω0 2]2.º ØÝÔ ÐØÖ Ø ÔÔ Ð ÐØÖ ËË Äº Ò Ô ÒØ Ð³ÓÖ Ö n Ð Ò Ù ÐØÖ ÍÌÌ ÊÏÇÊÌÀ Ø G db = 10. log[1+(ω 2 /ω0 2)n ]º ÕÙ Ø ÕÙ ÕÙ Ð ÕÙ Ó Ø n ÔÓÙÖ ω = ω 0 G = 3 dbº гÓÖ Ö n Ð Ò Ù ÐØÖ ËË Ä Ú ÙØ G db = 10. log[1 + ω 2 /ω0 2]n Ø ÔÓÙÖ ω = ω 0 G = n.3 db º Ö ÒØ ÓÒØ ÓÒ ØÖ Ò ÖØ ³ÙÒ Ý Ø Ñ ÖÚ º º º½ ÓÒØ ÓÒ ØÖ Ò ÖØ ³ Ð Ñ ÒØ Ò Ö º¹ ÓÒ ÖÓÒ Ð Ñ ÒØ Ò Ö ÓÒØ ÓÒ ØÖ Ò ÖØ Ö Ô Ø Ú W 1, W 2, W 3 Ø Ò Ö ÒØ Ô Ð³ÙÒ ÙÖ Ð³ ÙØÖ º ÁÐ Ø ÓÒ ÔÖ Ö ÖÒ Ö ÔÓ ÒØ ÓÒ Ø Õ٠г Ð Ñ ÒØ 2 Ô Ö Ü ÑÔÐ Ò Ö Ø Ô ÙÖ Ð³ Ð Ñ ÒØ 1 Ð ÓÖØ Ð³ Ð Ñ ÒØ 1 Ö Ø Ð Ñ Ñ Õ٠г Ð Ñ ÒØ 2 Ó Ø Ò ÔÐ ÓÙ ÒÓÒº ˳ Ð Ò³ Ò Ø Ô Ò Ð ÙØ Ö ÖÓÙÔ Ö ÙÜ Ð Ñ ÒØ ÔÓÙÖ Ò Ö ÙÒ Ùк Ò Ô ÖØ ÙÐ Ö Ò Ð ÖÙ Ø Ð ØÖ ÕÙ ÙÒ ÖÙ Ø 2 Ò Ö Ø Ô ÙÖ ÙÒ ÖÙ Ø 1 г ÑÔ Ò ³ ÒØÖ Ù ÖÙ Ø 2 Ø ØÖ Ö Ò Ú ÒØ Ð³ ÑÔ Ò ÓÖØ Ù ÖÙ Ø 1º Θ e Θ 1 Θ 2 Θ s W 1 W 2 W 3 Ä ÓÒØ ÓÒ ØÖ Ò ÖØ ØÓØ Ð ³ Ö Ö Θ s Θ e = Θ s Θ 2. Θ 2 Θ 1. Θ 1 Θ e = W 3.W 2.W 1 W = W 1.W 2.W 3 º º¾ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÓÙÚ ÖØ ³ÙÒ Ý Ø Ñ ÖÚ º¹ ÈÓÙÖ ÓÑÑ Ò Ö ÒÓÙ ÒÓÙ ÔÐ ÖÓÒ Ò Ð Ð ÔÐÙ ÑÔÐ Ø ÔÓÙÖØ ÒØ Ð ÔÐÙ Ö ÕÙ ÒØ Ð Ö Ò¹ ÙÖ ÓÖØ Ø Ñ Ñ Ò ØÙÖ ÕÙ Ð Ö Ò ÙÖ ³ ÒØÖ Ø ÒÓÙ ÚÓÙÐÓÒ ÕÙ³ ÐÐ Ù Ú Ð Ñ ÙÜ ÔÓ Ð ØØ ÖÒ Ö º Ä Ò Ö Ø ÐÐ ÒØ Ù Ø Ø ÙÖ ³ ÖØ Ð ÓÖØ ÙÒ ÓÒØ ÓÒ ØÖ Ò ÖØ W Ø Ð Ò Ö ØÓÙÖ ÐÐ ÒØ Ð ÓÖØ Ð³ ÒØÖ Ù Ø Ø ÙÖ ³ ÖØ ÙÒ ÓÒØ ÓÒ ØÖ Ò ÖØ Ð 1º Ø Ø ÙÖ ³ ÖØ Θ e + ε W Θ s 1 2 Ë ÒÓÙ ÓÙÔÓÒ Ð ÓÙÐ Ò ÙÒ ÔÓ ÒØ ÕÙ ÐÓÒÕÙ Ô Ö Ü ÑÔÐ ÐÙ Ñ ÖÕÙ ³ÙÒ ÖÓ Ü Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ù ÔÓ ÒØ 1 Ù ÔÓ ÒØ 2 Ò Ð Ò ÖÙÐ Ø ÓÒ Ù Ò Ðµ ÙÖ ÔÓÙÖ Ú Ð ÙÖ W º ÈÓÙÖ Ð ÒÓÙ ÓÒ Θ e = 0 Ø Ð Ø Ø ÙÖ ³ ÖØ Ò Ð Ò Ù Ò Ð ÕÙ Ð ØÖ Ú Ö º ÔÐÙ ÙÜ ÔÓ ÒØ 1 Ø 2 ÓÒ Ò Ö Ñ ÒØ Ö Ò ÙÖ Ñ Ñ Ô ÓÖØ ÕÙ³ÓÒ ÔÓÙÖÖ ØÙ Ö W Ò Ö Ñ ÖÑÓÒ ÕÙ º Ë Ò ÔÐÙ ÓÒ ÔÖÓ Ù Ø Ð ÓÙÔÙÖ Ò ÙÒ Ò ÖÓ Ø Ð ÓÙÐ Ó Ð Ö Ò ÙÖ ÓÒØ Ð ØÖ ÕÙ ÓÒ ÔÓÙÖÖ Ñ ÙÖ Ö Ð Ò Ø Ð Ô º Ä ÒÓØ ÓÒ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÓÙÚ ÖØ ÓÖÖ ÔÓÒ ÙÒ Ö Ð Ø Ô Ý ÕÙ Ñ ÙÖ Ð ³Ó ÓÒ ÒØ Ö Øº

24 ¾ À ÈÁÌÊ º ÇÆ ÌÁÇÆ ÌÊ ÆË ÊÌ ³ÍÆ Ä Å ÆÌ ÇÍ ³ÍÆ Ë ËÌ Å º º ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÖÑ ³ÙÒ Ý Ø Ñ ÖÚ º¹ Ä ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÖÑ Ø Ô Ö Ò Ø ÓÒ Ð Ö ÔÔÓÖØ T = Θ s /Θ e º ÈÓÙÖ Ð ÐÙÐ ÒÓÙ Ö ÔÔ ÐÓÒ ÕÙ Θ s = ε.w = (Θ e Θ s ).W Ó Ø ÒÓÖ Θ s.(1 + W) = Θ e.w T = W 1 + W Ò Ö Ñ ÖÑÓÒ ÕÙ ÓÒ ÔÙ Ñ ÙÖ Ö Ð Ò Ø Ð Ô Ø ÓÒ ÓÒÒ ØÖ Ð ÑÓ ÙÐ Ø Ð³ Ö ÙÑ ÒØ W º Ä ÐÙÐ T ÔÓÙÖÖ ÓÒ Ö Ô Ö Ð ÒÓÑ Ö ÓÑÔÐ Ü º Å ÔÓÙÖ Ú Ø Ö ØØ Ø Ù Ð Ü Ø ÙÒ ÕÙ Ø ÕÙ Ä Ã ÕÙ ÓÒÒ Ð ÑÓ ÙÐ Ø Ð³ Ö ÙÑ ÒØ Ð ÓÒØ ÓÒ 1/(1 + z) z Ø ÒØ ÙÒ ÒÓÑ Ö ÓÑÔÐ Ü ÑÓ ÙÐ ρ Ø ³ Ö ÙÑ ÒØ ϕº º º Ó Ð Ý Ø Ñ ÙÒ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò Ð Ò Ö ØÓÙÖº¹ Θ e + ε W 1 Θ s W 2 ij ÖÖ ÙÖ ε Ñ ÒØ Ò ÒØ ÔÓÙÖ Ú Ð ÙÖ ε = Θ e W 2.Θ s º ÇÒ ØÓÙ ÓÙÖ Θ s = ε.w 1 ÕÙ ÓÒÒ Θ s = (Θ e W 2.Θ s ).W 1 Θ s.(1 + W 1.W 2 ) = W 1.Θ e ÕÙ ÓÒÒ Ò Ð Ñ ÒØ T = Θ s = Θ e 1 + W 1.W 2 ØØ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÖÑ Ô ÙØ ØÖ Ö ÔÖ ÒØ Ð ÓÒ Ù Ú ÒØ W 1 W W 1.W 2 ij ÒØÖÓ ÙØ ÓÒ ³ÙÒ ÓÒØ ÓÒ ØÖ Ò ÖØ Ò Ð Ò Ö ØÓÙÖ Ö Ú ÒØ ÑÓ Ö Ð ÓÒØ ÓÒ ØÖ Ò ¹ ÖØ Ò ÓÙÐ ÖÑ Ð³ Ò Ñ Ð º ÍÒ Ø Ð ÔÖÓ Ø Þ ÓÙÚ ÒØ ÙØ Ð ÔÓÙÖ Ò Ö Ð ÓÒØ ÓÒ ØÖ Ò ÖØ ³ÙÒ Ð Ñ Òغ ÆÓÙ Ú ÖÖÓÒ ÔÐÙ ÐÓ Ò ÕÙ ØØ Ø ÓÖ ³ ÔÔÐ ÕÙ Ô Ö Ø Ñ ÒØ Ð Ö ØÖÓ Ø ÓÒ Ò Ð ÖÙ Ø Ð ØÖÓÒ ÕÙ º ÈÓÙÖ Ð ÔÐÙ Ò Ò ÓÒ Ø ÐÓÖ ÓÒØÖ ¹Ö Ø ÓÒ º º º ÓÒ Ø ÓÒ ³ ÖÚ Ñ Òغ¹ ÇÒ Ö Ó Ø Ò Ö Θ s = Θ e Ó Ø ÓÒ Θ s /Θ e = 1º ÁÐ ÙØ ÓÒ ÕÙ T = W 1 + W = 1 ØØ Ö Ð Ø ÓÒ Ò³ Ø Ú Ö ÕÙ ÔÓÙÖ W Ò Ò Ð³ ÖÚ Ñ ÒØ Ð Ò³ Ü Ø Ô º ÇÒ ÚÖ ÓÒØ ÒØ Ö ³ÙÒ ÖÚ Ñ ÒØ Ö Ð Ú Ð Ñ Ò ÑÙÑ ³ ÖÖ ÙÖ ÔÓ Ð º

25 Ô ØÖ ËØ Ð Ø ÖÚ Ñ ÒØ º½ ÁÒØÖÓ ÙØ ÓÒ ÆÓÙ ÖÓÒ ÕÙ³ÙÒ ÖÚ Ñ ÒØ Ø Ø Ð ³ ÓÖ Ò Ð³ Ò ØÓÙØ Ø ÓÒ Ð Ö ÔÓÒ Ø ÒÙÐÐ Ò Ù Ø ÓÒ ÐÙ ÔÔÐ ÕÙ ÙÒ Ø ÓÒ Ò Ð Ö ÔÓÒ Ò Ú ÒØ Ô Ò Ò Ù ÓÙØ ³ÙÒ Ø ÑÔ ØÖ ÐÓÒ º Ä ÔÐÙ ÓÙÚ ÒØ Ð Ö Ò ÙÖ ³ ÒØÖ Ø ÓÖØ Ò Ô ÙÚ ÒØ Ô ØÖ Ò Ò Ð Ð Ò Ö Ø Ù Ý Ø Ñ Ò³ Ø ÙÖ ÕÙ³ ÒØÖ Ð Ñ Ø Þ ØÖ Ø º ÍÒ ÑÔÐ Ø ÙÖ Ô Ö Ü ÑÔÐ Ò Ô ÙØ ÓÙÖÒ Ö ÙÒ Ø Ò ÓÒ ÓÖØ ÔÖÓÔÓÖØ ÓÒÒ ÐÐ Ð Ø Ò ÓÒ ³ ÒØÖ ÕÙ³ ÒØÖ Ð Ð Ñ Ø Ð Ø Ò ÓÒ ³ Ð Ñ ÒØ Ø ÓÒº ijÙÒ Ö Ö Ó Ð ÙÜ Ö Ò ÙÖ Ô ÙÚ ÒØ ØÖ Ò Ò Ø ÐÙ Ó Ð ³ Ø ³ Ò Ð ÖÓØ Ø ÓÒ ØÓÙØ Ù ÑÓ Ò Ò Ø ÓÖ º Ò Ø Ñ Ò ÕÙ Ñ ÒØ Ð Ü Ò ÒØ Ô Ö ³Ù Ö Ø Ð ÙÖ Ú Ð ÖÓØ Ø ÓÒ Ò³ Ø Ô Ò Ò º ÈÓÙÖ Ö ÙÒ ØÙ Ü Ù Ø Ú Ð Ø Ð Ø Ð Ø ÓÒ ÔÐ Ö Ò Ð ÓÑ Ò Ð ØÖ Ò ÓÖÑ ¹ Ø ÓÒ Ä ÈÄ Ø ³ÙØ Ð Ö Ð ØÖ Ò ÓÖÑ Ø ÓÒ ÒÚ Ö ÔÓÙÖ Ö Ô Ö Ò Ð ÓÑ Ò Ù Ø ÑÔ º Ò Ð Ö ³ÙÒ Ø ÓÖ Ð Ñ ÒØ Ö ÓÒ Ô ÙØ ÓÒØ ÒØ Ö ³ÙÒ Ö Ø Ö ÔÐÙ ÑÔÐ Ò Ö ÔÖ ÒØ Ø ÓÒ Ç º º¾ Ö Ø Ö Ø Ð Ø ÑÔÐ Ò Ð Ö ÑÑ Ç º Ê ØÓÒ ÔÓÙÖ Ð³ Ò Ø ÒØ Ò Ð Ó Ð ÓÙÐ Ö ØÓÙÖ ÙÒ ÓÒØ ÓÒ ØÖ Ò ÖØ Ð Ð³ÙÒ Ø º Ä ÓÒØ ÓÒ ØÖ Ò ÖØ Ð Ò Ö Ø W(jω) Ø ÐÐ ³ÙÒ ÐØÖ Ô ¹ Ñ ÖÖ ÒØ ω = 0 Ø ÔÓ ÒØ ÙÒ ÔÙÐ Ø ÓÒ ÓÙÔÙÖ ω c ÕÙ Ò G = 0º ÆÓÙ ÓÑÑ ØÓÙ ÓÙÖ Ò Ð³ ÔÔÖÓÜ Ñ Ø ÓÒ Ö Ñ ÕÙ Ø Ø ÓÒÒ Ö ³ Ø Ö ÕÙ Ð Ô ÒÓÑ Ò ÔÖÓÔ Ø ÓÒ ÓÒØ Ò Ð º Ë ÔÓÙÖ ω c Ð Ô ϕ = π Ð Ø Ø ÙÖ ³ ÖØ Ö Ø Ð Ø ÙÒ Ô 2.π г ÒØÖ Ð Ò Ö Ø W(jω c ) = 1 Ø Ð Ý Ø Ñ ÓÙÖÒ Ø ÙÒ Ó ÐÐ Ø ÓÒ Ð ÔÙÐ Ø ÓÒ ω c º ÁÐ Ø ÓÒ Ò Ø Ð º ÁÐ Ò Ø Ñ Ñ ϕ < πº ÍÒ Ö Ø Ö ÑÔÐ Ø ÓÒ ÓÒ Ö Ö ÕÙ ÔÓÙÖ ω c Ð Ô ϕ Ø ÙÔ Ö ÙÖ π Ð Ý Ø Ñ Ö Ø Ð º ÁÐ Ð Ö ³ ÙØ ÒØ ÔÐÙ ÕÙ Ð Ö Ò π + ϕ c = ϕ Ö Ö Ò ϕ c < 0µº ¾

26 ¾ À ÈÁÌÊ º ËÌ ÁÄÁÌ Ë ËË ÊÎÁËË Å ÆÌË G db ω c ϕ k.log ω π ϕ Ä Ö Ò ϕ Ø ÔÔ Ð Ð Ñ Ö Ô ÔÐÙ ÐÐ Ø Ð Ú ÔÐÙ Ð Ý Ø Ñ Ø Ø Ð º Ò Ð ÔÖ Ø ÕÙ ÓÒ ÓÒ Ö ÕÙ³ÙÒ Ñ Ö Ô ÓÑÔÖ ÒØÖ 45 Ø 60 Ø ÓÒÚ Ò Ð º ÁÐ Ò ÙØ Ô ÓÙ Ð Ö ÕÙ³ Ò Ö Ø ÓÒ Ò Ù ØÖ ÐÐ Ð Ý ÙÒ Ô Ö ÓÒ ÙÖ Ð Ö Ø Ö Ø ÕÙ ÓÑÔÓ ÒØ Ø ÕÙ Ð Ñ Ö Ô Ô ÙØ Ú Ö Ö ³ÙÒ Ý Ø Ñ ÙÒ ÙØÖ Ø Ù Ò ÓÒØ ÓÒ Ù Ú ÐÐ Ñ Òغ ÁÐ Ø ÓÒ ÓÒ ÔÖ ÚÓ Ö ÙÒ Ñ Ö ÙÖ Ø º Ë Ú ÙÒ Ý Ø Ñ ÓÒÒ Ð Ñ Ö Ô Ò³ Ø Ô Ù ÒØ Ð Ü Ø ÙÜ Ñ Ø Ó ÔÓÙÖ Ð³ Ñ Ð ÓÖ Ö Ä ÔÖ Ñ Ö ÓÒ Ø Ö Ù Ö Ð Ò Ð ÓÒØ ÓÒ ØÖ Ò ÖØ ÓÒ Ñ ÒÙ Ò Ð ÔÙÐ Ø ÓÒ ÓÙÔÙÖ Ø ÓÒ Ù Ñ ÒØ Ð Ñ Ö Ô º ij ÒÓÒÚ Ò ÒØ Ø ÕÙ Ð Ò Ô ÒØ Ö Ù Ø Ø ÕÙ Ð Ô Ö ÓÖ¹ Ñ Ò Ù Ò Ú Ù Ð³ ÖÖ ÙÖ ÓÒØ ÔÐÙ Ð ÓÑÑ ÒÓÙ Ð Ú ÖÖÓÒ ÔÐÙ ÐÓ Òº Ä ÓÒ ÓÒ Ø Ò Ö Ö Ò Ð Ò Ö Ø ÙÒ Ò ÖÓ Ø Ó Ð Ö Ò ÙÖ Ø Ð ØÖ ÕÙ ÙÒ Ö Ù Ú Ò Ô Ý ÒØ ÙÒ Ñ Ü ÑÙÑ ÔÓÙÖ ω c º Ð Ò³ Ø ÔÓ Ð ÕÙ ÔÓÙÖ Ð ÖÚ Ñ ÒØ ÔÓ ÒØ ÙÒ Ø ÐÐ Ö Ò ÙÖ Ð ØÖ ÕÙ ÓÖØ ÙÖ Ù Ñ ÒØ ³ Ø Ð Ò Ö Ðº º ØÙ ³ÙÒ Ö Ù Ú Ò Ô º ÁÐ Ø ÓÒ Ø ØÙ ³ÙÒ ÓÒ Ò Ø ÙÖ Ø ÙÜ Ö Ø Ò Ù Ú ÒØ Ð Ñ ¹ ÔÖ C R 1 U e R 2 U s Ò Ð ÓÑ Ò ÑÔÐ ØÙ ÓÑÔÐ Ü Ð³ ÑÔ Ò R 1 Ò Ô Ö ÐÐ Ð Ú C Ú ÙØ R 1 /(1+jω.C.R 1 ) Ø Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ð³ Ò Ñ Ð ³ Ö Ö W = R jω.c.r 1 R R = R 2. = R 1+jω.C.R 1 + R 2 + jω.c.r 1.R 2 1 R 2 R 1 + R jω.cr R 2 R 1 +R 2.jω.C.R 1

27 º º ÈÈÄÁ ÌÁÇÆ Í Ë Ë ÅÈÄÁ Á Ì ÍÊË ü Ä ÅÈ Ë Î Ê ÌÊÇ ÌÁÇƺ ¾ ÈÓ ÓÒ ω 0 = 1/R 1.C Ø α = R 2 /(R 1 + R 2 ) Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ú ÙØ ÓÒ W = α. 1 + jω ω jω ω 0 /α ÆÓÙ ÚÓÒ ÙÒ ÓÒ Ø ÒØ Ò Ö ÙÖ 1 Ò Ø ÙÖ ÕÙ ÓÒÒ Ö ÙÒ Ò Ò Ø Ò Ð º ÇÒ ØÖ Ð ÝÑÔØÓØ ÓÙÖ Ò Ø Ô ÔÓÙÖ Ð ÒÑ Ø ÓÒ ÚÓ Ø ÕÙ Ð ÓÙÖ Ô Ô Ô Ö ÙÒ Ñ Ü ÑÙÑ ÔÓÙÖ ω m = ω 0 / α Ô Ö ÝÑ ØÖ Ð ÓÙÖ Ò ÐÐ ÐÓ Ö Ø Ñ ÕÙ 0 G ω 0 ω 0 /α k.log ω 20 log α ϕ π/2 Ò Ó ÒØ ω m Ù ÚÓ Ò ω c ÓÒ Ù Ñ ÒØ Ö Ð Ñ Ö Ô º Ò Ö Ú Ò Ð Ò ÖÙ Ø Ø Ñ ÒÙ 20. log α ÔÓÙÖ Ö Ø Ð Ö Ð Ò Ò Ø Ð Ð Ù Ö ÓÙØ Ö ÙÒ ÑÔÐ Ø ÙÖ Ò ÓÒ Ø ÒØ 20. log(1/α)º º ÔÔÐ Ø ÓÒ Ù ÑÔÐ Ø ÙÖ Ð ÑÔ Ú Ö ØÖÓ Ø ÓÒº Ò Ú ÒØ Ð³ ÒÚ ÒØ ÓÒ ØÖ Ò ØÓÖ Ø ÖÙ Ø ÒØ Ö Ð ÙÐ ÑÓÝ Ò ÓÑÑÓ ³ ÑÔÐ Ö Ð Ò ÙÜ Ð ØÖ ÕÙ Ø Ø Ð ØÙ Ð ØÖÓÒ ÕÙ º Ä ØÖ Ó Ø ÒÚ ÒØ Ô Ö Ä ÇÊ ËÌ Ù ÙØ Ù Ú Ò Ø Ñ Ð Ø Ú ÐÓÔÔ Ñ ÒØ Ø ØÖÓ Ø Ô ÒØÓ µ ÓÒØ Ö Ô Ñ ÒØ Ù Ú º ÈÓÙÖ Ð³ ÑÔÐ Ø ÓÒ Ö ÕÙ Ò Ø Ò Ð Ñ ÒØ Ö ÙØ¹Ô ÖÐ ÙÖ ÓÒØ Ð³ ÑÔ Ò Ø ÓÙ ½ Ohms Ð ÙØ Ø Ò ÓÒ Ð Ø ÓÙÖ ÒØ Ð Ú ÕÙ Ð ØÙ Ò Ô ÙÚ ÒØ ÓÙÖÒ Ö Ö Ð ØÖ Ú ÐÐ ÒØ Ø Ò ÓÒ Ð Ú ÕÙ ÐÕÙ ÒØ Ò ÚÓÐØ µ Ø ÓÙÖ ÒØ Ð Ð³ÓÖ Ö ÕÙ ÐÕÙ ÒØ Ò Ñ ÐÐ ÑÔ Ö µº ÁÐ ÙØ ÓÒ ÔÖÓ Ö ÙÒ ÔØ Ø ÓÒ ³ ÑÔ Ò Ð³ ³ÙÒ ØÖ Ò ÓÖÑ Ø ÙÖº Ø Ð Ñ ÒØ Ò Ô Ô Ð ÓÒØ ÒÙ Ø ÓÒ ÙÒ Ô ÖØ ÐØÖ Ô ¹ ÙØ 6 db/octaveº ÙÜ Ö ÕÙ Ò Ð Ú Ð ÓÑÔÓÖØ ÓÑÑ ÙÒ ÐØÖ Ô ¹ Ú ØØ Ó ÙÒ Ô ÒØ 12 db/octaveº ÓÑÑ Ô Ö ÐÐ ÙÖ Ð Ô ÖØ Ð ÑÔ Ø Ù ÙÒ ÐØÖ Ô ¹ Ù Ô Ø Ù Ø µ Ð Ô ÙÜ ÙØ Ö ÕÙ Ò Ö Ò Ö ÙÖ π Ø Ð Ö ÕÙ ³ Ò Ø Ð Ø ÐÓÖ Ù ÓÙÐ ÒÓÒ Ò Ð Ð º Ä Ð ÑÔ Ò ÓÒØ Ô ÓÑÔÓ ÒØ ÓÐÙÑ ÒØ Ð Ò Ö Ø ÔÓÙÖ Ñ Ð ÓÖ Ö Ð³ ÑÔÐ Ø ÓÒ ÓÒ ÙØ Ð ÙÒ Ö ØÖÓ Ø ÓÒ ÓÖÑ ³ÙÒ ÔÓÒØ Ú ÙÖ Ö Ø Ò º ÐÐ ¹ ÓÒØ Ö Ð Ø Ú Ñ ÒØ ÔÐÙ Ð Ò Ö ÓÒ Ø ÓÒ Ò Ô Ð Ö ØÖÓÔ Ù Öº Ë Ð³ ÑÔÐ Ø ÙÖ ÙÒ Ø Ò Ò Ð³ Ò Ø Ð Ø Ð Ù Ø ³ ÓÙØ Ö ÙÒ ÓÒ Ò Ø ÙÖ ÔÓÙÖ Ó Ø Ò Ö Ð ÖÙ Ø Ú Ò Ô ØÙ ÔÖ ÑÑ Òغ

28 ¾ À ÈÁÌÊ º ËÌ ÁÄÁÌ Ë ËË ÊÎÁËË Å ÆÌË + ÑÔÐ Ð ÑÔ U e C U s R 2 R 1 º ÔÔÐ Ø ÓÒ Ù ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð º ÍÒ ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð Ø ÙÒ ÖÙ Ø ÒØ Ö ÓÖÑ ³ÙÒ Ð Ñ ÒØ ÕÙ ÓÙÖÒ Ø Ð Ö Ò ÙÜ Ò ÙÜ ³ ÒØÖ ÒØÖ Ø ÒØÖ ¹ µº ØØ Ö Ò Ø Ò Ù Ø ÓÖØ Ñ ÒØ ÑÔÐ Ô Ö ÔÐÙ ÙÖ Ø ØÖ Ò ØÓÖ Ó Ø ÔÓÐ Ö Ó Ø Ø ÑÔ ØÙ ÐÐ Ñ ÒØ Ð Ø ³ ÒØÖ ÓÒØ Ð ÔÐÙ ÓÙÚ ÒØ Ø ÑÔ Ö Ð ÙÖ Ö Ø Ò ³ ÒØÖ Ø ØÖ Ð Ú Ð³ÓÖ Ö Ð ÒØ Ò Å ÓÑ Ò Ð Ò Ô ÖØÙÖ ÒØ Ô Ð ÖÙ Ø ÔÖ Òصº ÑÔÐ Ø ÙÖ Ð ÒØ Ô Ö Ð Ò ÙÜ ÓÒØ ÒÙ Ñ Ô Ö Ù Ø Ô Ø Ô Ö Ø Ò Ö ÒØ ØÓÙØ ÑÓÒØ Ð ØÖÓÒ ÕÙ Ð ÓÒ Ø ØÙ ÒØ ÙÒ ÐØÖ Ô ¹ º ÕÙ Ø ØÖ Ò ØÓÖ ÓÑÔÓÖØ Ù Ñ Ò ÑÙÑ ÓÑÑ ÙÒ ÐØÖ Ô ¹ Ù ÔÖ Ñ Ö ÓÖ Ö Ú ÙÒ Ô ÒØ 6 db/octaveº ÓÑÑ Ð Ý ÔÐÙ ÙÜ Ø Ð Ô Ø Ò Ö ÙÖ π Ø ÐÓÖ Ù ÓÙÐ Ð Ý ÙÒ Ö ÕÙ ³ Ò Ø Ð Ø º ÈÓÙÖ ÑÔÐ Ö Ð Ñ ÒÚ ÓÒ Ð ØÖÓ Ø Ø ØÖ ÓÒ Ð Ö ÑÑ Ç ÓÖÖ ÔÓÒ ÒØ G 0 db ϕ ω c k.log ω π ÈÓÙÖ Ð ÓÙÖ Ò ÒÓÙ Ò³ ÚÓÒ ØÖ ÕÙ Ð ÝÑÔØÓØ Ò ØÖ Ø ÓÒØ ÒÙ º ÇÒ ÓÒ Ø Ø ÕÙ Ð ÔÙÐ Ø ÓÒ Ø Þ Ò Ö ÙÖ Ð ÔÙÐ Ø ÓÒ ÓÙÔÙÖ Ð Ý Ø Ñ Ö Ø Ð º Å ÓÒ Ö ÙÒ Ò 0 db ÓÒ Ð³ Ò Ø Ð Ø ÙÖ º ÇÖ Ð ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð ÓÒØ ÓÙÚ ÒØ ÙØ Ð Ò ÑÓÒØ Ò ÙÒ Ø Ð Ô ÙØ Ý ÚÓ Ö ÓÒ Ù ÓÒ ÒØÖ Ð Ò Ò Ð Ø Ð Ò ÙÒ Ø Ñ Ð Ð ØÖÓÒ Ò ³Ý Ö ØÖÓÙÚ Òصº Ò Ð ÓÙÐ Ö ØÓÙÖ Ø ÙÒ ÑÔÐ Ð ÙÖ Ð³ ÒØÖ ¹ Ø Ð ÑÓÒØ ÓÙ Ð ÖÐ ³ÙÒ Ô Ö Ø ÓÒ ÒØÖ ÙÜ Ô ÖØ ³ÙÒ ÖÙ Ø Ð³ ÑÔ Ò ³ ÒØÖ Ø ÕÙ Ò Ò Ø Ð³ ÑÔ Ò ÓÖØ ÕÙ ÒÙÐÐ ÒÓÙ Ú ÖÖÓÒ ÔÐÙ ÐÓ Ò ÔÓÙÖÕÙÓ ÙÒ Ô Ù Ô Ø Ò µº ÈÓÙÖ Ú Ø Ö Ð³ Ò Ø Ð Ø Ð

29 º º ÅÇ Ä ËÁÅÈÄÁ Á ij ÅÈÄÁ Á Ì ÍÊ ÇÈ Ê ÌÁÇÆÆ Ä ÇÅÈ ÆË Æ Ê ÉÍ Æ º¾ ÙØ Ö Ò ÓÖØ ÕÙ Ù ÕÙ³ ω c Ð Ô ÒØ Ù ÐØÖ Ó Ø 6 db/octaveº ÈÓÙÖ Ð ÓÒ Ù Ñ ÒØ ÙÒ Ô Ø Ô Ö Ø Ø ÓÒ Ó Ø ÒØ Ð³ ÝÑÔØÓØ Ò ÔÓ ÒØ ÐÐ º ÇÒ ÚÓ Ø ÕÙ Ð Ô Ò ÔÓÙÖÖ Ô Ò Ö Ò ÓÙ π/2 Ø Ð Ø Ð Ø Ø ÙÖ º ÇÒ Ø ÐÓÖ Õ٠г ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð Ø ÓÑÔ Ò Ò Ö ÕÙ Ò ÔÓÙÖ Ð Ò ÙÒ Ø º S ÒÓÑ Ö ÙÜ ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð Ù ÓÑÑ Ö ÓÒØ ÓÑÔ Ò Ò Ö ÕÙ Ò Ñ Ñ Ð Ò³ Ø Ô Ø ÓÒØ Ò Ô ÖØ ÙÐ Ö ÙÜ Õ٠гÓÒ ÙØ Ð ÔÓÙÖ Ð ØÖ Ú ÙÜ ÔÖ Ø ÕÙ ³ Ð ØÖÓÒ ÕÙ º Ò Ð Ð ÓÑÔ Ò Ø ÓÒ Ò Ö ÕÙ Ò ÓÒ Ò Ø Ð ÔÖÓ Ù Ø Ò¹ Ò ÕÙ Ø Ð ÔÖÓ Ù Ø Ð³ ÑÔÐ ¹ Ø ÓÒ Ô Ö Ð Ò Ô ÒØ Ò À ÖØÞº ÈÓÙÖ Ð Ò ÙÒ Ø Ð Ö ÔÖ ÒØ Ð Ò Ô ÒØ Ô Ö Ü ÑÔÐ ÔÓÙÖ Ð Ìļ ½ ÔÖÓ Ù Ø Ú ÙØ 4 MHzº Ë ÓÒ ÔÖ Ò ÙÒ Ò 10 Ð Ò Ô ÒØ Ö 400 khzº º ÅÓ Ð ÑÔРг ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð ÓÑÔ Ò Ò Ö ¹ ÕÙ Ò º ÓÑÑ ÒÓÙ Ú ÒÓÒ Ð ÚÓ Ö Ð³ ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð ÓÑÔÓÖØ ÙÒ ÓÙ ØÖ Ø ÙÖ Ø ÙÒ ÑÔÐ ¹ Ø ÙÖ Ö Ò Ò ÙÔÔÓÖØ ÒØ Ð ÓÙÐ ÙÖ Ð³ ÒØÖ ¹ Ú ÙÒ ÑÔÐ Ð Ò Ö ÕÙ Ö ³ Ò Ø Ð Ø º Ò ÔÖ Ø ÕÙ Ð ÓÙÐ Ø Ú ÓÑÔÓ ÒØ Ô Ò ÔÓÙÚ ÒØ Ô Ô ÖØÙÖ Ö Ð Ø Ð Ø Ð ³ Ø Ð ÔÐÙ ÓÙÚ ÒØ Ö Ø Ò ÓÙ ÓÒ Ò Ø ÙÖ º Ä Ñ ÔÖ Ò Ô Ô ÙØ ÐÓÖ Ò Ö ÓÑÑ ¹ ÔÖ Ú Ð Ö ÔÖ ÒØ Ø ÓÒ Ð Õ٠г ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð + W 1 = A 0 1+j ω ω 0 + U e W 2 U s Ä Ò A 0 Ð ÓÒØ ÓÒ ØÖ Ò ÖØ W 1 Ø ÒØ ØÖ Ö Ò Ú ÒØ Ð³ÙÒ Ø Ð ÔÙÐ Ø ÓÒ ÓÙÔÙÖ ω c Ò ÔÐÙ ÙØ Ø ØÖ Ö Ò Ú ÒØ ω 0 º È Ö Ò Ø ÓÒ W 1 (j.ω c ) = 1 Ó Ø 1 = A 0 / 1 + ωc/ω 2 0 2º ³ ÔÖ ÕÙ Ø ÚÙ ÔÖ ÑÑ ÒØ ÓÒ Ô ÙØ Ò Ð Ö 1 ÓÙ Ð Ö Ð Ø Ð Ö Ø A 0.ω 0 = ω c º Ä ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÖÑ Ò ³ Ö Ø T = U s U e = W W 1.W 2 ÇÖ Ò Ð Ò Ô ÒØ W 1 Ø ØÖ Ö Ò W 2 Ò³ Ø Ô ØÖ Ô Ø Ø Ø Ð ÔÖÓ Ù Ø W 1.W 2 Ö Ø Ö Ò Ú ÒØ 1 Õ٠гÓÒ ÔÓÙÖÖ ÓÒ Ò Ð Ö Ù ÒÓÑ Ò Ø ÙÖº Ò Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÖÑ Ø Ô Ù Ö ÒØ 1/W 2 º ÌÓÙØ Ô ÓÑÑ Ð Ö Ò ÒØÖ Ð Ø Ò ÓÒ Ð³ ÒØÖ Ø Ð Ø Ò¹ ÓÒ Ð³ ÒØÖ ¹ Ø Ø ÔÖ Ø ÕÙ Ñ ÒØ ÒÙÐÐ º ÇÒ Ñ Ø ÓÒ Ò ÙÒ ÔÖ Ñ Ö Ø ÑÔ Õ٠г ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð Ø ÙÒ Ó Ø ÒÓ Ö ÓÙÐ ÙÖ Ð³ ÒØÖ ¹ Ô Ö ÙÒ ÖÙ Ø Ô Ó Ð Ø Ò ÓÒ ÒØÖ Ø ¹ ÓÒØ ÒØ ÕÙ º ³ Ø Ð ÑÓ Ð ÙØ Ð Ù Ø ÔÖ Ð º º º º½ ÉÙ ÐÕÙ ÔÔÐ Ø ÓÒ ÑÔÐ º ÑÔÐ Ø ÙÖ Ò Ò Ñ ÒØ Ò º¹ Á ÓÒ ÒØÖ Ö Ø Ñ ÒØ ÒØÖ Ð³ ÒØÖ Ø Ð Ñ ÕÙ ÙÖ Ù ÑÓÒØ ÙÒ ÑÔ Ò ³ ÒØÖ ÕÙ Ò Ò Ø Ò Ô ÖØÙÖ Ö Ô Ð ÖÙ Ø ÔÖ Òغ Ä ÓÙÐ Ö ØÓÙÖ Ø ÓÒ Ø ØÙ ³ÙÒ ÑÔÐ ÔÓÒØ Ú ÙÖ Ö Ø Ò

30 ¼ À ÈÁÌÊ º ËÌ ÁÄÁÌ Ë ËË ÊÎÁËË Å ÆÌË + U e R 1 U s R 2 3, 3 kω ÆÓÙ ÚÓÒ Ó ÓÑÑ Ö Ø Ò Ö Ð³ ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð Ð Ú Ð ÙÖ 3, 3 kω ÕÙ Ø ØÖ Ö ÕÙ ÑÑ ÒØ ÙØ Ð Ô Ö Ð Ð ØÖÓÒ Ò º ³ ÔÖ Ð Ö ÙÐØ Ø ÚÙ ÔÐÙ ÙØ Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ò ÓÙÐ ÖÑ Ú ÙØ 1/W 2 Ó Ø (R 1 +R 2 )/R 2 º ÇÒ Ô ÙØ Ù ÙØ Ð Ö Ð Ö Ñ ÖÕÙ ÔÖ ÒØ Ó U + = U Ø ÓÒ ÓÙØ Ø U + = U e = R 2.U s /(R 1 + R 2 ) ÔÖÓÔÖ Ø Ù Ú ÙÖ ÔÓØ ÒØ ÓÑ ØÖ ÕÙ µ ÕÙ ÓÒÒ Ð Ñ Ñ Ö ÙÐØ Øº ÁÐ ÙØ Ö Ñ ÖÕÙ Ö Õ٠гÓÒ Ô ÒØ Ö Ø ÚÓ Ö ÙÒ ØÖÓÔ Ö Ò ÑÔÐ Ø ÓÒ Ò ÕÙÓ Ð Ò Ô ÒØ Ö ØÖ Òغ Ò Ò Ö Ð ÓÒ Ò Ô Ô ÕÙ ÐÕÙ Þ Ò Ø ÓÒ Ó Ò ³ÙÒ ÔÐÙ Ö Ò Ò ÓÒ Ñ Ø ÙÜ Ø Ò º º º¾ ÑÔÐ Ø ÙÖ Ú Ò Ñ ÒØ Ò º¹ Ò Ð³ ÒØÖ Ø Ù ÔÓØ ÒØ Ð 0 Ó Ø Ð Ñ º ÓÒ Ð³ ÒØÖ ¹ Ø Ñ Ñ ÔÓØ ÒØ Ð Ú ÖØ٠к Ò Ø ÚÙ Ð ØÖ Ö Ò Ö Ø Ò ³ ÒØÖ ÙÙÒ ÓÙÖ ÒØ Ò Ö ÒØÖ Ò Ð³ ÑÔÐ Ø ÙÖº ÈÓÙÖ Ö ÓÒ ÓÑÑÓ Ø ÓÒ ÒÚ Ö Ð ÒØÖ Ð³ ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ðº R 1 R 2 + U e 3, 3 kω U s Ä ÓÙÖ ÒØ ÕÙ Ú U e Ú Ö U = 0 Ø Ð Ñ Ñ ÕÙ ÐÙ ÕÙ Ú U Ú Ö U s ÓÖØ Õ٠гÓÒ Ô ÙØ Ö Ö (U e 0)/R 2 = (0 U s )/R 1 Ó Ø U s /U e = R 1 /R 2 º ÁÐ Ý Ò ÑÔÐ Ø ÓÒ Ú Ò Ñ ÒØ Ò R 1 > R 2 )º ij ÒÓÒÚ Ò ÒØ ÑÓÒØ Ø ÕÙ Ö Ø Ò ³ ÒØÖ Ø Ð R 2 Ø ÕÙ³ ÐÐ Ø ÓÒ Ô Ø Ø Ø Ô ÙØ Ô ÖØÙÖ Ö Ð ÖÙ Ø ÕÙ ÔÖ º ÈÓÙÖ Ú Ø Ö Ð Ð Ù Ø Ö ÔÖ Ö ÑÓÒØ ³ÙÒ ÑÔÐ Ø ÙÖ Ù Ú ÙÖ Ò ÙÒ Ø ÕÙ ÐÙ ÙÒ Ö Ø Ò ³ ÒØÖ ÕÙ Ò Ò º

31 Ô ØÖ ÖÖ ÙÖ ¹ ÈÖ ÓÒ º½ ÁÒØÖÓ ÙØ ÓÒº ÆÓÙ ÚÓÒ ØÙ Ù ÕÙ³ Ñ ÒØ Ò ÒØ Ð ÓÑÔÓÖØ Ñ ÒØ Ø Ð Ø Ð Ø ÖÚ Ñ ÒØ Ñ ÒÓÙ Ò ÚÓÒ Ö Ò Ô Ö ÓÖÑ Ò Ù Ý Ø Ñ Ð³ ÔÔÐ Ø ÓÒ ³ÙÒ Ø ÓÒ ³ÙÒ ØÝÔ ÓÒÒ º Ò Ô ÖØ ÙÐ Ö Ð Ö ÓÒ ÚÓ Ö Ð Ý Ø Ñ ÓÒÒ Ò Ð ÓÖØ Õ٠гÓÒ Ñ Ø Ð³ ÒØÖ Ø ³ Ð Ò³Ý Ô Ð ÒØÖ Ö Ò ÙÖ ³ ÒØÖ Ø ÓÖØ º Ú ÒÓÙ ÑÔÓ Ö Ð³ ØÙ ÖÖ ÙÖ Ù Ù Ý Ø Ñ º Ð Ñ Ñ ÓÒ ÓÒ Ò³ Ø Ô Ö ÓÒ ÖÚ Ö Ð³ ÒØ Ö Ø Ð³ ÔÔ Ö Ð Ø Ô ÖØÙÖ Ø ÓÒ Ô Ö Ø Ô ÙÚ ÒØ ÔÔ Ö ØÖ Ò ÙÒ ÔÓ ÒØ Ð ÓÙÐ Ð ÒÓÙ Ù Ö ÓÒ ÔÖ Ö Ð ÖÐ Ö ÙÐ Ø ÙÖ Ð³ ÖÚ ¹ Ñ Òغ ÎÓÝÓÒ ÓÒ Ò Ö Ð ÓÑÑ ÒØ ÓÒ Ô ÙØ ÐÙÐ Ö Ð³ ÖÖ ÙÖ Ö ÙÐØ ÒØ ³ÙÒ Ø ÓÒ Θ e Ò Ð Ó Ð Ò Ö ØÓÙÖ ÙÒ Ò ÙÒ Ø Θ s Ø Θ e ÓÒØ Ñ Ñ Ò ØÙÖ Ø ÓÒ Ö ÔÓ Ð Ð ÙÖ Ð Ø µº Θ e ε W Θ s Ú Ð ÓÖÑÙÐ ÕÙ ÒÓÙ Ú ÓÒ Ö Ø ÒÓÙ ÔÓÙÚÓÒ Ù Ö Θ s Θ e = W 1 + W et Θ s ε = W on en tire ε Θ e = W ÖÒ Ö Ö ÔÔÓÖØ Ø Ð³ ÖÖ ÙÖ Ö Ð Ø Ú ÕÙ Ö ³ ÙØ ÒØ ÔÐÙ Ô Ø Ø ÕÙ W Ö Ö Ò º º¾ ÖÖ ÙÖ Ù ÔÖ Ñ Ö ÓÖ Ö º È Ö Ò Ø ÓÒ ³ Ø Ð³ ÖÖ ÙÖ Ô ÖÑ Ò ÒØ Ù ÓÙØ ³ÙÒ Ø ÑÔ Ò Ò µ ÕÙ Ö ÙÐØ Ð³ ÔÔÐ Ø ÓÒ ³ÙÒ Ø ÓÒ Ð ÓÖÑ θ e = θ 0.Γ(t)º Γ(t) Ö ÔÖ ÒØ ØÓÙ ÓÙÖ Ð ÓÒØ ÓÒ ÐÓÒ ÙÒ Ø ÒÙÐÐ ÔÓÙÖ t < 0 Ø Ð 1 ÔÓÙÖ t > 0º θ 0 Ø ÙÒ ÓÒ Ø ÒØ ÕÙ Ð Ñ Ñ Ñ Ò ÓÒ ÕÙ Ð Ö Ò ÙÖ ³ ÒØÖ º ÓÑÑ Ð ³ Ø ³ÙÒ Ö Ñ ØÖ Ò ØÓ Ö ÒÓÙ ÒÓÙ ÔÐ ÓÒ Ò Ð ÓÑ Ò ØÖ Ò ÓÖÑ Ä ÈÄ Ø ÒÓÙ Ö ÖÓÒ Ð³ ÖÖ ÙÖ ÓÙ Ð ÓÖÑ ε 1 (p) = W.Θ e(p) avec Θ e = θ 0 p soit ε 1 (p) = θ 0 p W ÆÓÙ Ö ÓÒ Ð³ ÖÖ ÙÖ Ô ÖÑ Ò ÒØ Ó Ø ÓÒ Ð Ð Ñ Ø ε 1 (t) ÐÓÖ ÕÙ t Ø Ò Ú Ö Ð³ Ò Ò º ÍÒ ÔÖÓÔÖ Ø Ð ØÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ Ô ÖÑ Ø Ö Ð Ö ØØ Ð Ñ Ø ÙÒ Ð Ñ Ø ε 1 (p)º Ò Ø lim[ε 1 (t)] t = lim[p.ε 1 (p)] p 0 ½

32 ¾ À ÈÁÌÊ º ÊÊ ÍÊË ¹ ÈÊ ÁËÁÇÆË ÓÖØ Õ٠г ÖÖ ÙÖ Ô ÖÑ Ò ÒØ Ö Ð Ð Ñ Ø Ð³ ÜÔÖ ÓÒ p. θ 0 p W lorsque p 0 г ÒØ Ö ÙÖ Ð Ò Ô ÒØ W Ø ÙÓÙÔ ÔÐÙ Ö Ò ÕÙ 1 Ø Ð³ ÖÖ ÙÖ ÔÓÙÖÖ ³ Ö Ö θ 0. lim[ 1 W ] p 0 ËÙ Ú ÒØ Ð ÓÖÑ Ð ÓÒØ ÓÒ ØÖ Ò ÖØ ÓÒ ÙÖ ÖÖ ÙÖ Ö ÒØ ËÙÔÔÓ ÓÒ ÕÙ W ÓÒØ ÒÒ Ù ÒÙÑ Ö Ø ÙÖ ÙÒ Ø ÖÑ Ð ÓÖÑ p n n ÒØ Ö ÔÓ Ø µº ij ÖÖ ÙÖ Ö Ò Ò Ø Ð Ý Ø Ñ Ö Ö ÚÓ Öº Ë Ñ ÒØ Ò ÒØ W Ò ÓÒØ ÒØ ÙÙÒ Ø ÖÑ Ò p ØÓÙØ ÙÐ Ò Ù ÒÙÑ Ö Ø ÙÖ Ò Ù ÒÓÑ Ò Ø ÙÖ W(0) Ø ÙÒ Ö Ð ÕÙ Ð Ñ Ñ Ú Ð ÙÖ ÕÙ W(j.0) ω = 0 Ð Ø ÖÑ Ñ Ò Ö ÓÒØ ÒÙÐ Ø W(j.0) Ø Ö Ðº ij ÖÖ ÙÖ Ù ÔÖ Ñ Ö ÓÖ Ö Ú ÒØ ÐÓÖ θ 0 ε 1 = W(j.0) ÇÒ ÓÒ Ø Ø ÕÙ ØØ ÖÖ ÙÖ Ö ³ ÙØ ÒØ ÔÐÙ Ð ÕÙ Ð Ò ÙÜ Ö ÕÙ Ò Ö Ö Ò º Ë Ò Ð Ñ ÒØ W ÓÒØ ÒØ ÙÒ Ø ÖÑ p n Ù ÒÓÑ Ò Ø ÙÖ 1/W ÙÖ Ø ÖÑ Ò Ø ÙÖ Ù ÒÙÑ Ö Ø ÙÖ Ø Ð³ ÖÖ ÙÖ Ù ÔÖ Ñ Ö ÓÖ Ö Ö ÒÙÐÐ º Ä Ý Ø Ñ Ø Ô Ö Ø ÔÓÙÖ Ö Ø Ö º ÈÓÙÖ ÕÙ Ð Ó Ø Ö Ð Ð Ù Ø ³ ÚÓ Ö n = 1 Ø ÓÒ 1/p Ò Ø ÙÖ Ð ÓÒØ ÓÒ ØÖ Ò Öغ ÇÖ ÕÙ Ò ÓÒ p Ò Ø ÙÖ Ð ÑÔÐ ÕÙ ÙÒ Ö Ú Ø ÓÒ 1/p ÓÖÖ ÔÓÒ ÓÒ ÙÒ ÒØ Ö Ø ÓÒ ³Ó Ð Ö ÙÐØ Ø Ð³ ÖÖ ÙÖ Ù ÔÖ Ñ Ö ÓÖ Ö Ø ÒÙÐÐ Ð Ý Ø Ñ Ù ÑÓ Ò ÙÒ ÒØ Ö Ø ÙÖ Ò Ð ÓÙÐ º Ø ÓÒ Ö ÔÓÒ ε 1 Ä ÓÙÖ Ò ØÖ Ø ÓÒØ ÒÙ ÓÖÖ ÔÓÒ Ù Ó Ð³ ÖÖ ÙÖ Ù ÔÖ Ñ Ö ÓÖ Ö Ø Ò ÐÐ Ò ÔÓ ÒØ ÐÐ Ù Ó Ð³ ÖÖ ÙÖ Ø ÒÙÐÐ º t º ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö º ³ Ø Ð³ ÖÖ ÙÖ Ô ÖÑ Ò ÒØ ÕÙ Ö ÙÐØ Ð³ ÔÔÐ Ø ÓÒ ³ÙÒ Ø ÓÒ Ð ÓÖÑ θ e (t) = k.t.γ(t) Ó Ø Ô Ö Ü ÑÔÐ Ð Ñ ÖÖ ³ÙÒ ÒØ ÒÒ Ö Ö Ú ÐÐ Ó Ð³ÓÒ Ö Õ٠г Ò Ð ÖÓØ Ø ÓÒ Ð³ ÒØ ÒÒ Ó Ø ÒØ Õ٠г Ò Ð ÖÓØ Ø ÓÒ ÙÖ Ð³ Ö Òº ÇÒ ÔÔÐ ÕÙ ÒÓÖ Ð Ö ÙÐØ Ø Ù ÐÙÐ ÝÑ ÓÐ ÕÙ Ô Ö Ð ØÖ Ò ÓÖÑ Ø ÓÒ Ä ÈÄ Ä³ ÖÖ ÙÖ Ô ÖÑ Ò ÒØ Ö ÐÓÖ Θ e est de la forme Θ e = k p 2 de sorte que ε 2 (p) = k p 2. 1 W ε 2 = lim[ k p. 1 W ] p 0 ÆÓÙ ÚÓÝÓÒ Ò ØØ Ñ ÒØ ÕÙ W Ò³ Ô Ø ÖÑ Ò p n Ò Ø ÙÖ Ù ÒÓÑ Ò Ø ÙÖ Ð³ ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö Ö Ò Ò º Ë W p Ò Ø ÙÖ Ù ÒÓÑ Ò Ø ÙÖ Ð³ ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö ÙÖ ÙÒ Ú Ð ÙÖ Ò º ÈÓ ÓÒ W = p.w г ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö ³ Ö Ö ε 2 = k/w (j.0)º Ë W ÙÒ Ø ÖÑ Ò p 2 Ò Ø ÙÖ Ù ÒÓÑ Ò Ø ÙÖ Ð³ ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö Ö ÒÙÐÐ º Ð ÙÔÔÓ Ð ÔÖ Ò ³ÙÒ ÓÙ Ð ÒØ Ö Ø ÙÖ Ò Ð Ò º

33 º º Ê Ä ÌÁÇÆ ÆÌÊ ÊÊ ÍÊ Í ÈÊ ÅÁ Ê Ì Í Ë ÇÆ ÇÊ Ê º ε 2 Ø ÓÒ Ö ÔÓÒ Ä ÓÙÖ Ò ØÖ Ø ÔÐ Ò ÓÖÖ ÔÓÒ ÙÒ ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö Ò ÐÐ Ò ØÖ Ø ÔÓ ÒØ ÐÐ ÙÒ ÖÖ ÙÖ ÒÙÐÐ º t º Ê Ð Ø ÓÒ ÒØÖ ÖÖ ÙÖ Ù ÔÖ Ñ Ö Ø Ù ÓÒ ÓÖ Ö º Nous avons vu que ε 1 (p) = θ 0 p W et que ε 2(p) = k p W Ò ÑÔÐ ÒØ ÒÓÙ ÔÓÙÚÓÒ Ö Ö ε 2 (p) k = 1 p.ε 1(p) θ 0 Ò Ö Ú Ò ÒØ Ù Ö Ñ Ø ÑÔ 1/p Ö ÔÖ ÒØ Ð³ ÒØ Ö Ð 0 t ÓÖØ ÕÙ ε 2 (t) = k t. ε 1 (t).dt θ 0 0 Ò ÒØ Ö ÒØ 0 г Ò Ò Ð ÒÓÙ ÑÓÒØÖ Ò Ô ÖØ ÙÐ Ö ÕÙ ÐÓÖ Õ٠г ÖÖ ÙÖ Ù ÔÖ Ñ Ö ÓÖ Ö Ø Ò Ð³ ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö Ø Ò Ò º ³ ÙØÖ Ô ÖØ ÒÓÙ ÖÓÒ ÙÒ ÖÖ ÙÖ Ù ÓÒ ÓÖ Ö ÒÙÐÐ ÒÓÙ ÚÓÒ Ñ ØØÖ ÕÙ Ð Ö ÔÓÒ ÙÒ Ø ÓÒ Ù ØÝÔ θ 0.Γ(t) Ó Ø ØÝÔ Ó ÐÐ ØÓ Ö ÙØÓÙÖ θ 0 Ò ÕÙÓ Ð³ ÒØ Ö Ð Ò ÔÓÙÖÖ Ø Ô ØÖ ÒÙÐÐ º Ä ÓÑÑ Ö Ù Ù θ 0 Ó Ø ØÖ Ð Ð ÓÑÑ Ö Ù ÓÙ θ 0 º θ e θ 0 t º Ñ ÒÙØ ÓÒ ³ÙÒ ÖÖ ÙÖ Ò º ÆÓÙ ÚÓÒ ÚÙ ÕÙ ÐÓÖ ÕÙ³ Ð Ü Ø Ø ÙÒ ÖÖ ÙÖ Ò Ù ÔÖ Ñ Ö ÓÖ Ö ÐÐ Ø Ø ÒÚ Ö Ñ ÒØ ÔÖÓÔÓÖ¹ Ø ÓÒÒ ÐÐ Ù Ò W(j.0) ÙÜ Ö ÕÙ Ò º Ò Ð ³ÙÒ ÖÖ ÙÖ Ò Ù ÓÒ ÓÖ Ö ÐÐ Ø ÒÚ Ö Ñ ÒØ ÔÖÓÔÓÖØ ÓÒÒ ÐÐ Ù Ò W (j.0) Ò ÔÐÙ Ùغ Ò Ð ÙÜ ÔÓÙÖ Ö Ù Ö Ð³ ÖÖ ÙÖ Ð ÙØ Ù Ñ ÒØ Ö Ð Ò ÙÜ Ö ÕÙ Ò Ò Ô ÖØÙÖ Ö Ð Ø Ð Ø Ù Ý Ø Ñ º ÁÐ Ò Ù Ö ÓÒ Ô

34 À ÈÁÌÊ º ÊÊ ÍÊË ¹ ÈÊ ÁËÁÇÆË ÑÓ Ö Ð Ò Ù ÚÓ Ò Ð Ö ÕÙ Ò ÓÙÔÙÖ º ÄÓÖ ÕÙ³ Ò ÙÒ ÔÓ ÒØ Ð Ò Ð Ö Ò ÙÖ ÓÒØ Ð ØÖ ÕÙ ÓÒ Ô ÙØ ÙØ Ð Ö Ð ÖÙ Ø ØÖ ÑÔÐ Ù Ú ÒØ R 1 U e R 2 U s C Ò Ð ÓÑ Ò ÑÔÐ ØÙ ÓÑÔÐ Ü Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ø Ð Ñ ÒØ Ö W = R j.c.ω R 1 + R j.c.ω soit W = 1 + j.r 2.C.ω 1 + j.(r 1 + R 2 ).C.ω ÈÓ ÓÒ ω 2 = 1/R 2.C Ø ω 1 = 1/(R 1 + R 2 ).C Ú ω 1 < ω 2 º Ä ÓÒØ ÓÒ ØÖ Ò ÖØ Ú ÒØ W = 1 + j. ω ω j. ω ω 1 Ä ÓÙÖ Ò Ø Ô Ò Ð Ö ÑÑ Ç ÓÒØ Ð Ù Ú ÒØ 0 G ω 1 ω 2 k.log ω 20 log[(r 1 + R 2 )/R 2 ] 0 ϕ k.log ω π/2 ÖÙ Ø Ø ÒØ ÓÒ Ø ØÙ ÓÑÔÓ ÒØ Ô Ò³ Ô Ò ÔÖÓÔÖ º ÈÓÙÖ Ù Ñ ÒØ Ö Ð Ò ÙÜ Ö ÕÙ Ò Ð ÙØ ÐÙ Ó Ò Ö ÙÒ ÑÔÐ Ø ÙÖ Ò 20. log[(r 1 +R 2 )/R 2 ] Ò ÓÒ Ò Ô ÖØÙÖ Ô Ð ÓÒØ ÓÒ ØÖ Ò ÖØ ÙÜ Ö ÕÙ Ò Ð Ú º º ÓÖÖ Ø ÓÒ Ô Ö ÓÙÐ Ö ØÓÙÖº ÇÒ ÙØ Ð Ô Ö Ó ÙÒ ÙØÖ Ñ Ø Ó ÓÖÖ Ø ÓÒº Ù Ð Ù Ñ ØØÖ Ð ÖÙ Ø ÓÖÖ Ø ÙÖ Ò Ö Ò Ð Ò Ö Ø ÓÒ ÑÓ Ð ÓÒØ ÓÒ ØÖ Ò ÖØ ³ÙÒ Ð Ñ ÒØ Ò Ð ÓÙÐ ÒØ ÙÖ ÐÙ ¹Ñ Ñ Ð³ ³ÙÒ Ý Ø Ñ ÓÖÖ Ø ÙÖº Ä Ñ Ù Ú ÒØ Ö ÔÖ ÒØ ÙÒ Ð Ñ ÒØ Ð Ò Ö Ø + W 1 W 2

35 º º Ê Ä Ê ÍÄ Ì ÍÊ Í Ë ËÌ Å ËË ÊÎÁº ÆÓÙ ÚÓÒ ÚÙ ÕÙ Ò Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ð³ Ò Ñ Ð Ø Ø W 1 W = et si W 1 >> 1 alors W W 1.W 2 W 2 ij ÒØ Ö Ø ³ÙÒ Ø Ð ÔÓ Ø Ø ÕÙ W 1 Ô ÙØ Ö ÚÓ Ö ÙÒ ÔÔÓÖØ ³ Ò Ö ÜØ Ö ÙÖ Ð Ý Ø Ñ Ù Ñ ÒØ ÓÒ Ð ÔÙ Ò Ñ Ò Ù Ø Ð ÓÒ Ø Ð ÔÙ ÕÙ Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ò Ô Ò ÕÙ W 2 ÕÙ Ø Ò Ò Ö Ð ÙÒ ÖÙ Ø Ô º ÇÒ Ô ÙØ ÒÚ Ö ÙÒ Ø Ð ØÝÔ ÖÙ Ø Ø ÙØÓÙÖ ³ÙÒ ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð ÕÙ ÓÙÖÒ Ö Ð³ ÑÔÐ ¹ Ø ÓÒ Ò Ö + U e R 1 U s R 2 C Ò Ð Ù ÑÓ Ð ÑÔРг ÑÔÐ Ø ÙÖ ÓÔ Ö Ø ÓÒÒ Ð ÓÒ Ue = U + = U º Ä Ò Ö ØÓÙÖ Ò³ Ø Ô ÙØÖ Ó ÕÙ Ð ÖÙ Ø Ú Ò Ô ØÙ Ð Ø ÓÒ º º Ä ÓÒØ ÓÒ ØÖ Ò ÖØ U s /U e Ö ÓÒ Ð³ ÒÚ Ö ÐÐ ÐÙÐ Ò ØØ Ø ÓÒ W = R 1 + R R2 R 1 +R 2.j.C.R 1.ω R j.c.r 1.ω Ò ÔÓ ÒØ ω 1 = 1/(C.R 1 ) Ø ω 2 = (R 1 + R 2 )/(C.R 1.R 2 ) ÓÒ Ö ØÖÓÙÚ Ò Ð ÓÒØ ÓÒ ØÖ Ò ÖØ Ù ÖÙ Ø Ô ÔÖ Òغ ÙÜ Ö ÕÙ Ò ØÖ Ð³ ÑÔ Ò Ù ÓÒ Ò Ø ÙÖ Ø ÕÙ Ò Ò Ø ÓÒ ÙÒ ÑÔÐ ÑÔÐ Ø ÙÖ ÓÑÑ ÚÙ Ò º º½ º ÙÜ Ö ÕÙ Ò ØÖ Ð Ú Ð ÓÒ Ò Ø ÙÖ ÓÑÔÓÖØ ÓÑÑ ÙÒ ÓÙÖع ÖÙ Ø Ø ÓÒ ÙÒ ÑÓÒØ Ù Ú ÙÖº º ÊÐ Ö ÙÐ Ø ÙÖ Ù Ý Ø Ñ ÖÚ º ÁÐ Ô ÙØ ÖÖ Ú Ö ÕÙ³ Ò ÙÒ ÔÓ ÒØ ÕÙ ÐÓÒÕÙ Ð Ò ÔÖÓ Ù ÙÒ Ô ÖØÙÖ Ø ÓÒ ÕÙ ³ ÓÙØ Ù Ò Ð ØÖ Ò Ñ º Ð Ö Ú ÒØ ÓÙÔ Ö Ð Ò Ö Ø Ò ÙÜ Ð Ñ ÒØ Ú ÒØÖ Ð ÙÜ ÙÒ Ø ÓÒÒ ÙÖ ÕÙ ÓÙØ Ð Ô ÖØÙÖ Ø ÓÒ ÕÙ ÒÓÙ Ò ÖÓÒ Ô Ö Υ Ò ÐÙÐ ÝÑ ÓÐ ÕÙ º ÆÓÙ ÖÓÒ ÕÙ³ Ð ÓÖØ Ð Ý Ø Ð Ú Ö Ø ÓÒ Ð ÔÐÙ Ð Ù Ô Ö Ø º ÆÓÙ ÒÚ ÓÒ ØÓÙ ÓÙÖ Ð ÑÔÐ Ó Ð Ò Ö ØÓÙÖ ÙÒ Ò ÙÒ Ø º Θ e + ε Υ + W 1 W + 2 Θ s ÆÓÙ ÔÓ ÖÓÒ ØÓÙ ÓÙÖ W = W 1.W 2 º ÁÐ Ø Ð ÚÓ Ö ÕÙ Θ e ÓÖØ ÕÙ Ö ÔÖ ÒØ Ö Ð³ ÖÖ ÙÖ Ù Ð Ô ÖØÙÖ Ø ÓÒº ÆÓÙ ÙÖÓÒ = 0 Ð Ý ÙÖ ÕÙ ÐÕÙ Ó Ð Θ s = [W 2.Υ Θ s.w 1.W 2 ] soit Θ s.(1 + W 1.W 2 ) = Υ.W 2 enfin Θ s Υ = W W Ö ÔÔÓÖØ Ö ÔÖ ÒØ Ð³ ÖÖ ÙÖ Ö Ð Ø Ú Ù Ð Ô ÖØÙÖ Ø ÓÒ Υº ØØ ÖÖ ÙÖ Ö ³ ÙØ ÒØ ÔÐÙ Ô Ø Ø ÕÙ W Ö Ö Ò Ø W 2 Ô Ø Øº Ä Ô ÖØÙÖ Ø ÓÒ Ð ÓÖØ Ù Ý Ø Ñ Ö ³ ÙØ ÒØ ÔÐÙ Ð ÕÙ Ð Ò Ò ÓÙÐ ÓÙÚ ÖØ Ø Ö Ò Ø ÕÙ Ð Ô Ö Ø ÔÖÓ Ù Ø ÔÖ Ð ÓÖØ Ù Ý Ø Ñ º ÍÒ ÖÚ Ñ ÒØ Ð Ò Ö Ö Ø ØÓÙ ÓÙÖ Ò Ò ÓÒØÖ Ö Ô ÖØÙÖ Ø ÓÒ Ø Ø Ò Ö ÙÐ Ö ÐÙ ¹Ñ Ñ º

ÍÒ Ú Ö Ø È ÖÖ Ø Å Ö ÙÖ ß È Ö ÎÁ ÇÖ Ò Ø ÓÒ ËÓ Ø ³ ÒØ ÔÓÙÖ Ð Î Ù Ð Ø ÓÒ ³ÁÒ ÓÖÑ Ø ÓÒ ÝÒ Ñ ÕÙ ÌÀ Ë ÔÖ ÒØ Ø ÓÙØ ÒÙ ÔÙ Ð ÕÙ Ñ ÒØ Ð ½ Ñ Ö ¾¼¼½ ÔÓÙÖ Ó Ø Ò Ö Ð Ø ØÖ ÓØ ÙÖ Ð³ÍÒ Ú Ö Ø È ÖÖ Ø Å Ö ÙÖ ¹ È Ö ÎÁ Ô Ð

Plus en détail

Ò ÐÝ ÓÒÒ Ò ÓÖ ÐÐ ÙÒ ÔÔÖÓ ÓÖ Ò Ð Ó٠Ⱥ¹ º À ÖØ À ÙÖ Ø ÕÙ Ø ÒÓ Ø ËÝ Ø Ñ ÓÑÔÐ Ü ÍÅÊ ÆÊË ÍÒ Ú Ö Ø Ì ÒÓÐÓ ÓÑÔ Ò È ¾ ¹ ¹ ¼¾¼ ÓÑÔ Ò Ü ¹ Ö Ò ÖØ ºÙغ Ö Ñ Ö ¾¼¼ Ì Ð Ñ Ø Ö ÁÒØÖÓ ÙØ ÓÒ ½ ÈÖ ÒØ Ø ÓÒ Ð³ Ò ÐÝ Ò ÓÖ ÐÐ

Plus en détail

Ê ÙÐ Ø ÓÒ Ö Ò Ð Ý Ø Ñ ØÖ Ù Ö Ø ØÙÖ Ø Ð ÓÖ Ø Ñ Ö Ö Ï ÙØ Ð Ø ÙÐØ ÆÓØÖ ¹ Ñ Ä È Ü Æ ÑÙÖ Ð ÕÙ Û ÙØ Ð Ò Óº ÙÒ Ôº º Ê ÙÑ º ij ÑÔÓÖØ Ò Ð ÓÖ Ø Ñ Ö Ô ÖØ Ø ÓÒ Ö Ò Ð Ý Ø Ñ ØÖ Ù Ò³ Ø ÔÐÙ ÑÓÒØÖ Öº Ò Ø Ð Ó Ü ³ÙÒ ØÝÔ

Plus en détail

Contact SCD Nancy 1 : theses.sciences@scd.uhp-nancy.fr

Contact SCD Nancy 1 : theses.sciences@scd.uhp-nancy.fr AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle

Plus en détail

ÁÒØÖÓ ÙØ ÓÒ Ð ÔÖÓ Ö ÑÑ Ø ÓÒ Î ÓÙ Å ÖÓ Ó Ø Ü Ð Å Ø Ù È ÐØ Ö ¹Å Ð Å Ø ÙºÈ ÐØ ÖÒ ØÓÙÖÖ ÖºÓÑ ÀÓÑ Ô ØØÔ»» ÐØ ÖÒºÓÖ»Ô ÐØ ÖÑ»Û ÐÓÑ º ØÑ Å ÓÙÖ Ù»¾»¾¼¼¼ ÌÝÔÓ Ö Ô Ä Ì ¾ Ù Ø ÙÒ ÒØÖÓ ÙØ ÓÒ Ù ÒØ Ð ÔÖÓ Ö ÑÑ Ø ÓÒ Î ÓÙ

Plus en détail

Æ Ó ³ÓÖ Ö ¾ ½ ÌÀ Ë ÔÖ ÒØ Ú ÒØ Ð³ÍÒ Ú Ö Ø Ê ÒÒ ½ ÔÓÙÖ Ó Ø Ò Ö Ð Ö ÓØ ÙÖ Ð³ÍÒ Ú Ö Ø Ê ÒÒ ½ Å ÒØ ÓÒ ÁÒ ÓÖÑ Ø ÕÙ Ô Ö Ë Ö ÊÓÙÚÖ ÕÙ Ô ³ Ù Ð ÁÊÁË ÓÐ ÓØÓÖ Ð Å ÌÁËË ÓÑÔÓ ÒØ ÙÒ Ú Ö Ø Ö Á ËÁ Ì ØÖ Ð Ø ÍØ Ð Ø ÓÒ ³

Plus en détail

Î ÐÙ Ø Ê Ñ ÙÖ Ô Ø Ð ÓÒÓÑ ÕÙ µ Ð Ê ÓÙÐ Ø ² Ì ÖÖÝ ÊÓÒ ÐÐ ÖÓÙÔ Ê Ö ÇÔ Ö Ø ÓÒÒ ÐÐ Ö Ø ÄÝÓÒÒ Ñ Ð ÐºÖ ÓÙÐ ØÖ ØÐÝÓÒÒ º Ö Ø ÖÖݺÖÓÒ ÐÐ Ö ØÐÝÓÒÒ º Ö ÈÐ Ò Ð³ ÒØ ÖÚ ÒØ ÓÒ ½º ÁÒØÖÓ ÙØ ÓÒ ÓÒ ÔÖÓÔÖ Ø Î ÐÙ ¹ Ø¹Ê Ä Ü

Plus en détail

ÍÒ Ú Ö Ø ËØÖ ÓÙÖ Á ÙÐØ Ë Ò ÓÒÓÑ ÕÙ Î ÄÍ ÌÁÇÆ ÅÈÁÊÁÉÍ Ë Å ÆÁËÅ Ë ÌÊ ÆËÅÁËËÁÇÆ Ë ÀÇ Ë ÇÆ Å ÆÌ Í Ì ÆÇÆ ÇÆ Å ÆÌ Í Î ÊË Ä Ë Å Ê À Ë ÇÍÊËÁ ÊË Ì ÔÖ ÒØ ÔÓÙÖ Ð³Ó Ø ÒØ ÓÒ Ù Ø ØÖ ÓØ ÙÖ Ä³ÍÒ Ú Ö Ø ËØÖ ÓÙÖ Á ÈÖ ÒØ

Plus en détail

À Ð Ø Ø ÓÒ Ö Ö Ö Ö ÔÖ ÒØ Ú ÒØ Ä³ÍÒ Ú Ö Ø Ê ÒÒ ½ ÁÒ Ø ØÙØ ÓÖÑ Ø ÓÒ ËÙÔ Ö ÙÖ Ò ÁÒ ÓÖÑ Ø ÕÙ Ø Ò ÓÑÑÙÒ Ø ÓÒ Ô Ö ÒÒ ¹Å Ö Ã ÖÑ ÖÖ «Ù ÓÒ Ð Ð Ö ¹ ÐÐ ËÓÙØ ÒÙ Ð ¾¼ Ñ Ö ¾¼¼¾ Ú ÒØ Ð ÙÖÝ ÓÑÔÓ Åº Å Ð Ê Æ Ä ÈÖ ÒØ Åº

Plus en détail

Laboratoire d'informatique Fondamentale de Lille

Laboratoire d'informatique Fondamentale de Lille Laboratoire d'informatique Fondamentale de Lille ÓÒÒ Å Ö Â µ È Ð ÔÔ Å Ø Ù Î Ö ÓÒ ½º Ð ½»¼»½ ÁÍ̹ Ä ÐÐ ÄÁ Ä ÍËÌÄ ÍÆÁÎ ÊËÁÌ Ë Ë Á Æ Ë Ì Ì ÀÆÇÄÇ Á Ë ÄÁÄÄ Íº ºÊº ³Áº º º º غ Å ß ÎÁÄÄ Æ ÍÎ ³ Ë É Ì Ðº ¼ ¾¼

Plus en détail

Ê ÔÔÓÖØ Ø Ù ÐÐ ÙÑ Î Ð ÓÒ ¾ Ù Ò ¾¼¼¼ Ì Ð Ñ Ø Ö Á ÓÖ Ð ÓÑÑÙÒ Ø ÓÒ ½ ÈÖ ÒØ Ø ÓÒ Ð Ó Ø ¾ Ä ÓÑ Ò ³ Ø Ú Ø ¾º½ Ñ Ò ØÖ Ø ÓÒ Ý Ø Ñ Ð³ Ò ÓÖÑ Ø ÓÒ º º º º º º º º º º º ¾º¾ Ö Ø ØÙÖ Ö ÙÜ ÓÑÑÙÒ Ø ÓÒ º º º º º º º º

Plus en détail

Une infrastructure pour middleware adaptable

Une infrastructure pour middleware adaptable ÁÒ Ø ØÙØ Ê Ö Ò ÁÒ ÓÖÑ Ø ÕÙ Æ ÒØ Une infrastructure pour middleware adaptable È ÖÖ ¹ ÖÐ Ú Ò Ö Ô Ö Ì ÓÑ Ä ÓÙÜ ÓÐ Å Ò Æ ÒØ ÁÒ Ø ØÙØ Ê Ö Ò ÁÒ ÓÖÑ Ø ÕÙ Æ ÒØ ¾ ÖÙ Ð ÀÓÙ Ò Ö ºÈº ¾¾¼ ¹ ¾¾ Æ ÆÌ Ë Ê ÔÔÓÖØ ËØ Ë ÔØ

Plus en détail

Ä ÇÆ Á Æ Ó ³ÇÊ Ê ¹¾¼¼¾ Ä Èȹ̹¾¼¼¾»¼¾ ÓÐ ÓØÓÖ Ð È Ý ÕÙ Ø ³ ØÖÓÔ Ý ÕÙ ÄÝÓÒ ÌÀ Ë ÔÖ ÒØ Ú ÒØ Ð³ÍÆÁÎ ÊËÁÌ Ä Í ÊÆ Ê ¹Ä ÇÆ ½ ÔÓÙÖ Ð³Ó Ø ÒØ ÓÒ Ù ÁÈÄÇÅ Ç ÌÇÊ Ì ÖÖ Ø Ù ¼ Ñ Ö ½ ¾µ ËÔ Ð Ø È Ý ÕÙ Ô ÖØ ÙÐ Ô Ö Ä ÓÒ

Plus en détail

Laboratoire d'informatique Fondamentale de Lille

Laboratoire d'informatique Fondamentale de Lille Laboratoire d'informatique Fondamentale de Lille ÓÒÒ Å Ö Â µ È Ð ÔÔ Å Ø Ù Î Ö ÓÒ ½º Ð ¼»¼»½ ÁÍ̹ Ä ÐÐ ÄÁ Ä ÍËÌÄ ÍÆÁÎ ÊËÁÌ Ë Ë Á Æ Ë Ì Ì ÀÆÇÄÇ Á Ë ÄÁÄÄ Íº ºÊº ³Áº º º º غ Å ß ÎÁÄÄ Æ ÍÎ ³ Ë É Ì Ðº ¼ ¾¼

Plus en détail

Ï Í Å Ò Ò ÁÒØ Ö¹Ë Ø Ò ÐÝ Ù ÓÑÔÓÖØ Ñ ÒØ ÍØ Ð Ø ÙÖ ÁÑÔ Ø ÁÑÑ Ø ÁÒØ Ö Ø Ï Í Å Ò Ò Í Ö Ú ÓÙÖ Ò ÐÝ Û Ø ÁÑÑ Ø ÁÑÔ Ø º Å Ð ½ ¾µ ź Ì Ö ½µ Ⱥ ÈÓÒ Ð Ø ½µ ½µ ÄÁÊÅÅ ÍÅÊ ÆÊË ¼ ½ ½ ÊÙ ¾ ÅÓÒØÔ ÐÐ Ö Ü Ö Ò ¾µ Ä ÓÖ ØÓ

Plus en détail

Nanolithographie par anodisation locale en microscopie à force atomique sur le phosphore d'indium pour des applications optoélectroniques

Nanolithographie par anodisation locale en microscopie à force atomique sur le phosphore d'indium pour des applications optoélectroniques Année 2005 N d'ordre : 2005 ISAL 0096 THÈSE Nanolithographie par anodisation locale en microscopie à force atomique sur le phosphore d'indium pour des applications optoélectroniques Jury : Par Edern TRANVOUEZ

Plus en détail

ÓÐ ÓØÓÖ Ð Å Ø Ñ Ø ÕÙ Ë Ò Ø Ì ÒÓÐÓ Ð³ÁÒ ÓÖÑ Ø ÓÒ ÁÒ ÓÖÑ Ø ÕÙ Í Ê ÁÅ ÓÖÑ Ð Ø ÓÒ ÓÒÒ Ò ÓÙÑ ÒØ Ö Ø ÓÒÒ Ò ÓÒ ÔØÙ ÐРг ³ÓÒØÓÐÓ ÔÔÐ Ø ÓÒ Ð Ö ÔØ ÓÒ ÓÙÑ ÒØ Ù ÓÚ Ù Ð ÌÀ Ë ÔÖ ÒØ Ø ÓÙØ ÒÙ ÔÙ Ð ÕÙ Ñ ÒØ Ð Å Ö ¾¼¼ ÔÓÙÖ

Plus en détail

Fermilab FERMILAB-THESIS-2003-15

Fermilab FERMILAB-THESIS-2003-15 Fermilab FERMILAB-THESIS-2003-15 ÈÈŹ̹¾¼¼ ¹¼ ÍÆÁÎ ÊËÁÌ Ä Å ÁÌ ÊÊ Æ Á ¹Å ÊË ÁÄÄ ÁÁ ÍÄÌ Ë Ë Á Æ Ë ÄÍÅÁÆ ½ Ú ÒÙ ÄÙÑ ÒÝ ½ ¾ Å ÊË ÁÄÄ Ü ¼ Ê Æ ÌÀ Ë Ç ÌÇÊ Ì ËÔ Ð Ø È Ý ÕÙ Å Ø Ñ Ø ÕÙ È Ý ÕÙ È ÖØ ÙÐ Ø ÅÓ Ð Ø ÓÒ

Plus en détail

Découverte et fourniture de services adaptatifs dans les environnements mobiles

Découverte et fourniture de services adaptatifs dans les environnements mobiles Découverte et fourniture de services adaptatifs dans les environnements mobiles Ouahiba Fouial To cite this version: Ouahiba Fouial. Découverte et fourniture de services adaptatifs dans les environnements

Plus en détail

ÍÒ Ú Ö Ø ÅÓÒØÖ Ð ÍÒ ÑÓ Ð ÙÒ ÓÖÑ ÔÓÙÖ Ð ÑÓ Ð Ø ÓÒ Ø Ð Ñ Ø ÑÓ Ð Ø ÓÒ ³ÙÒ Ñ ÑÓ Ö ³ ÒØÖ ÔÖ Ô Ö ÇÐ Ú Ö Ö Ô ÖØ Ñ ÒØ ³ Ò ÓÖÑ Ø ÕÙ Ø Ö Ö ÓÔ Ö Ø ÓÒÒ ÐÐ ÙÐØ ÖØ Ø Ò Ì ÔÖ ÒØ Ð ÙÐØ ØÙ ÙÔ Ö ÙÖ Ò ÚÙ Ð³Ó Ø ÒØ ÓÒ Ù Ö È

Plus en détail

Æ Æ ³ÓÖ Ö ÍÒ Ú Ö Ø È ÊÁË ¹ Ò ÖÓØ Í Ê ÈÀ ËÁÉÍ ÌÀ Ë ÔÓÙÖ Ð³Ó Ø ÒØ ÓÒ Ù ÔÐÑ Ç Ì ÍÊ Ä³ÍÆÁÎ ÊËÁÌ È ÊÁË ËÔ Ð Ø Å Ø Ó È Ý ÕÙ Ò Ì Ð Ø Ø ÓÒ ÔÖ ÒØ Ø ÓÙØ ÒÙ ÔÙ Ð ÕÙ Ñ ÒØ Ô Ö Ö ÓÙÖ Ð Ñ Ö ¾¼¼½ ÇÆÌÊÁ ÍÌÁÇÆ Ä Ì ÊÅÁÆ

Plus en détail

Ì ÖÖÝ ÅÓÝ ÙÜ ÖÓÙÔ Å Ë ÂÙ ÐÐ Ø ¾¼¼¾ Ì Ò ÕÙ ÑÙÐØ ÒØ ÔÓÙÖ Ð Ö ÙØ ÓÒ Ð³ ÑÔÐ Ø ÓÒ Ð Ñ Ò Ò ÙÒ Ò ÐÓ Ø ÕÙ ÔÔÐ Ø ÓÒ Ð³ Ò Ù ØÖ ÓÖ Ø Ö Ö Ø ÙÖ ÈÖÓ º Ö Ñ ¹ Ö Ó¹ Ö Ø ÙÖ ÈÖÓ º ËÓÔ ³ ÑÓÙÖ ÈÖÓ º ÖÒ Ö Ô Ò ÈÖÓÔÓ Ø ÓÒ Ø ÓØÓÖ

Plus en détail

ÍÒ Ú Ö Ø Ö ÒÓ Ê Ð ÌÓÙÖ ÓÐ ÓØÓÖ Ð Ë ÒØ Ë Ò Ø Ì ÒÓÐÓ ÒÒ ÍÒ Ú Ö Ø Ö ¾¼¼¾¹¾¼¼ BLOIS CHINON ÌÀ Ë ÈÇÍÊ Ç Ì ÆÁÊ Ä Ê Ç Ì ÍÊ Ä³ÍÆÁÎ ÊËÁÌ ÌÇÍÊË ÔÐ Ò ÁÒ ÓÖÑ Ø ÕÙ ÔÖ ÒØ Ø ÓÙØ ÒÙ ÔÙ Ð ÕÙ Ñ ÒØ Ô Ö Æ ÓÐ Ä ÊÇ À Ð Ñ Ö

Plus en détail

Vérification d invariants de systèmes paramétrés par superposition

Vérification d invariants de systèmes paramétrés par superposition Université defranche-comté École doctorale Sciences Pour l Ingénieur et Microtechniques U.F.R. des Sciences et Techniques Vérification d invariants de systèmes paramétrés par superposition THÈSE présentée

Plus en détail

DÉVELOPPEMENT ET VALIDATION DE MÉTHODES DOSIMÉTRIQUES EN LIGNE POUR LE TRAITEMENT DU CANCER DE LA PROSTATE

DÉVELOPPEMENT ET VALIDATION DE MÉTHODES DOSIMÉTRIQUES EN LIGNE POUR LE TRAITEMENT DU CANCER DE LA PROSTATE DÉVELOPPEMENT ET VALIDATION DE MÉTHODES DOSIMÉTRIQUES EN LIGNE POUR LE TRAITEMENT DU CANCER DE LA PROSTATE THÈSE N O 3267 (2005) PRÉSENTÉE À LA FACULTÉ SCIENCES DE BASE Institut de physique de l'énergie

Plus en détail

ÍÒ Ú Ö Ø Ð Å Ø ÖÖ Ò Ü¹Å Ö ÐÐ ÁÁ Ä ÓÖ ØÓ Ö Ù ÒØÖ È Ý ÕÙ È ÖØ ÙÐ Å Ö ÐÐ ØØ Ø ÒØ ØÙÐ ØÙ Ò Ø ÓÒ Ø ÑÓ Ð Ø ÓÒ ³ÙÒ ËÝ Ø Ñ ØÖ Ù Ö Ò ÐÐ ÁÊ ¹ ØÖ ÙØ ÁÒ Ö ØÖÙØÙÖ Û Ø Ê ÑÓØ ÒØ ÓÒØÖÓÐ ÔÖ ÒØ Ô Ö Î Ò ÒØ ÖÓÒÒ ÁÒ Ò ÙÖ Ê

Plus en détail

P etit pat hw o rk de ombinatoire énumérative Mireille Bousquet-Mélou, CNRS, LaBRI, Bo rdeaux http://www.lab ri.fr/ b ousquet

P etit pat hw o rk de ombinatoire énumérative Mireille Bousquet-Mélou, CNRS, LaBRI, Bo rdeaux http://www.lab ri.fr/ b ousquet Ô Ø ÛÓÖ È Ø Ø ÓÑ Ò ØÓ Ö ÒÙÑ Ö Ø Ú Å Ö ÐÐ ÓÙ Õ٠عŠÐÓÙ ÆÊË Ä ÊÁ ÓÖ ÙÜ ØØÔ»»ÛÛÛºÐ Ö º Ö» ÓÙ ÕÙ Ø Ä ÓÑ Ò ØÓ Ö ÒÙÑ Ö Ø Ú ººº ³ ØÕÙÓ ÈÓÙÖÕÙÓ ÓÑÑ ÒØ ÇÅÈÌ Ê κ ij ÖØ ÓÑÔØ Ö Ô Ðغ Ø Ð ÖÐ ÒÓÑ Ö Ö Ö ÒÓÑ Ö Ö ÒÓÑ

Plus en détail

ÈÖÓ Ö ÑÑ Ø ÓÒ Ò Â Ú Ü Ò Ö Å ½ ÔØ Ñ Ö ¾¼½ Ì Ñ Ø Ö ½ ÆÓØ ÓÙÖ ¾ ½º½ ÁÒØÖÓ ÙØ ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º ¾ ½º½º½ À Ó ÏÓÖ º º º

Plus en détail

ÇÆ ÈÌÁÇÆ Ì Ê ÄÁË ÌÁÇÆ ³ÍÆ ÈÈÄÁ ÌÁÇÆ ËÌÁÇÆ Ê Ë Í Ë ÇÅÈÇË ÆÌË Ê È ÊÌÁË Ô Ö ÅÓ Ñ Ö Þ Ñ ÑÓ Ö ÔÖ ÒØ Ù Ô ÖØ Ñ ÒØ Ñ Ø Ñ Ø ÕÙ Ø ³ Ò ÓÖÑ Ø ÕÙ Ò ÚÙ Ð³Ó Ø ÒØ ÓÒ Ù Ö Ñ ØÖ Ò ÅºËºµ ÍÄÌ Ë Ë Á Æ Ë ÍÆÁÎ ÊËÁÌ ËÀ Ê ÊÇÇÃ

Plus en détail

¹ËÁÊ ¹ Ê ÔÔÓÖØ Ø ÈÖÓ Ø Ä Ò Ø Ê Ô ÖØ Ø ÓÒ Ö Ö Ò Ó Ò Æ Ó Ò Ö Ñ ÒØ ÀÙ ÖØ Æ Ë ÔØ Ñ Ö ¾¼¼¾ ¾ Ì Ð Å Ø Ö ÁÒØÖÓ ÙØ ÓÒ ½ Ø Ø Ð³ ÖØ ½ ½º½ ÁÒØÖÓ ÙØ ÓÒ º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Plus en détail

Ä Ù Ù ÊÇÇÌ Ö ÔÓÙÖ Ä ÒÙÜ Ö ÙÑ Ö º ÙÑ Ä ÒÙܺ ͺÇÖ Ö º ÙÑ Ö Ò ÜºÓÖ Î Ö ÓÒ ¾º ¾½ Ë ÔØ Ñ Ö ½ Ì Ð Ñ Ø Ö ½ ÈÖ Ñ ÙÐ ½ ½º½ À ØÓ Ö Ù º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º º

Plus en détail

Études de cas en analyse des données

Études de cas en analyse des données Études de cas en analyse des données Bernard Colin (Éditeur) Départements de mathématiques et d informatique Faculté des Sciences Université de Sherbooke Rapport de recherche No 86 1 AVANT-PROPOS Ce rapport,

Plus en détail

IDIAP IDIAP. Martigny - Valais - Suisse

IDIAP IDIAP. Martigny - Valais - Suisse R E S E A R C H R E P O R T IDIAP IDIAP Martigny - Valais - Suisse ÁÆØ Ö Ø Ò ËÈ ÓÙ Ø Ò Ð Ò Ù Ø ÓÒ ÌÖ ÒØ Ð Ò ËÝ Ø Ñ Ú ÐÓÔÑ ÒØ ÙÐ ÖÒ Ö À ÖÚ ÓÙÖÐ Ö Å ÖØ Ò Ê Ñ Ò Â Ò¹ Ö ÔÔ Ð Ö Á Á ÈßÊÊ ¹¾½ ÆÓÚ Ñ Ö ½ Ë Ð Ó

Plus en détail

z x h ÙÖ ½ ÓÑØÖ Ù ÔÖÓÐѺ ½º ÁØÖÓÙØÓ ÁÐ Ø ÓÙ ÕÙ Ù ÓÙ Ó ÔÖÓÖ ÓØ Ý ØÑ Æ ÔÓÙÖ ÔÖ Ð³Ö ÚÙ Ð Ó ÂÖÐ ÂÖÐ ½½µ ÓØ ÐÖÑØ ÙØÐ ÔÓÙÖ ÑÓÖØÖ Ð ÐÔÓØ Ð ÔÓÖØ Ù ÔÖÓÖ ÓØ Ú ÓÑÑ Ý ØÑ ÔÖÓØØÓ ÓØÖ ÚÓÖ ÔÖ ÜÑÔÐ ÖÑ ² ÇÙÑÖ ½ ÓÙ ÐÙ ²

Plus en détail

TUTORAT ELECTRONIQUE EN ANALYSE MATHEMATIQUE - TEAM

TUTORAT ELECTRONIQUE EN ANALYSE MATHEMATIQUE - TEAM TUTORAT ELECTRONIQUE EN ANALYSE MATHEMATIQUE - TEAM 2010 Année scolaire 2010-2011 Cours / Exercices Auteurs de la Ressource Pédagogique Charnay Michel Dubois Gérard Jai Mohammed Tutorat Electronique en

Plus en détail

Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides:

Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: Méthode de décomposition de domaine et conditions aux limites artificielles en mécanique des fluides: méthode Optimisée d Orde 2. Caroline Japhet To cite this version: Caroline Japhet. Méthode de décomposition

Plus en détail

4. Gestion des tâches

4. Gestion des tâches ÁÈ ¾ ÚÖ Ö ¾¼½¼ ½ Ü Ñ Ò Ý Ø Ñ Ø ÑÔ ¹Ö Ð È ÖØ Á ÙÖ ÓÒ ÐÐ ¼ Ñ Ò ÈÓÒ Ö Ø ÓÒ ½¼ ÔÓ ÒØ ÙÖ ¾¼ ÓÙÑ ÒØ ÓÙÖ Ø ÐÙÐ ØÖ ÙØÓÖ º Ä Ù Ø ³ ØÙ Ø Ð Ý Ø Ñ ³ ÜÔÐÓ Ø Ø ÓÒ Ø ÑÔ Ö Ð ÇË Ãº ÇÒ ÓÙÖÒ Ø ÙÒ Ö Ø ÜØ Ò ÝÒØ Ü Ó Ð ÔÓÙÖ

Plus en détail

Programme et actes. 6 ème SYMPosium en Architectures nouvelles de machines Organisé conjointement avec RenPar'12 19-22 juin 2000, Besançon

Programme et actes. 6 ème SYMPosium en Architectures nouvelles de machines Organisé conjointement avec RenPar'12 19-22 juin 2000, Besançon ARP Sympa - Programme et actes Programme et actes 6 ème SYMPosium en Architectures nouvelles de machines Organisé conjointement avec RenPar'12 19-22 juin 2000, Besançon Pas d'utilisateur identifié Introduction

Plus en détail

Ð Ø Ò Ð ÙØÓÑ Ø Ø ÑÔÓÖ Å ÑÓ Ö Å Ø Ö¾ ÙÜ ÓÖÐÓ ËÓÙ Ð Ö Ø ÓÒ È ØÖ ÓÙÝ Ö ØÆ ÓÐ Å Ö Ý ÙÝ Ð ÒÆ Ú ÔØ Ñ Ö ¾¼¼ Ò Ö ÔÔÓÖØ ÒÓÙ ØÙ ÓÒ Ð ÔÖÓ Ð Ñ Ð³ Ð Ø ³ÙÒ Ø Ø Ò Ð Ê ÙÑ Ú ÙÒ ÙÐ ÓÖÐÓ ºÆÓÙ ÑÓÒØÖÓÒ ÕÙ³ Ð ØÆȹÓÑÔÐ ØÔÓÙÖÙÒ

Plus en détail

Introduction au cours Pipeline logiciel Fusion de boucles. Sans contraintes de ressources. Optimisations des durées de vie

Introduction au cours Pipeline logiciel Fusion de boucles. Sans contraintes de ressources. Optimisations des durées de vie Outline Introduction au cours 1 Introduction au cours Compilation et optimisations de codes Des p'tites boucles, toujours des p'tites boucles Exemples de spécicités architecturales 2 3 Intérêts et problèmes

Plus en détail

Ä ÇÊ ÌÇÁÊ ÈÀ ËÁÉÍ ÌÀ ÇÊÁÉÍ ÍÆÁÎ ÊËÁÌ ÈÁ ÊÊ ÌÅ ÊÁ ÍÊÁ ij ÇÄ ÆÇÊÅ Ä ËÍÈ ÊÁ ÍÊ ÌÀ Ë Ç ÌÇÊ Ì Ä³ÍÆÁÎ ÊËÁÌ È ÊÁË ËÔ Ð Ø ÈÀ ËÁÉÍ ÌÀ ÇÊÁÉÍ Ë Ö ÄÇÊ ÆË ÔÖ ÒØ Ô Ö Ç Ì ÍÊ Ä³ÍÆÁÎ ÊËÁÌ È ÊÁË ÔÓÙÖÓ Ø Ò ÖÐ Ö ÇÀ Ê Æ ÌÄÇ

Plus en détail

Analyse de courbes de consommation électrique par

Analyse de courbes de consommation électrique par INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Analyse de courbes de consommation électrique par chaînes de Markov cachées Jean-Baptiste Durand Laurent Bozzi Gilles Celeux Christian Derquenne

Plus en détail

Un modèle à interactions distribuées

Un modèle à interactions distribuées ÈÊÇÂ Ì ÊÆÌÄ Ê º½ ¹ ËÔ Ø ÓÒ ³ÙÒ ÑÓ Ð ³ ÒØ Ö Ø ÓÒ Ì¼ ½ ÒØ ÖÒ ¹ ̼ ÔÙ Ð Ä ÙÖ ÒØ Ö Ö Å Ö ÐÐ Ð Ý ÒÒ ¹Å Ö È ÒÒ ¹ ÖÝ Ø Å Ð ÊÚ ÐÐ ÍÒ Ú Ö Ø Æ» ËËÁ ¼ ÖÓÙØ ÓÐÐ ¼ ¼ ËÓÔ ÒØ ÔÓÐ Ü Ñ ¼¼ Ê ÙÑ ÓÙÑ ÒØ Ø ÓÑÔÓ Ò Ð Ô ÖØ ÔÖ

Plus en détail

Æ Ó ³ÓÖÖ ¼ ½¼ Ì ÔÖ ÒØ ÚÒØ Ð³ÁÒ ØØÙØ ÆØÓÒÐ ËÒ ÔÔÐÕÙ ÊÒÒ ÔÓÙÖ ÓØÒÖ Ð ØØÖ ÓØÙÖ ÔÐØ ÐØÖÓÒÕÙ ØÙ Ø ÓÔØÑ ØÓÒ ØÒÕ٠ŹŠÔÓÙÖ Ð ÙØÙÖ ÒÖØÓÒ Ý ØÑ ÓÑÑÙÒØÓÒ ÖØÞÒÒ ÔÖ ËØÔÒ ÆÇÁÄÌ ËÓÙØÒÙ Ð ¼ ÓØÓÖ ¾¼¼ ÚÒØ Ð ÓÑÑ ÓÒ ³ÜÑÒ

Plus en détail

Å ÙÖ ÑÔ ÔÐÑÒØ ÔÖ ÓÖÖÐØÓÒ ³Ñ Ø ÔÔÐØÓÒ Ò ÑÒÕÙ ÓÐ ÖÒÓ ÀÐ ÆÓØ ÓÙÖ ÁÈËÁ ÁÒØØÓÒ Ù ÓÑÔÓÖØÑÒØ ÑÒÕÙ ÑØÖÙÜ Ø Ø Ð ÖÙÔØÙÖ ØÖÙØÙÖ Ð³ ÑØÓ ÓÔØÕÙ ËÔØÑÖ ¾¼¼ ÄÅÌ¹Ò ÄÓÖØÓÖ ÅÒÕÙ Ø ÌÒÓÐÓµ ÆË Ò»ÆÊ˹ÍÅÊ»ÍÒÚÖ Ø ÈÖ ½ ÚÒÙ Ù ÈÖ

Plus en détail

ÍÒÚÖ Ø ØÓÐÕÙ ÄÓÙÚÒ ÙÐØ Ò ÔÔÐÕÙ ÔÖØÑÒØ ³ÒÒÖ ÑØÑØÕÙ Å ÙÖ Ö ÕÙ ÑÖ Ø ÔÖÖÐØ ÙÒÚÖ Ðк ÃÖÑ ÒÒ ÅÑÓÖ ÔÖ ÒØ Ò Ú٠гÓØÒØÓÒ Ù Ö ³ÒÒÙÖ ÚÐ Ò ÑØÑØÕÙ ÔÔÐÕÙ ÈÖÓÑÓØÙÖ Ú ËÑÖ ÄØÙÖ ÈÖÖ Ö Ø ÅÐ ÒÙØ ÄÓÙÚҹĹÆÙÚ ÆÓÚÑÖ ¾¼¼ ÊÑÖÑÒØ

Plus en détail

ÍÆÁÎÊËÁÌ ÌÀÇÄÁÉÍ ÄÇÍÎÁÆ ÙÐØ ËÒ ÔÔÐÕÙ ÄÌÊÁÁÌ Ø ÅÆÌÁËÅ º Ù Ö Ø Êº ÈÖÐ ÇÍÊË Ë½¼¾ Àº ÙÝ ¹º Ù Ö ¹Êº ÈÖÐ ¹Âº ÎÖÚÖ «Ù ÓÒ ÍÒÚÖ ØÖ ÁÇ ÂÒÚÖ ½ ÎÊÌÁËËÅÆÌ Ä ÔÖ ÒØ ÒÓØ ÓÒØ ØÒ ÖÚÖ ÖÖÒ ÔÓÙÖ Ð ÓÙÖ ÈÝ ÕÙ ¾ ¹ ÐØÖØ ÔÒ Ò ÔÖÑÖ

Plus en détail

ÄÓÐ ØÓÒ Ø ÓÑÑÒ ÊÓÓØ ÖÒ ÅÒØÙÖ ÚÓÐÙÖ ØÓÙÖÒÒغ ÊÓÐÓ ÄÓÞÒÓ ÀÍÖ ØÕÙ Ø ÁÒÓ Ø Ë ØÑ ÓÑÔÐÜ ÀÍÁ˵ ÍÅÊ ÆÊË ÍÒÚÖ Ø ÌÒÓÐÓ ÓÑÔÒ È ¾¼¾ ¼¾¼ ÓÑÔÒ Ü Ìк ¼µ ¾ ¾ Ü ¼µ ¾ Ñк ÊÓÐÓºÄÓÞÒÓ ºÙØºÖ ËÔØÑÖ ½ ¾¼¼½ ½ ½ ÓÒØÜØ ÒØÕÙ Ä ÚÒ

Plus en détail

ÍÆÁÎÊËÁÌ ÊÇÁÌ ³ÇÆÇÅÁ Ì Ë ËÁÆË ³Á¹ÅÊËÁÄÄ ÓÐ ÓØÓÖÐ ËÒ ÓÒÓÑÕÙ Ø ØÓÒ ³Ü¹ÅÖ ÐÐ ÒØÖ ³ØÙ Ø ÊÖ ÙÖ Ð ÇÖÒ ØÓÒ Ø Ð ØÓÒ ÁÆËÌÁÌÍÌ ³ÅÁÆÁËÌÊÌÁÇÆ Ë ÆÌÊÈÊÁËË ÌÀË ÇÌÇÊÌ Æ ËÁÆË ËÌÁÇÆ ÔÖ ÒØ ÔÖ ÐÜ ËÓÙÔÖ ÓÒ Ë Ä ÎÇÄÌÁÄÁÌ ËÌÇÀËÌÁÉÍ

Plus en détail

STATUTS DE L ASSOCIATION. Association régie par par la Loi du 1 er juillet 1901

STATUTS DE L ASSOCIATION. Association régie par par la Loi du 1 er juillet 1901 STATUTS DE L ASSOCIATION Association régie par par la Loi du 1 er juillet 1901 Statuts adoptés par l Assemblée Générale Extraordinaire du dimanche 1 er avril 2007 ËØ ØÙØ Ð³ Ó Ø ÓÒ ÖØ Ð ÔÖ Ñ Ö¹ ÒÓÑ Ò Ø

Plus en détail

Administration Unix. Cas de GNU/Linux/Debian. Volume 4

Administration Unix. Cas de GNU/Linux/Debian. Volume 4 -1-0 Administration Unix Cas de GNU/Linux/Debian Volume 4 Ö Ò Ø ºÓÖ Ronan Keryell Novembre 2005 Version 1.2 Copyright (c) 1986 2037 byêóò Һà ÖÝ ÐÐ Ò Ø ºÓÖ. This material may be distributed only subject

Plus en détail

Publication sur Internet

Publication sur Internet SÉANCE 3 Publication sur Internet 3.1 Edition d un site en HTML 3.1.1 Les différents types de documents Les documents présents sur Internet peuvent être de différents formats. Le format HTML est le premier

Plus en détail

2 20 e Journées Bases de Données Avancées (BDA 2004). 1. Introduction

2 20 e Journées Bases de Données Avancées (BDA 2004). 1. Introduction arxiv:0704.3501v1 [cs.db] 26 Apr 2007 Conception d un banc d essais décisionnel : ÖÓÑ º ÖÑÓÒØÙÒ Ú¹ÐÝÓÒ¾º Ö Jérôme Darmont Fadila Bentayeb Omar Boussaïd ERIC Université Lumière Lyon 2 5 avenue Pierre Mendès-France

Plus en détail

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½

Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Condition inf-sup pour l Elément Fini de Taylor-Hood È ¾ -iso-è ½ Patrick Ciarlet et Vivette Girault ciarlet@ensta.fr & girault@ann.jussieu.fr ENSTA & Laboratoire Jacques-Louis Lions, Paris 6 Condition

Plus en détail

Un outil de prédiction dynamique de performances dans un environnement de metacomputing

Un outil de prédiction dynamique de performances dans un environnement de metacomputing RECHERCHE Un outil de prédiction dynamique de performances dans un environnement de metacomputing Martin Quinson LIP, UMR CNRS-ÉNS Lyon-INRIA 5668 École Normale Supérieure de Lyon 46, allée d Italie 69364

Plus en détail

Fast Visa 107 rue du Château 92100 Boulogne Billancourt Tél : 01.41.41.50.40 - fax: 01.74.62.41.38 contact@fastvisa.fr

Fast Visa 107 rue du Château 92100 Boulogne Billancourt Tél : 01.41.41.50.40 - fax: 01.74.62.41.38 contact@fastvisa.fr Nom et adresse...... Ville :... Code Postal :.. Tél :..Fax :. Email :. Interlocuteur :... BON DE COMMANDE Fast Visa 107 rue du Château 92100 Boulogne Billancourt Tél : 01.41.41.50.40 - fax: 01.74.62.41.38

Plus en détail

Richard Lagrange Directeur du Centre national des arts plastiques

Richard Lagrange Directeur du Centre national des arts plastiques -è é. é é, é ôé É é é.,, é é é é.,, -ê à é, é é é ç éé. é éé ç œ,, é - É. é 2010. ç é,. é éé é 2012 é é éé éê é. é é é. = // é,. 38. 13/10/11, 24/11/11 î è é ç, é é., é é é à î é à î, é à è. é à,, ç, -à-.,.,

Plus en détail

Classification automatique de courriers électroniques par des méthodes mixtes d apprentissage

Classification automatique de courriers électroniques par des méthodes mixtes d apprentissage Classification automatique de courriers électroniques par des méthodes mixtes d apprentissage Rémy Kessler * Juan Manuel Torres-Moreno ** Marc El-Bèze * * Laboratoire d Informatique d Avignon / Université

Plus en détail

DELIBERATION N CP 13-639

DELIBERATION N CP 13-639 CONSEIL REGIONAL D ILE DE FRANCE 1 CP 13-639 DELIBERATION N CP 13-639 DU 17 OCTOBRE 2013 La politique sociale régionale La politique régionale pour les personnes en situation de handicap Cinquième affectation

Plus en détail

ditorial Lundi, Mardi, Jeudi et Vendredi de 14h à 18h Fermé le Mercredi et Samedi

ditorial Lundi, Mardi, Jeudi et Vendredi de 14h à 18h Fermé le Mercredi et Samedi Enrobés 77 ditorial Mes Chers Concitoyens, Nous tenons tout d'abord à remercier les lecteurs qui suivent nos publications et communications qu'elles soient à travers notre bulletin municipal ou par l'intermédiaire

Plus en détail

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr

Commande Prédictive. J. P. Corriou. LSGC-ENSIC-CNRS, Nancy. e-mail : corriou@ensic.inpl-nancy.fr Commande Prédictive J P Corriou LSGC-ENSIC-CNRS, Nancy e-mail : corriou@ensicinpl-nancyfr Ý Consigne Trajectoire de référence Ý Ö Réponse Ý Horizon de prédiction À Ô ¹ Ù ¹ Temps Entrée Ù Horizon de commande

Plus en détail

Formation expérimentale en mécanique des fluides

Formation expérimentale en mécanique des fluides FACULTÉ DES SCIENCES D ORSAY Formation expérimentale en mécanique des fluides Enseignant responsable: Yann BERTHO yann.bertho@u-psud.fr L3 Physique et applications L3 Mécanique Année 014-015 ÅÓ Ð Ø Ä

Plus en détail

Des Orchestrations de Services Web aux Aspects

Des Orchestrations de Services Web aux Aspects Des Orchestrations de Services Web aux Aspects Cédric Joffroy, Sébastien Mosser, Mireille Blay-Fornarino, Clémentine Nemo Laboratoire I3S (CNRS - UNSA), Bâtiment Polytech Sophia SI 930 route des Colles

Plus en détail

Mélange et transferts thermiques en écoulements laminaires et leur modélisation.

Mélange et transferts thermiques en écoulements laminaires et leur modélisation. Mélange et transferts thermiques en écoulements laminaires et leur modélisation. Kamal El Omari To cite this version: Kamal El Omari. Mélange et transferts thermiques en écoulements laminaires et leur

Plus en détail

Cours d Electromagnétisme

Cours d Electromagnétisme Année Universitaire 2012-2013 Licence de Physique (S4) Cours d Electromagnétisme Chargé du Cours : M. Gagou Yaovi Maître de Conférences, HDR à l Université de Picardie Jules Verne, Amiens yaovi.gagou@u-picardie.fr

Plus en détail

Différentiabilité ; Fonctions de plusieurs variables réelles

Différentiabilité ; Fonctions de plusieurs variables réelles Différentiabilité ; Fonctions de plusieurs variables réelles Denis Vekemans R n est muni de l une des trois normes usuelles. 1,. 2 ou.. x 1 = i i n Toutes les normes de R n sont équivalentes. x i ; x 2

Plus en détail

Série 7 : circuits en R.S.F.

Série 7 : circuits en R.S.F. Série 7 : circuits en R.S.F. 1 Documents du chapitre Action d un circuit du 1er ordre sur un échelon de tension et sur une entrée sinusoïdale : Déphasage de grandeurs sinusoïdales et représentation de

Plus en détail

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance.

CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. XIII. 1 CHAPITRE XIII : Les circuits à courant alternatif : déphasage, représentation de Fresnel, phaseurs et réactance. Dans les chapitres précédents nous avons examiné des circuits qui comportaient différentes

Plus en détail

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S

La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S La Cible Sommaire F oc us F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N T

Plus en détail

Nicolas BLACHARD. FIDES-PATRIMOINE-FINANCE 19, Rue La Boétie 75008 PARIS (France) ' 01-43-12-39-45. Fax : 01-43-12-39-49

Nicolas BLACHARD. FIDES-PATRIMOINE-FINANCE 19, Rue La Boétie 75008 PARIS (France) ' 01-43-12-39-45. Fax : 01-43-12-39-49 w w w 2015 FIDES-PATRIMOINE-FINANCE 19, Rue La Boétie 75008 PARIS (France) ' 01-43-12-39-45 Fax : 01-43-12-39-49 Nicolas BLACHARD FIDES PATRIMOINE FINANCE-MARSEILLE 18, Rue Jacques Réattu. Buroparc Bat

Plus en détail

Fonctions de plusieurs variables. Sébastien Tordeux

Fonctions de plusieurs variables. Sébastien Tordeux Fonctions de plusieurs variables Sébastien Tordeux 22 février 2009 Table des matières 1 Fonctions de plusieurs variables 3 1.1 Définition............................. 3 1.2 Limite et continuité.......................

Plus en détail

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives.

ÉVALUATION FORMATIVE. On considère le circuit électrique RC représenté ci-dessous où R et C sont des constantes strictement positives. L G L G Prof. Éric J.M.DELHEZ ANALYSE MATHÉMATIQUE ÉALUATION FORMATIE Novembre 211 Ce test vous est proposé pour vous permettre de faire le point sur votre compréhension du cours d Analyse Mathématique.

Plus en détail

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel.

Réseau SCEREN. Ce document a été numérisé par le CRDP de Bordeaux pour la. Base Nationale des Sujets d Examens de l enseignement professionnel. Ce document a été numérisé par le CRDP de Bordeaux pour la Base Nationale des Sujets d Examens de l enseignement professionnel. Campagne 2013 Ce fichier numérique ne peut être reproduit, représenté, adapté

Plus en détail

Equations différentielles linéaires à coefficients constants

Equations différentielles linéaires à coefficients constants Equations différentielles linéaires à coefficients constants Cas des équations d ordre 1 et 2 Cours de : Martine Arrou-Vignod Médiatisation : Johan Millaud Département RT de l IUT de Vélizy Mai 2007 I

Plus en détail

ASR1 TD7 : Un microprocesseur RISC 16 bits

ASR1 TD7 : Un microprocesseur RISC 16 bits {Â Ö Ñ º ØÖ Ý,È ØÖ ºÄÓ Ù,Æ ÓÐ ºÎ ÝÖ Ø¹ ÖÚ ÐÐÓÒ} Ò ¹ÐÝÓÒº Ö ØØÔ»»Ô Ö Óº Ò ¹ÐÝÓÒº Ö» Ö Ñ º ØÖ Ý»¼ Ö½» ASR1 TD7 : Un microprocesseur RISC 16 bits 13, 20 et 27 novembre 2006 Présentation générale On choisit

Plus en détail

!+ &&'()$*$%+,%-.../ 0+ &&'()$*$%+($$%...0 $+,%$$'4&$1$%&1$%+...! #+ +$*$% +2%+7%&$,4$)...! 2+ +$&2%+7%&$,4$)...!/ &,+-%$7...!5

!+ &&'()$*$%+,%-.../ 0+ &&'()$*$%+($$%...0 $+,%$$'4&$1$%&1$%+...! #+ +$*$% +2%+7%&$,4$)...! 2+ +$&2%+7%&$,4$)...!/ &,+-%$7...!5 !"## $%!+ &&'()$*$%+,%-.../ 0+ &&'()$*$%+($$%...0 1+ &&$%,$1'&)$1$%+2%+%+$$3,4 $%$ +...5 "+ 6%$&2%&&%,42%()$*$%+... $+,%$$'4&$1$%&1$%+...! #+ +$*$% +2%+7%&$,4$)...! 2+ +$&2%+7%&$,4$)...!/ &+,2$1+$%%%$+,,+&1$%+

Plus en détail

Electricité et magnétisme - TD n 10 Induction

Electricité et magnétisme - TD n 10 Induction Electricité et magnétisme - TD n 1 Induction 1. Inductance mutuelle - transformateur On considère un solénoïde de section circulaire, de rayon R 1, de longueur, et constitué de N 1 spires. A l intérieur

Plus en détail

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) Quelques aspects de la mesure du temps

COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) Quelques aspects de la mesure du temps X Physique et Sciences de l ingénieur MP 2011 Énoncé 1/14 ÉCOLE POLYTECHNIQUE CONCOURS D ADMISSION 2011 FILIÈRE MP COMPOSITION DE PHYSIQUE ET SCIENCES DE L INGÉNIEUR (X) (Durée : 4 heures) L utilisation

Plus en détail

RA/8000/L2, RA/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 32 à 125 mm

RA/8000/L2, RA/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 32 à 125 mm A/8000/L, A/8000/L4 (ISO/VDMA/NFE) Vérins avec bloqueur de tige Double effet - Ø 3 à 5 mm Avec piston magnétique ou non selon ISO 555, ISO 643, VDMA 456 et NFE 49-003- Blocage de sécurité de la tige de

Plus en détail

La Cible Sommaire F o c u s

La Cible Sommaire F o c u s La Cible Sommaire F o c u s F o n d a t e u r : J e a n L e B I S S O N N A I S D i r e c t e u r d e l a p u b l i c a t i o n : M a r t i n e M I N Y R é d a c t e u r e n c h e f : S e r g e C H A N

Plus en détail

BILAN - ACTIF PLASTIRISQ - 92400 COURBEVOIE SIRET 50062021600019. Période N du 01/01/2014 au 31/12/2014 Période N-1 du 01/01/2013 au 31/12/2013

BILAN - ACTIF PLASTIRISQ - 92400 COURBEVOIE SIRET 50062021600019. Période N du 01/01/2014 au 31/12/2014 Période N-1 du 01/01/2013 au 31/12/2013 BILAN - ACTIF Exercice N Exercice N - 1 Brut Amortissements, provisions Net Net Capital souscrit non appelé (I) AA Frais d'établissement AB AC ACTIF CIRCULANT ACTIF IMMOBILISÉ DIVERS CRÉANCES STOCKS IMMOBILISATIONS

Plus en détail

Chapitre 9 Circuits parcourus par un courant alternatif sinusoïdal

Chapitre 9 Circuits parcourus par un courant alternatif sinusoïdal Chapitre 9 Circuits parcourus par un courant alternatif sinusoïdal NTRODUCTON 3 1. GÉNÉRALTÉS SUR LES CRCUTS MONOPHASÉS 1.1. Définitions et caractéristiques 4 1.2. Représentation vectorielle de Fresnel

Plus en détail

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté

CHAPITRE IV Oscillations libres des systèmes à plusieurs degrés de liberté CHAPITE IV Oscillations ibres des Systèmes à plusieurs derés de liberté 010-011 CHAPITE IV Oscillations libres des systèmes à plusieurs derés de liberté Introduction : Dans ce chapitre, nous examinons

Plus en détail

Raisonnement distribué dans un environnement de type Pair-à-Pair

Raisonnement distribué dans un environnement de type Pair-à-Pair Actes JNPC 04 Raisonnement distribué dans un environnement de type Pair-à-Pair P. Adjiman P. Chatalic F. Goasdoué M.-C. Rousset L. Simon adjiman,chatalic,fg,mcr,simon @lri.fr Résumé Dans un système d inférence

Plus en détail

Physique - Résumés de cours PCSI. Harold Erbin

Physique - Résumés de cours PCSI. Harold Erbin Physique - Résumés de cours PCSI Harold Erbin Ce texte est publié sous la licence libre Licence Art Libre : http://artlibre.org/licence/lal/ Contact : harold.erbin@gmail.com Version : 8 avril 2009 Table

Plus en détail

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009

Université Joseph Fourier Premier semestre 2009/10. Licence première année - MAT11a - Groupe CHB-1. Contrôle Continu 1, le 9/10/2009 Université Joseph Fourier Premier semestre 9/ Licence première année - MATa - Groupe CHB- Contrôle Continu, le 9//9 Le contrôle dure heure. Questions de cours. ) Soit f :]a, b[ ]c, d[ unefonctionbijectiveetdérivabletelleque,pourtoutx

Plus en détail

2 CIRCUITS ÉLECTRIQUES

2 CIRCUITS ÉLECTRIQUES Circuits électriques 1 2 CIRCUITS ÉLECTRIQUES 2.1 COMPOSANTES D UN CIRCUIT La série d expériences qui suit va vous permettre d étudier le comportement de plusieurs circuits électroniques dans lesquels

Plus en détail

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere

Module d Electricité. 2 ème partie : Electrostatique. Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere Module d Electricité 2 ème partie : Electrostatique Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere 1 Introduction Principaux constituants de la matière : - protons : charge

Plus en détail

Sharp interface limit of an Allen-Cahn equation with conservation of the mass

Sharp interface limit of an Allen-Cahn equation with conservation of the mass Sharp interface limit of an Allen-Cahn equation with conservation of the mass Matthieu Alfaro and Pierre Alifrangis, I3M, Université de Montpellier 2, CC051, Place Eugène Bataillon, 34095 Montpellier Cedex

Plus en détail

Circuits RL et RC. Chapitre 5. 5.1 Inductance

Circuits RL et RC. Chapitre 5. 5.1 Inductance Chapitre 5 Circuits RL et RC Ce chapitre présente les deux autres éléments linéaires des circuits électriques : l inductance et la capacitance. On verra le comportement de ces deux éléments, et ensuite

Plus en détail

Définition : «interconnection» et «networks». nterconneconnexion des années 60 des années 70 ARPANET des années 80 les années 90 Aujourd'hui

Définition : «interconnection» et «networks». nterconneconnexion des années 60 des années 70 ARPANET des années 80 les années 90 Aujourd'hui I N T R O D U C T I O N D I n t e r n e t e s t l e p l u s g r a n d r é s e a u a u m o n d e a v e c d e s c e n t a i n e s d e m i l l i o n s da o r d i n a t e u r é s e a u x c o n n e c t é sa

Plus en détail

Intégrale stochastique

Intégrale stochastique Intégrale stochastique Plan L intégrale stochastique générale Intégrale de Wiener Exemples Processus d Itô Formule d Itô Formule de Black & Scholes Le processus B est un mouvement Brownien et { Ft B,t

Plus en détail

Architecture des machines parallèles modernes

Architecture des machines parallèles modernes Architecture des machines parallèles modernes Ronan Ö Ò Ø ºÓÖ Keryell ENST Bretagne 14 février 2006 ØØÔ»»ØÓÔ ¼¼ºÓÖ Liste 500 plus gros ordinateurs déclarés dans le monde depuis 1993 Top 10 : crème de la

Plus en détail

Construction incrémentale de modèles comportementaux UML

Construction incrémentale de modèles comportementaux UML Construction incrémentale de modèles comportementaux UML Olivier Gout, Thomas Lambolais LGI2P École des Mines d Alès {Olivier.Gout,Thomas.Lambolais}@ema.fr Résumé Le but de cet article consiste à mettre

Plus en détail

)"*$+&,-'$'.,$"/$'+&!##$*0#+&!!#/'$,-'11"'#$ 2! '/'$ )(!)'/'$"*/#/0 )3 )01''#$,0"*'$#$ )!"*$+&'$'.+& ) '/$,,#$$0 28

)*$+&,-'$'.,$/$'+&!##$*0#+&!!#/'$,-'11'#$ 2! '/'$ )(!)'/'$*/#/0 )3 )01''#$,0*'$#$ )!*$+&'$'.+& ) '/$,,#$$0 28 #$ ##$ % #&&##'$ ( )*$+&,-'$'.,$/$'+& % ##$*0#+& #/'$,-'11'#$ 2 '/'$ )( )'/'$*/#/0 )3 45 66 70$0'& ',/0'$7,##'$ 1##1'/'$'*/+& ) 68 63 63 2 )01''#$,0*'$#$ 2 )*$+&'$'.+& 2 ) '/$,,#$$0 28 6 8 6 0*#,##7 8

Plus en détail

TUTORAT D'ELECTROTECHNIQUE

TUTORAT D'ELECTROTECHNIQUE DRIEU Samuel GARIT Florent TUTORAT D'ELECTROTECHNIQUE Etude d'un véhicule électrique Nous allons ici étudier un véhicule tout électrique mue par une machine électrique. Dans une première partie, nous étudierons

Plus en détail

Cours de Systèmes Asservis

Cours de Systèmes Asservis Cours de Systèmes Asservis J.Baillou, J.P.Chemla, B. Gasnier, M.Lethiecq Polytech Tours 2 Chapitre 1 Introduction 1.1 Définition de l automatique Automatique : Qui fonctionne tout seul ou sans intervention

Plus en détail

!/"05"-O0"2"0,#",#7"5#PQ2"5#8R87"5!"5#J(+,"0(+-(,5

!/05-O020,#,#75#PQ25#8R875!5#J(+,0(+-(,5 ! " #! $ % & #'! ( ) * + (, * - +" #. / $ 0 1 * + 2 (, - 3 4 " #. " #% ( + - 5 #& 6 #" 5, #4 0 #7 ( ) * + (, * - +" #. " #+" 8 9 " +8 9 " #5 * 4 5 #, 4, " 7 7 " #. " #7 / : 0 - ; " + 5 -,

Plus en détail

Adaptation d une ressource prédicative pour l extraction d information

Adaptation d une ressource prédicative pour l extraction d information Adaptation d une ressource prédicative pour l extraction d information Aurélien Bossard et Thierry Poibeau 1 Laboratoire d Informatique de Paris-Nord Abstract In this article, we present a method aiming

Plus en détail